AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Lower serum magnesium concentration and higher 24-h urinary magnesium excretion despite higher dietary magnesium intake in athletes: a systematic review and meta-analysis

Haixin Zhanga,b,1Ruwen Wanga,1Shanshan GuocQianqian TianaShuang Zhanga,dLiang GuoaTiemin Liuc( )Ru Wanga( )
School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
Department of Physical Education, Huainan Normal University, Huainan 232038, China
State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
School of Kinesiology, Harbin Sport University, Harbin 150008, China

1These authors contributed equally.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Magnesium plays a critical role in the human's life activities and energy metabolism. This study aimed to evaluate the magnesium status of athletes via a systematic review of cross-sectional studies. A comprehensive systematic search was conducted in PubMed, Web of Science, SPORTDiscus, Cochrane Library electronic databases, and other sources before April 5, 2021. Fourteen studies were included in the systematic review, involving 855 athletes and 521 control subjects. Serum magnesium concentration was significantly lower in athletes (mean difference (MD): −0.04 mmol/L; 95 % confidence interval (CI): −0.06 to −0.01; P = 0.02) in spite of significantly higher dietary magnesium intake (MD: 51.72 mg/day; 95 % CI: 14.62 to 88.83; P = 0.006). Meta-analysis showed that 24-h urinary magnesium excretion in athletes was significantly higher than that in the untrained population (MD: 0.76 mmol/day; 95 % CI: 0.11 to 1.41; P = 0.02). Despite higher total dietary magnesium intake, athletes generally have lower serum magnesium concentration and higher 24-h urinary magnesium excretion, demonstrating that the magnesium requirement of athletes is higher than the untrained population. It is necessary to carry out a dietary assessment and nutrition counseling to help athletes adopt proper diets to meet their nutritional needs in exercise.

References

[1]

U. Gröber, J. Schmidt, K. Kisters, Magnesium in prevention and therapy, Nutrients 7(9) (2015) 8199-8226. https://doi.org/10.3390/nu7095388.

[2]

I. Dørup, T. Clausen, Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart, Br. J. Nutr. 66(3) (1991) 493-504. https://doi.org/10.1079/bjn19910050.

[3]

Y. Zhang, P. Xun, R. Wang, et al., Can magnesium enhance exercise performance, Nutrients 9(9) (2017) 946. https://doi.org/10.3390/nu9090946.

[4]

N.A. Littlefield, B.S. Hass, L.J. McGarrity, et al., The effect of magnesium on the growth and cell cycle of transformed and non-transformed epithelial rat liver cells in vitro, Cell Biol. Toxicol. 7(3) (1991) 203-214. https://doi.org/10.1007/BF00250975.

[5]

S.L. Volpe, Magnesium in disease prevention and overall health, Adv. Nutr. 4(3) (2013) 378S-383S. https://doi.org/10.3945/an.112.003483.

[6]

I.J. Newhouse, E.W. Finstad. The effects of magnesium supplementation on exercise performance, Clin. J. Sports Med. 10(3) (2000) 195-200. https://doi.org/10.1097/00042752-200007000-00008.

[7]

T. Mert, Y. Gunes, M. Guven, et al., Effects of calcium and magnesium on peripheral nerve conduction, Pol. J. Pharmacol. 55(1) (2003) 25-30.

[8]

J.D. Potter, S.P. Robertson, J.D. Johnson, Magnesium and the regulation of muscle contraction, Fed. Proc. 40(12) (1981) 2653-2656.

[9]

M. Soria, C. González-Haro, M.A. Ansón, et al., Variations in serum magnesium and hormonal levels during incremental exercise, Magnes. Res. 27(4) (2014) 155-164. https://doi.org/10.1684/mrh.2014.0372.

[10]

F.C. Mooren, S.W. Golf, K. Völker, Effect of magnesium on granulocyte function and on the exercise induced inflammatory response, Magnes. Res. 16(1) (2003) 49-58.

[11]

J.H. de Baaij, J.G. Hoenderop, R.J. Bindels, Magnesium in man: implications for health and disease, Physiol. Rev. 95(1) (2015) 1-46. https://doi.org/10.1152/physrev.00012.2014.

[12]

S. Castiglioni, A. Cazzaniga, W. Albisetti, et al., Magnesium and osteoporosis: current state of knowledge and future research directions, Nutrients 5(8) (2013) 3022-3033. https://doi.org/10.3390/nu5083022.

