AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Konjac-mulberry leaf compound powder alleviates OVA-induced allergic rhinitis in BALB/c mice

Yiyun Zhanga,bJinxing WangaQi ZhangaLiling Denga,cSiyao MiaobGeng Zhonga,d( )
College of Food Science, Southwest University, Chongqing 400715, China
WESTA College, Southwest University, Chongqing 400715, China
Chongqing Institute of Biotechnology Co., Ltd., Chongqing 401121, China
National Undergraduate Experimental Teaching Demonstration Center of Food Science and Engineering, Southwest University, Chongqing 400715, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

According to the proportion of 1:1, konjac flour and mulberry leaf powder are compounded into a kind of dietary fiber source (KMCP). It is found to be good for anti-inflammation. However, its precise anti-allergic rhinitis effect and mechanism remain unknown. In our work, the effect of KMCP on allergic rhinitis (AR) induced by ovalbumin (OVA) was investigated. We found that the number of nasal rubbing and sneezing, the eosinophil (EOS) count in the nasal mucosa, and the serum levels of histamine (HIS), OVA-specific immunoglobulin E (OVA-sIgE) and interleukin-4 (IL-4) were decreased, and the histopathological changes of nasal mucosa were inhibited. Additionally, the experiments further proved that the KMCP treatment could exert substantial effects on short-chain fatty acids (SCFAs) metabolism in the cecum as well. Overall findings suggest that KMCP could suppress the inflammatory response in AR mice, and serve as a novel curative therapeutic for AR without side effects.

References

[1]

J.L. Brozek, J. Bousquet, C.E. Baena-Cagnani, et al., Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision, J. Allergy Clin. Immun. 126 (2010) 466-476. https://doi.org/10.1016/j.jaci.2010.06.047.

[2]

H. Li, Pathophysiology, diagnosis and treatment of allergic rhinitis, Chinese Journal of Otorhinolaryngology Head and Neck Surgery 49 (2014) 347-351.

[3]

A.N. Greiner, P.W. Hellings, G. Rotiroti, et al., Allergic rhinitis, Lancet 378 (2011) 2112-2122. https://doi.org/10.1016/s0140-6736(11)60130-x.

[4]

K.G. Wu, T.H. Li, T.Y. Wang, et al., A comparative study of loratadine syrup and cyproheptadine HCl solution for treating perennial allergic rhinitis in Taiwanese children aged 2–12 years, Int. J. Immunopathol. Pharmacol. 25 (2012) 231-237.

[5]

G. Howell, L. West, C. Jenkins, et al., In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine, BMC Pharmacol. 5 (2005) 13. https://doi.org/10.1186/1471-2210-5-13.

[6]

D.P. Skoner, G.S. Rachelefsky, E.O. Meltzer, et al., Detection of growth suppression in children during treatment with intranasal beclomethasone dipropionate, Pediatrics 105 (2000) E23. https://doi.org/10.1542/peds.105.2.e23.

[7]

J. Varshney, H. Varshney, Allergic rhinitis: an overview, Indian J. Otolaryngol. Head Neck Surg. 67 (2015) 143-149. https://doi.org/10.1007/s12070-015-0828-5.

[8]

R. Kayasuga, Y. Iba, M.A. Hossen, et al., The role of chemical mediators in eosinophil infiltration in allergic rhinitis in mice, Int. Immunopharmacol. 3 (2003) 469-473. https://doi.org/10.1016/s1567-5769(02)00254-0.

[9]

A. Togias, Unique mechanistic features of allergic rhinitis, J. Allergy Clin. Immunol. 105 (2000) S599-604. https://doi.org/10.1067/mai.2000.106885.

[10]

K. Yanai, B. Rogala, K. Chugh, et al., Safety considerations in the management of allergic diseases: focus on antihistamines, Curr. Med. Res. Opin. 28 (2012) 623-642. https://doi.org/10.1185/03007995.2012.672405.

[11]

R. Pawankar, S. Mori, C. Ozu, et al., Overview on the pathomechanisms of allergic rhinitis, Asia Pacific Allergy 1 (2011) 157-167. https://doi.org/10.5415/apallergy.2011.1.3.157.

[12]

R.D. Devaraj, C.K. Reddy, B. Xu, Health-promoting effects of konjac glucomannan and its practical applications: a critical review, Int. J. Biol. Macromol. 126 (2019) 273-281. https://doi.org/10.1016/j.ijbiomac.2018.12.203.

