AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health

Olaide Olawunmi Ajibolaa,b,c( )Raymond Thomasd,e( )Babatunde Femi Bakaref
Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
School of Science and the Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook A2H 5G4, Canada
Department of Biology/Biotron Experimental Climate Change Research Centre, Western University, London N6A 5B, Canada
Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
Show Author Information

Abstract

In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.

References

[1]

G. Campbell-Platt, Fermented foods—a world perspective, Food Res. Int. 27(3) (1994) 253-257. https://doi.org/10.1016/0963-9969(94)90093-0.

[2]
Food and Agriculture Organization of the United Nations, Biotechnology applications in food processing: can developing countries benefit? Electronic forumon biotechnology in food and agriculture: conference 11 of the FAO Biotechnology Forum (2004) (14 June to 15 July): fao.org/biotech/C11doc.htm.
[3]

K.H. Steinkraus, Fermentations in world food processing, Compr. Rev. Food Sci. Food Saf. 1(1) (2002) 23-32. https://doi.org/10.1111/j.1541-4337.2002.tb00004.x.

[4]

N. Mota de Carvalho, E.M. Costa, S. Silva, et al., Fermented foods and beverages in human diet and their influence on gut microbiota and health, Fermentation 4(4) (2018) 90. https://doi.org/10.3390/fermentation4040090.

[5]

R. Cord-Ruwisch, W. Charles, Ethanol and lactic acid production from sugar and starch wastes by anaerobic acidification, Eng. Life Sci. 18(9) (2018) 635-642. https://doi.org/10.1002/elsc.201700178.

[6]

S. Dharaneedharan, M.S. Heo, Korean traditional fermented foods - a potential resource of beneficial microorganisms and their applications, J. Life Sci. 26(4) (2016) 496-502. https://doi.org/10.5352/JLS.2016.26.4.496.

[7]

C.S. Ezeonu, N. Ezeonu, Biological risks associated with fermented diary products, fruits, vegetables and meat: a critical review, AIBM 2(1) (2017). https://doi.org/10.19080/AIBM.2017.02.555577.

[8]

M. Ray, K. Ghosh, S. Singh, et al., Folk to functional: an explorative overview of rice-based fermented foods and beverages in India, J. Ethn. Foods 3(1) (2016) 5-18. https://doi.org/10.1016/j.jef.2016.02.002.

[9]

B. Kabak, A.D. Dobson, An introduction to the traditional fermented foods and beverages of Turkey, Crit. Rev. Food Sci. Nutr. 51(3) (2011) 248-260. https://doi.org/10.1080/10408390903569640.

[10]

J.K. Patra, G. Das, S. Paramithiotis, et al., Kimchi and other widely consumed traditional fermented foods of Korea: a review, Front. Microbiol. 7 (2016) 1493. https://doi.org/10.3389/fmicb.2016.01493.

[11]

W.H. Holzapfel, Appropriate starter culture technologies for small-scale fermentation in developing countries, Int. J. Food Microbiol. 75(3) (2002) 197-212. https://doi.org/10.1016/s0168-1605(01)00707-3.

[12]

R. Rolle, M. Satin, Basic requirements for the transfer of fermentation technologies to developing countries, Int. J. Food Microbiol. 75(3) (2002) 181-187. https://doi.org/10.1016/s0168-1605(01)00705-x.

[13]

T.H. Gadaga, A.N. Mutukumira, J.A. Narvhus, et al., A review of traditional fermented foods and beverages of Zimbabwe, Int. J. Food Microbiol. 53(1) (1999) 1-11. https://doi.org/10.1016/s0168-1605(99)00154-3.

[14]

C. Simango, Potential use of traditional fermented foods for weaning in Zimbabwe. Soc. Sci. Med. 44 (1997) 1065-1068. https://doi.org/10.1016/S0277-9536(96)00261-4

[15]

C.G. Kuyu, T.Y. Bereka, Review on contribution of indigenous food preparation and preservation techniques to attainment of food security in Ethiopian, Food Sci. Nutr. 8(1) (2020) 3-15. https://doi.org/10.1002/fsn3.1274.

[16]

I. Endrizzi, G. Pirretti, D.G. Calò, et al., A consumer study of fresh juices containing berry fruits, J. Sci. Food Agric. 89(7) (2009) 1227-1235. https://doi.org/10.1002/jsfa.3580

[17]

R. Di Cagno, R. Coda, M. De Angelis, et al., Exploitation of vegetables and fruits through lactic acid fermentation, Food Microbiol. 33(1) (2013) 1-10. https://doi.org/10.1016/j.fm.2012.09.003.

[18]

N. Demir, K.S. Bahceci, J. Acar, The effects of different initial Lactobacillus plantarum concentrations on some properties of fermented carrot juice, J. Food Process. Preserv. 30 (2006) 352-363. https://doi.org/10.1111/j.1745-4549.2006.00070.x.

[19]

A.L.D. Batista, R. Silva, L.P. Cappato, et al., Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour, J. Funct. Foods 38 (2017) 242-250. https://doi.org/10.1016/j.jff.2017.09.037.