[13]

F.H. Nielsen, D.B. Milne, L.M. Klevay, et al., Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post-menopausal women, J. Am. Coll. Nutr. 26(2) (2007) 121-132. https://doi.org/10.1080/07315724.2007.10719593.

[14]

J.C. Schutten, M.M. Joosten, M.H. de Borst, et al., Magnesium and blood pressure: a physiology-based approach, Adv. Chronic Kidney Dis. 25(3) (2018) 244-250. https://doi.org/10.1053/j.ackd.2017.12.003.

[15]

C.H. Sales, L.F. Pedrosa, J.G. Lima, et al., Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes, Clin. Nutr. 30(3) (2011) 359-364. https://doi.org/10.1016/j.clnu.2010.12.011.

[16]

J.B. Morais, J.S. Severo, L.R. Santos, et al., Role of magnesium in oxidative stress in individuals with obesity, Biol. Trace Elem. Res. 176(1) (2017) 20-26. https://doi.org/10.1007/s12011-016-0793-1.

[17]

N. Górska, W.J. Cubała, J. Słupski, et al., Ketamine and magnesium common pathway of antidepressant action, Magnes. Res. 31(2) (2018) 33-38. https://doi.org/10.1684/mrh.2018.0440.

[18]

F.H. Nielsen, Dietary magnesium and chronic disease, Adv. Chronic Kidney Dis. 25(3) (2018) 230-235. https://doi.org/10.1053/j.ackd.2017.11.005.

[19]

F.H. Nielsen, Effects of magnesium depletion on inflammation in chronic disease, Curr. Opin. Clin. Nutr. Metab. Care 17(6) (2014) 525-530. https://doi.org/10.1097/MCO.0000000000000093.

[20]

F.H. Nielsen, Magnesium, inflammation, and obesity in chronic disease, Nutr. Rev. 68(6) (2010) 333-340. https://doi.org/10.1111/j.1753-4887.2010.00293.x.

[21]

K. Kostov, L. Halacheva, Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension, Int. J. Mol. Sci. 19(6) (2018) 1724. https://doi.org/10.3390/ijms19061724.

[22]
Food and Nutrition Board, Institute of Medicine. Magnesium. In: Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington: DC: National Academies Press, 1997: 190-249.
[23]

F.H. Nielsen, H.C. Lukaski, Update on the relationship between magnesium and exercise, Magnes. Res. 19(3) (2006) 180-189.

[24]

A.S. Nica, A. Caramoci, M. Vasilescu, et al., Magnesium supplementation in top athletes - effects and recommendations, Medicina Sportiva: Journal of the Romanian Sports Medicine Society 11(1) (2015) 2482-2494.

[25]

F.H. Nielsen, Guidance for the determination of status indicators and dietary requirements for magnesium, Magnes. Res. 29(4) (2016) 154-160. https://doi.org/10.1684/mrh.2016.0416.

[26]

European Food Safety Authority, Scientific opinion on dietary reference values for magnesium, EFSA. J. 13(7) (2015) 4186. https://doi.org/10.2903/j.efsa.2015.4186.

[27]

L. Kass, K.R. Sullivan, Low dietary magnesium intake and hypertension, World J. Cardiovasc. Dis. 6(12) (2016) 447-457. https://doi.org/10.4236/wjcd.2016.612048.

[28]

S.M. Heffernan, K. Horner, G. De Vito, et al., The role of mineral and trace element supplementation in exercise and athletic performance: a systematic review, Nutrients 11(3) (2019) 696. https://doi.org/10.3390/nu11030696.

[29]

L.A. Cerwinske, H.E. Rasmussen, S. Lipson, et al., Evaluation of a dietary screener: the mediterranean eating pattern for Americans tool, J. Hum. Nutr. Diet. 30(5) (2017) 596-603. https://doi.org/10.1111/jhn.12451.

[30]

M.H. Leppänen, P. Henriksson, C. Delisle Nyström, et al., Longitudinal physical activity, body composition, and physical fitness in preschoolers, Med. Sci. Sports Exerc. 49(10) (2017) 2078-2085. https://doi.org/10.1249/MSS.0000000000001313.

[31]

W. Chen, A. Hammond-Bennett, A. Hypnar, et al., Health-related physical fitness and physical activity in elementary school students, BMC Public Health 18(1) (2018) 195. https://doi.org/10.1186/s12889-018-5107-4.