[13]

F.D. da Silva, C.Y.L. Ogawa, F. Sato, et al., Chemical and physical characterization of Konjac glucomannan-based powders by FTIR and 13C MAS NMR, Powder Technol. 361 (2020) 610-616. https://doi.org/10.1016/j.powtec.2019.11.071.

[14]

H. Huang, Y. Xu, F. Li, Research progress of konjac glucomannan in medicine, Medical Journal of National Defending Forces in Southwest China 25 (2015) 212-215. https://doi.org/10.3969/j.issn.1004-0188.

[15]

F.S.R. Bernaud, T.C. Rodrigues, Dietary fiber: adequate intake and effects on metabolism health, Arq. Bras. Endocrinol. Metab. 57 (2013) 397-405.

[16]

U. Gophna, Microbiology. the guts of dietary habits, Science 334 (2011) 45-46. https://doi.org/10.1126/science.1213799.

[17]

S. Nakaji, K. Sugawara, D. Saito, et al., Trends in dietary fiber intake in Japan over the last century, Eur. J. Nutr. 41 (2002) 222-227. https://doi.org/10.1007/s00394-002-0379-x.

[18]

G.D. Wu, J. Chen, C. Hoffmann, et al., Linking long-term dietary patterns with gut microbial enterotypes, Science 334 (2011) 105-108. https://doi.org/10.1126/science.1208344.

[19]

N. Onishi, S. Kawamoto, K. Ueda, et al., Dietary pulverized konjac glucomannan prevents the development of allergic rhinitis-like symptoms and IgE response in mice, Biosci. Biotechnol. Biochem. 71 (2007) 2551-2556. https://doi.org/10.1271/bbb.70378.

[20]

N. Onishi, S. Kawamoto, M. Nishimura, et al., The ability of konjac-glucomannan to suppress spontaneously occurring dermatitis in NC/Nga mice depends upon the particle size, BioFactors 21 (2004) 163-166.

[21]

N. Onishi, S. Kawamoto, M. Nishimura, et al., A new immunomodulatory function of low-viscous konjac glucomannan with a small particle size: its oral intake suppresses spontaneously occurring dermatitis in NC/Nga mice, Int. Arch. Allergy Immunol. 136 (2005) 258-265. https://doi.org/10.1159/000083952.

[22]

Y. Zeng, J. Zhang, Y. Zhang, et al., Prebiotic, Immunomodulating, and antifatigue effects of konjac oligosaccharide, J. Food Sci. 83 (2018) 3110-3117. https://doi.org/10.1111/1750-3841.14376.

[23]

A. Trompette, E.S. Gollwitzer, K. Yadava, et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med. 20 (2014) 159-166. https://doi.org/10.1038/nm.3444.

[24]

T. Thaipitakwong, S. Numhom, P. Aramwit, Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy, Pharm. Biol. 56 (2018) 109-118. https://doi.org/10.1080/13880209.2018.1424210.

[25]

P.Y. Chao, K.H. Lin, C.C. Chiu, et al., Inhibitive effects of mulberry leaf-related extracts on cell adhesion and inflammatory response in human aortic endothelial cells, Evid. Based Complement Alternat. Med. 2013 (2013) 267217. https://doi.org/10.1155/2013/267217.

[26]

T. Ji, J. Li, S.L. Su, et al., Identification and determination of the polyhydroxylated alkaloids compounds with alpha-glucosidase inhibitor activity in mulberry leaves of different origins, Molecules 21 (2016) 206. https://doi.org/10.3390/molecules21020206.

[27]

X. Yu, Y. Zhu, J. Fan, et al., Accumulation of flavonoid glycosides and UFGT gene expression in mulberry leaves (Morus alba L.) before and after frost, Chem. Biodivers. 14 (2017) e1600496. https://doi.org/10.1002/cbdv.201600496.

[28]

G.Q. Wang, L. Zhu, M.L. Ma, et al., Mulberry 1-deoxynojirimycin inhibits adipogenesis by repression of the ERK/PPARγ signaling pathway in porcine intramuscular adipocytes, J. Agric. Food. Chem. 63 (2015) 6212-6220. https://doi.org/10.1021/acs.jafc.5b01680.

[29]

K.O. Chung, B.Y. Kim, M.H. Lee, et al., In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L, J. Pharm. Pharmacol. 55 (2003) 1695-1700. https://doi.org/10.1211/0022357022313.

[30]

M.H. Yu, T.Y. Yang, H.H. Ho, et al., Mulberry polyphenol extract inhibits FAK/Src/PI3K complex and related signaling to regulate the migration in A7r5 cells, J. Agric. Food. Chem., 66 (2018) 3860-3869. https://doi.org/10.1021/acs.jafc.8b00958.