[32]
K. Mikkelsen, L. Stojanovska, M. Polenakovic, et al., Exercise and mental health, 106 (2017) 48-56. https://doi.org/10.1016/j.maturitas.2017.09.003.
[33]

K.L. Piercy, R.P. Troiano, R.M. Ballard, et al., The physical activity guidelines for Americans, JAMA 320(19) (2018) 2020-2028. https://doi.org/10.1001/jama.2018.14854.

[34]

X. Luan, X.Y. Tian, H.X. Zhang, et al., Exercise as a prescription for patients with various diseases, J. Sports Health Sci. 8(5) (2019) 422-441. https://doi.org/10.1016/j.jshs.2019.04.002.

[35]

S. Guo, Y. Huang, Y. Zhang, et al., Impacts of exercise interventions on different diseases and organ functions in mice, J. Sport Health Sci. 9(1) (2020) 53-73. https://doi.org/10.1016/j.jshs.2019.07.004.

[36]

R. Wang, H. Tian, D. Guo, et al., Impacts of exercise intervention on various diseases in rats, J. Sport Health Sci. 9(3) (2020) 211-227. https://doi.org/10.1016/j.jshs.2019.09.008.

[37]

B. Egan, J.R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab. 17(2) (2013) 162-184. https://doi.org/10.1016/j.cmet.2012.12.012.

[38]

D.M. Camera, W.J. Smiles, J.A. Hawley, Exercise-induced skeletal muscle signaling pathways and human athletic performance, Free Radic. Biol. Med. 98 (2016) 131-143. https://doi.org/10.1016/j.freeradbiomed.2016.02.007.

[39]

J.J. Whyte, M.H. Laughlin, The effects of acute and chronic exercise on the vasculature, Acta Physiol (Oxf). 199(4) (2010) 441-450. https://doi.org/10.1111/j.1748-1716.2010.02127.x.

[40]

L.M. Margolis, S.M. Pasiakos, Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis, Adv. Nutr. 4(6) (2013) 657-664. https://doi.org/10.3945/an.113.004572.

[41]

G.L. Close, D.L. Hamilton, A. Philp, et al., New strategies in sport nutrition to increase exercise performance, Free Radic. Biol. Med. 98 (2016) 144-158. https://doi.org/10.1016/j.freeradbiomed.2016.01.016.

[42]

G. Paulsen, H. Hamarsland, K.T. Cumming, et al., Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training, J. Physiol. 592(24) (2014) 5391-5408. https://doi.org/10.1113/jphysiol.2014.279950.

[43]

R. Yamanaka, S. Tabata, Y. Shindo, et al., Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress, Sci. Rep. 6 (2016) 30027. https://doi.org/10.1038/srep30027.

[44]

Q. Wei, Y.F. Gu, Q.J. Zhang, et al., Lztfl1/BBS17 controls energy homeostasis by regulating the leptin signaling in the hypothalamic neurons, J. Mol. Cell Biol. 10(5) (2018) 402-410. https://doi.org/10.1093/jmcb/mjy022.

[45]

J. Petrović, D. Stanić, G. Dmitrašinović, et al., Magnesium supplementation diminishes peripheral blood lymphocyte DNA oxidative damage in athletes and sedentary young man, Oxid. Med. Cell. Longev. 2016 (2016) 2019643. https://doi.org/10.1155/2016/2019643.

[46]

M.J. Laires, C. Monteiro, Exercise, magnesium and immune function, Magnes. Res. 21(2) (2008) 92-96.

[47]

C. Nocella, V. Cammisotto, F. Pigozzi, et al., Impairment between oxidant and antioxidant systems: short- and long-term implications for Athletes' health, Nutrients 11(6) (2019) 1353. https://doi.org/10.3390/nu11061353.

[48]

H.C. Lukaski, Vitamin and mineral status: effects on physical performance, Nutrition 20(7/8) (2004) 632-644. https://doi.org/10.1016/j.nut.2004.04.001.

[49]

E. Rock, C. Astier, C. Lab, et al., Dietary magnesium deficiency in rats enhances free radical production in skeletal muscle, J. Nutr. 125(5) (1995) 1205-1210. https://doi.org/10.1093/jn/125.5.1205.

[50]

D. König, C. Weinstock, J. Keul, et al., Zinc, iron, and magnesium status in athletes-influence on the regulation of exercise-induced stress and immune function, Exerc. Immunol. Rev. 4 (1998) 2-21.

[51]

S.R. Garrison, G.M. Allan, R.K. Sekhon, et al., magnesium for skeletal muscle cramps, Cochrane Database Syst. Rev. 2012(9) (2012) CD009402. https://doi.org/10.1002/14651858.CD009402.pub2.

[52]

J. Scherr, T. Schuster, A. Pressler, et al., Repolarization perturbation and hypomagnesemia after extreme exercise, Med. Sci. Sports Exerc. 44(9) (2012) 1637-1643. https://doi.org/10.1249/MSS.0b013e318258aaf4.

[53]

M. Witkowski, J. Hubert, A. Mazur, et al., Methods of assessment of magnesium status in humans: a systematic review, Magnes. Res. 24(4) (2011) 163-180. https://doi.org/10.1684/mrh.2011.0292.

[54]

C.H. Bohl, S.L. Volpe, Magnesium and exercise, Crit. Rev. Food Sci. Nutr. 42(6) (2002) 533-563. https://doi.org/10.1080/20024091054247.

[55]

D. Moher, A. Liberati, J. Tetzlaff, et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, Ann. Intern. Med. 151(4) (2009) 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.

[56]

G.H. Guyatt, A.D. Oxman, G. Vist, et al., GRADE guidelines: 4. Rating the quality of evidence-study limitations (risk of bias), J. Clin. Epidemiol. 64(4) (2011) 407-415. https://doi.org/10.1016/j.jclinepi.2010.07.017.

[57]

A. Chu, C. Holdaway, T. Varma, et al., Lower serum zinc concentration despite higher dietary zinc intake in Athletes: a systematic review and meta-analysis, Sports Med. 48(2) (2018) 327-336. https://doi.org/10.1007/s40279-017-0818-8.

[58]
The Cochrane Collaboration. Review manager (RevMan). Copenhagen: The Nordic Cochrane Centre; 2014.
[59]

M. Bayram, G. Bayraktar, H. Akyol, et al., Comparing some blood parameters of ski racers and long distance athletes, Turkish J. Sport Exercise 19(3) (2017) 331-336. https://doi.org/10.15314/tsed.286380.

[60]

G. Buyukyazi, N. Kutukculer, N. Kutlu, et al., Differences in the cellular and humoral immune system between middle-aged men with different intensity and duration of physically training, J. Sports Med. Phys. Fitness. 44(2) (2004) 207-214.

[61]

I. Casoni, C. Guglielmini, L. Graziano, et al., Changes of magnesium concentrations in endurance athletes, Int. J. Sports Med. 11(3) (1990) 234-237. https://doi.org/10.1055/s-2007-1024798.

[62]

M. Fogelholm, J. Laakso, J. Lehto, et al., Dietary intake and indicators of magnesium and zinc status in male athletes, Nutr. Res. 11(10) (1991) 1111-1118. https://doi.org/10.1016/S0271-5317(05)80689-X.

[63]

P. Hespel, P. Lijnen, R. Fiocchi, et al., Erythrocyte cations and Na+, K+- ATPase pump activity in athletes and sedentary subjects, Eur. J. Appl. Physiol. Occup. Physiol. 55(1) (1986) 24-29. https://doi.org/10.1007/BF00422888.

[64]

H. Imamura, K. Iide, Y. Yoshimura, et al., Nutrient intake, serum lipids and iron status of collegiate rugby players, J. Int. Soc. Sports Nutr. 10(1) (2013) 9. https://doi.org/10.1186/1550-2783-10-9.

[65]

T. Lloyd, L.A. Dolence, M.J. Bartholomew, et al., Nutritional characteristics of recreational women runners, Nutr. Res. 12(3) (1992) 359-366. https://doi.org/10.1016/S0271-5317(05)80751-1.

[66]

M.M. Mariño, F.J. Grijota, I. Bartolomé, et al., Influence of physical training on erythrocyte concentrations of iron, phosphorus, and magnesium, J. Int. Soc. Sports Nutr. 17(1) (2020) 8. https://doi.org/10.1186/s12970-020-0339-y.