[31]
G. Zhong, D. Zhong, A food product and preparation method for eliminating physical discomfort due to hot pot consumption, Southwest University, China, 2018.
[32]
AOAC, Official method of analysis, 18th ed., Association of Official Analytical Chemists, Washington, DC, 2006.
[33]

D.Y. Zhang, Y. Wan, J.Y. Hao, et al., Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China, Ind. Crops Prod. 122 (2018) 298-307. https://doi.org/10.1016/j.indcrop.2018.05.065.

[34]

Y. Xie, Y. Zheng, X. Dai, et al., Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora, Food Chem. 186 (2015) 113-118. https://doi.org/10.1016/j.foodchem.2014.05.024.

[35]

L. Liu, Y. Sun, T. Laura, et al., Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng, Food Chem. 112 (2009) 35-41. https://doi.org/10.1016/j.foodchem.2008.05.038.

[36]

W.J. Deng, Z.P. Sun, X.G. Luo, et al., Optimization of extraction technology of total alkaloids from mulberry leaves by orthogonal design, Chinese Archives of Traditional Chinese Medicine 30 (2012) 17-18.

[37]
AOAC, Official method of analysis, 17th ed., Association of Official Analytical Chemists Washington, Washington, DC, 2000.
[38]

M. Acar, N.B. Muluk, S. Yigitaslan, et al., Can curcumin modulate allergic rhinitis in rats, J. Laryngol. Otol. 130 (2016) 1103-1109. https://doi.org/10.1017/S0022215116008999.

[39]

K. Bozdemir, E. Şahin, N. Altintoprak, et al., Is resveratrol therapeutic when used to treat allergic rhinitis in rats, Clin. Invest. Med. 39 (2016) E63-E72. https://doi.org/10.25011/cim.v39i2.26482.

[40]

J. Xu, L. Gao, H. Yao, et al., Characteristics of lower airway inflammatory changes in the minimal persistent inflammation of allergic rhinitis in mice, J. Asthma 55 (2018) 1187-1196. https://doi.org/10.1080/02770903.2017.1410831.

[41]

Y.W. Lian, H. Wang, S. Ni, et al., Measurement of organ weight and organ coefficient in BALB/c nude mice, Chinese Journal of Comparative Medicine 16 (2006) 285-287.

[42]

M. El Gazzar, R. El Mezayen, J.C. Marecki, et al., Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation, Int. Immunopharmacol. 6 (2006) 1135-1142. https://doi.org/10.1016/j.intimp.2006.02.004.

[43]

N. Zhang, H. Li, J. Jia, et al., Anti-inflammatory effect of curcumin on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse, Cell Immunol. 298 (2015) 88-95. https://doi.org/10.1016/j.cellimm.2015.09.010.

[44]

M. Zhou, C. Pu, L. Xia, et al., Salecan diet increases short chain fatty acids and enriches beneficial microbiota in the mouse cecum, Carbohydr. Polym. (2014) 772-779.

[45]

D.M. Lopez, V. Charyulu, B. Adkins, Influence of breast cancer on thymic function in mice, J. Mammary Gland Biol. Neoplasia 7 (2002) 191-199. https://doi.org/10.1023/a:1020356020542.

[46]

C. Grossman, Interration between the gonadal steroids and the immuun system, Science 227 (1985) 257-261. https://doi.org/10.1126/science.387125.

[47]

X. Zhang, C. Shen, Z. Wen, et al., The relationship between the key nasal symptoms and the level of histamineand leukotriene D4 in serum and nasal secretions in allergic rhinitis, J. Clin. Otorhinolaryngol.-Head N 30 (2016) 1025-1028.

[48]

C.R. Cavaglieri, A. Nishiyama, L.C. Fernandes, et al., Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes, Life Sci. 73 (2003) 1683-1690. https://doi.org/10.1016/s0024-3205(03)00490-9.

[49]

R. Afshar, B.D. Medoff, A.D. Luster, Allergic asthma: a tale of many T cells, Clin. Exp. Allergy 38 (2008) 1847-1857. https://doi.org/10.1111/j.1365-2222.2008.03119.x.

[50]

H. Toru, C. Ra, S. Nonoyama, et al., Induction of the high-affinity IgE receptor (FcεRI) on human mast cells by IL-4, Int. Immunol. 8 (1996) 1367-1373. https://doi.org/10.1093/intimm/8.9.1367.

[51]

U. Böcker, T. Nebe, F. Herweck, et al., Butyrate modulates intestinal epithelial cell-mediated neutrophil migration, Clin. Exp. Immunol. 131 (2003) 53-60. https://doi.org/10.1046/j.1365-2249.2003.02056.x.

[52]

M.E. Rodrı́guez-Cabezas, J. Gálvez, D. Camuesco, et al., Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats, Clin. Nutr. 22 (2003) 463-471. https://doi.org/10.1016/s0261-5614(03)00045-1.

[53]

J.S. Park, E.J. Lee, J.C. Lee, et al., Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways, Int. Immunopharmacol. 7 (2007) 70-77. https://doi.org/10.1016/j.intimp.2006.08.015.

[54]
L. Zou, Research on hypocholesterolemic effects and mechanism of mulberry leaves water extract on cholesterol metabolism in high fat diet mice, Southwest University, Chongqing, 2017.
[55]

M. Kalliomäki, C. Carmen, S. Salminen, et al., Early differences in fecal microbiota composition in children may predict overweight, Am. J. Clin. Nutr. 87 (2008) 534-538. https://doi.org/10.1093/ajcn/87.3.534.

[56]

C. Manichanh, L. Rigottier-Gois, E. Bonnaud, et al., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach, Gut 55 (2006) 205-211. https://doi.org/10.1136/gut.2005.073817.

[57]

P.J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature 457 (2008) 480-484. https://doi.org/10.1038/nature07540.

[58]

A. Vrieze, F. Holleman, E.G. Zoetendal, et al., The environment within: how gut microbiota may influence metabolism and body composition, Diabetologia 53 (2010) 606-613. https://doi.org/10.1007/s00125-010-1662-7.

[59]

B. Bjorksten, E. Sepp, K. Julge, et al., Allergy development and the intestinal microflora during the first year of life, J. Allergy Clin. Immun. 108 (2001) 516-520. https://doi.org/10.1067/mai.2001.118130.

[60]

A.C. Ouwehand, M. Nermes, M.C. Collado, et al., Specific probiotics alleviate allergic rhinitis during the birch pollen season, World J. Gastroenterol. 15 (2009) 3261-3268. https://doi.org/10.3748/wjg.15.3261.

[61]

J.J. Wan, J. Ming, L. Heng, et al., Effects of low polymerization degree konjacmannan-oligosaccharide on intestinal and microflora of normal mice, Food and Fermentation Industries 41 (2015) 13-18.

[62]

T. Yanagibashi, A. Hosono, A. Oyama, et al., IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells, Immunobiology 218 (2013) 645-651. https://doi.org/10.1016/j.imbio.2012.07.033.

[63]

W. Miao, J. Min, L. Heng, et al., Investigation on the regular pattersn of mannan oligosaccharides degradation and utilization by lactic acid bacteria, Food and Fermentation Industries 42 (2016) 20-24.

[64]

D. Davani-Davari, M. Negahdaripour, I. Karimzadeh, et al., Prebiotics: definition, types, sources, mechanisms, and clinical applications, Foods 8 (2019) 92. https://doi.org/10.3390/foods8030092.

[65]

R. Hou, S. Liao, F. Liu, et al., Immunomodulatory effect of polysaccharides from mulberry leaves (PML) in mice, Food Sci. 32 (2011) 280-283.

[66]

B. Yuan, Y. Li, Y. Su, et al., Action of glucomannan in Amorphophallus rivieri Durieu on mutured obese rats, Northwest Pharmaceutical Journal 4 (1998) 160-161.

[67]

L. Hong, The therapeutic effect of konjac glucomanan on fatty liver in quails. Acta Nutrimenta Sinica 27 (2005) 77-78.

[68]

G.R. Kaats, D. Bagchi, H.G. Preuss, konjac glucomannan dietary supplementation causes significant fat loss in compliant overweight adults, J. Am. Coll. Nutr. (2015) 1-7. https://doi.org/10.1080/07315724.2015.1009194.

[69]

D. Dridi, N.A. Boughattas, K. Aouam, et al., Circadian time-dependent differences in murine tolerance to the antihistaminic agent loratadine, Chronobiol. Int. 22 (2005) 499-514. https://doi.org/10.1081/CBI-200062369.

Food Science and Human Wellness
Pages 1674-1682
Cite this article:
Zhang Y, Wang J, Zhang Q, et al. Konjac-mulberry leaf compound powder alleviates OVA-induced allergic rhinitis in BALB/c mice. Food Science and Human Wellness, 2023, 12(5): 1674-1682. https://doi.org/10.1016/j.fshw.2023.02.026

720

Views

38

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 April 2021
Revised: 11 May 2021
Accepted: 04 July 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return