[67]

M.M. Mariño, F.J. Grijota, I. Bartolomé, et al., Correction to influence of physical training on erythrocyte concentrations of iron, phosphorus, and magnesium, J. Int. Soc. Sports Nutr. 17(1) (2020) 34. https://doi.org/10.1186/s12970-020-00363-8.

[68]

M.G. Nikolaidis, M.D. Protosygellou, A. Petridou, et al., Hematologic and biochemical profile of juvenile and adult athletes of both sexes: implications for clinical evaluation, Int. J. Sports Med. 24(7) (2003) 506-511. https://doi.org/10.1055/s-2003-42014.

[69]

Y. Noda, K. Iide, R. Masuda, et al., Nutrient intake and blood iron status of male collegiate soccer players, Asia Pac. J. Clin. Nutr. 18(3) (2009) 344-350.

[70]

R.J. Nuviala, M.G. Lapieza, E. Bernal, et al., Magnesium, zinc, and copper status in women involved in different sports, Int. J. Sport Nutr. 9(3) (1999) 295-309. https://doi.org/10.1123/ijsn.9.3.295.

[71]

T. Rankinen, S. Lyytikainen, E. Vanninen, et al., Nutritional status of the Finnish elite ski jumpers, Med. Sci. Sports Exerc. 30(11) (1998) 1592-1597. https://doi.org/10.1097/00005768-199811000-00006.

[72]

A. Singh, P.A. Deuster, B.A. Day, et al., Dietary intakes and biochemical markers of selected minerals: comparison of highly trained runners and untrained women, J. Am. Coll. Nutr. 9(1) (1990) 65-75. https://doi.org/10.1080/07315724.1990.10720352.

[73]

V. Teixeira, H. Valente, S. Casal, et al., Antioxidant status, oxidative stress, and damage in elite trained kayakers and canoeists and sedentary controls, Int. J. Sport Nutr. Exerc. Metab. 19(5) (2009) 443-456. https://doi.org/10.1123/ijsnem.19.5.443.

[74]

Y. Rayssiguier, C.Y. Guezennec, J. Durlach, et al., New experimental and clinical data on the relationship between magnesium and sport, Magnes. Res. 3(2) (1990) 93-102.

[75]

P.M. Clarkson, Micronutrients and exercise: anti-oxidants and minerals, J. Sports Sci. 13 (1995) S11-S24. https://doi.org/10.1080/02640419508732272.

[76]

S.N. Steen, S. McKinney, Nutrition assessment of college wrestlers, Phys. Sportsmed. 14(11) (1986) 100-116. https://doi.org/10.1080/00913847.1986.11709226.

[77]

P.J. Ziegler, J.A. Nelson, S.S. Jonnalagadda, et al., Nutritional and physiological status of U.S. national figure skaters, Int. J. Sport Nutr. 9(4) (1999) 345-360. https://doi.org/10.1123/ijsn.9.4.345.

[78]

H. Dobrowolski, D. Włodarek, Dietary intake of polish female soccer players, Int. J. Environ. Res. Public Health 16(7) (2019) 1134. https://doi.org/10.3390/ijerph16071134.

[79]

S. Heaney, H. O'Connor, J. Gifford, et al., Comparison of strategies for assessing nutritional adequacy in elite female athletes' dietary intake, Int. J. Sport Nutr. Exerc. Metab. 20(3) (2010) 245-256. https://doi.org/10.1123/ijsnem.20.3.245.

[80]

A.R. Loosli, J. Benson, D.M. Gillien, et al., Nutrition habits and knowledge in competitive adolescent female gymnasts, Phys. Sportsmed. 14(8) (1986) 118-130. https://doi.org/10.1080/00913847.1986.11709153.

[81]

P. Ziegler, R. Sharp, V. Hughes, et al., Nutritional status of teenage female competitive figure skaters, J. Am. Diet. Assoc. 102(3) (2002) 374-379. https://doi.org/10.1016/s0002-8223(02)90086-6.

[82]

H.C. Lukaski, Magnesium, zinc, and chromium nutriture and physical activity, Am. J. Clin. Nutr. 72(2 Suppl) (2000) 585S-593S. https://doi.org/10.1093/ajcn/72.2.585S.

[83]

A.L. Buchman, C. Keen, J. Commisso, et al., The Effect of a marathon run on plasma and urine mineral and metal concentrations, J. Am. Coll. Nutr. 17(2) (1998) 124-127. https://doi.org/10.1080/07315724.1998.10718737.

[84]

N. Kawabe, M. Suzuki, K. Machida, et al., Magnesium metabolism after a full-marathon race, Jap. J. Phys. Fitness Sports Med. 47(2) (1998) 221-229. https://doi.org/10.7600/jspfsm1949.47.221.

[85]

H.C. Lukaski, F.H. Nielsen, Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women, J. Nutr. 132(5) (2002) 930-935. https://doi.org/10.1093/jn/132.5.930.

[86]

M. Speich, A. Pineau, F. Ballereau, et al., Minerals, trace elements and related biological variables in athletes and during physical activity, Clin. Chim. Acta 312(1/2) (2001) 1-11. https://doi.org/10.1016/s0009-8981(01)00598-8.

[87]

R. Wang, C. Chen, W. Liu, et al., The effect of magnesium supplementation on muscle fitness: a meta-analysis and systematic review, Magnes. Res. 30(4) (2017) 120-132. https://doi.org/10.1684/mrh.2018.0430.

[88]

P. Lijnen, P. Hespel, R. Fagard, et al., Erythrocyte, plasma and urinary magnesium in men before and after a marathon, Eur. J. Appl. Physiol. Occup. Physiol. 58(3) (1988) 252-256. https://doi.org/10.1007/BF00417258.

[89]

P.A. Deuster, E. Dolev, S.B. Kyle, et al., Magnesium homeostasis during high-intensity anaerobic exercise in men, J. Appl. Physiol. 62(2) (1987) 545-550. https://doi.org/10.1152/jappl.1987.62.2.545.

[90]

L.M. Klevay, D.B. Milne, Low dietary magnesium increases supraventricular ectopy, Am. J. Clin. Nutr. 75(3) (2002) 550-554. https://doi.org/10.1093/ajcn/75.3.550.

[91]

J. Molina-López, J.M. Molina, L.J. Chirosa, et al., Association between erythrocyte concentrations of magnesium and zinc in high-performance handball players after dietary magnesium supplementation, Magnes. Res. 25(2) (2012) 79-88. https://doi.org/10.1684/mrh.2012.0311.

[92]

A. Cordova, Changes on plasmatic and erythrocytic magnesium levels after high-intensity exercises in men, Physiol. Behav. 52(4) (1992) 819-821. https://doi.org/10.1016/0031-9384(92)90420-7.

[93]

M.J. Laires, F. Madeira, J. Sérgio, et al., Preliminary study of the relationship between plasma and erythrocyte magnesium variations and some circulating pro-oxidant and antioxidant indices in a standardized physical effort, Magnes. Res. 6(3) (1993) 233-238.

[94]

P. Lijnen, P. Hespel, R. Fagard, et al., Erythrocyte 2,3-diphosphoglycerate concentration before and after a marathon in men, Eur. J. Appl. Physiol. Occup. Physiol. 57(4) (1988) 452-455. https://doi.org/10.1007/BF00417992.

[95]

S.W. Golf, O. Happel, V. Graef, et al., Plasma aldosterone, cortisol and electrolyte concentrations in physical exercise after magnesium supplementation, J. Clin. Chem. Clin. Biochem. 22(11) (1984) 717-721. https://doi.org/10.1515/cclm.1984.22.11.717.

[96]

G. Stendig-Lindberg, Y. Shapiro, M. Tepperberg, et al., Strenuous but sustained moderate physical effort causes magnesium deficiency, Trace Elem. Electroly. 16(3) (1999) 156-161.

[97]

P. Lowney, J.S.Stern, M.E. Gershwin, et al., Magnesium deficiency and blood 2,3-diphosphoglycerate concentrations in sedentary and exercised male Osborne-Mendel rats, Metabolism 39(8) (1990) 837-841. https://doi.org/10.1016/0026-0495(90)90129-z.

Food Science and Human Wellness
Pages 1471-1480
Cite this article:
Zhang H, Wang R, Guo S, et al. Lower serum magnesium concentration and higher 24-h urinary magnesium excretion despite higher dietary magnesium intake in athletes: a systematic review and meta-analysis. Food Science and Human Wellness, 2023, 12(5): 1471-1480. https://doi.org/10.1016/j.fshw.2023.02.015

792

Views

50

Downloads

5

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 04 July 2021
Revised: 22 July 2021
Accepted: 23 August 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return