[20]

N.A. Bokulich, Z.T. Lewis, K. Boundy-Mills, A new perspective on microbial landscapes within food production, Curr. Opin. Biotechnolo. 37 (2016) 182-189. https://doi.org/10.1016/j.copbio.2015.12.008.

[21]

M.R. Swain, M. Anandharaj, R.C. Ray, et al., Fermented fruits and vegetables of asia: a potential source of probiotics, Biotechnol. Res. Int. (2014) 1-19. https://doi.org/10.1155/2014/250424.

[22]

S. Torres, H. Verón, L. Contreras, et al., An overview of plant-autochthonous microorganisms and fermented vegetable foods, Food Sci. Human Wellness 9(2) (2020) 112-113. https://doi.org/10.1016/j.fshw.2020.02.006.

[23]

S.A. Rahman, A.A. Kahar, A. Mansor, et al., Identification of potential indigenous microbe from local fermented vegetables with antimicrobial activity, G. War. Sains 1(1) (2017) 1-3. https://doi.org/10.26480/gws.01.2017.01.03.

[24]

L. Nuraida, A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods, Food Sci. Hum. Wellness 4(2) (2015) 47-55. https://doi.org/10.1016/j.fshw.2015.06.001.

[25]
O.O. Ajibola, Potential use of Lactococcus lactis subsp. lactis IO-1 in fermented Coconut Juice. Master of Science Dissertation in the Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia (2020).
[26]
G.R. Gibson, J.M. Saavedra, S. Macfarlane, et al., Probiotics and intestinal infections. In R. Fuller (Ed.), Probiotics 2: Application and Pratical Aspects. London, UK: Chapman and Hall (1997).
[27]

Y.V. Rajagukguk, M. Arnold, Tempoyak: fermented durian paste of Malay ethnic and its functional properties, Int. J. Gastron. Food Sci. (2020) 100297. https://doi.org/10.1016/j.ijgfs.2020.100297.

[28]

A. Ahmad, W.B. Yap, N.T. Kofli, et al., Probiotic potentials of Lactobacillus plantarum isolated from fermented durian (Tempoyak), a Malaysian traditional condiment, Food Sci. Nutr. 6(6) (2018) 1370-1377. https://doi.org/10.1002/fsn3.672.

[29]

L. Permana, H.A. Pangastuti, A. Wahyuningtyas, Young adult perception of fermented durian (Tempoyak) in Lampung Province, Indonesia, J. Sci. Agric. Technol. 5(1) (2021) 38-42. https://doi.org/10.35472/jsat.v5i1.392.

[30]

J.J. Leisner, M. Vancanneyt, G. Rusul, et al., Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia, Int. J. Microbiol., 63 (1/2) (2001) 149-157. https://doi.org 10.1016/s0168-1605(00)00476-1.

[31]

Y. Neti, I.D. Erlinda, V.G. Virgilio, The effect of spontaneous fermentation on the volatile flavour constituents of durian, Int. Food Res. J. 18 (2011) 635-641.

[32]
S.Y. Chin, K.Y. Sim, F.Y. Chye et al., Microbial Diversity of spontaneous bambangan (Mangifera pajang) fermentation, a traditional fermented fruit from Northern Borneo. In: Biodiversity-Biotechnology, (2010), pp. 405-411: Sarawak Biodiversity Centre, Kuching, ISBN: 972-983-40638-3-2.
[33]

H. Ting, S.R. Tan, A.N. John, Consumption intention toward ethnic food: determinants of Dayak food choice by Malaysians J. Ethn. Foods 4(1) (2017) 21-27. https://doi.org/10.1016/j.jef.2017.02.005.

[34]
C.C. Chai, G.K. Teo, C.Y. Lau, et al., Conservation and sustainable utilization of indigenous vegetables of Sarawak, In: Agrobiodiversity in Malaysia, 2008, pp. 47-55. Serdang: MARDI Press.
[35]
M.R. Swain, M. Ananadharaj, Regional fermented vegetables and fruits in Asia-Pacific. Lactic Acid Fermentation of Fruits and Vegetables, CRC Press, Boca Raton, FL, 2017, pp. 181-203. https://doi.org/10.1201/9781315370378.
[36]

N.I. Mohamad, M.A. Manan, N.A. Sani, Antibacterial potential of lactic acid bacteria isolated from local pickled Eleiodoxa conferta (kelubi) against selected foodborne pathogens, Malaysian J. Microbiol., 14(6) (2018). https://doi.org/10.21161/mjm.1461807.

[37]

E. Harmayani, A.K. Anal, S. Wichienchot, et al., Healthy food traditions of Asia: exploratory case studies from Indonesia, Thailand, Malaysia, and Nepal. J. Ethn. Foods, 6(1) (2019) 1. https://doi.org/10.1186/s42779-019-0002-x.

[38]

L.O. Chuah, A.K. Shamila-Syuhada, M.T. Liong, et al., Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak, Food Microbiol. 58 (2016) 95-104. https://doi.org/10.1016/j.fm.2016.04.002.

[39]

D.K.A. Sapawi, Y.B.H. Ooi, S. Ibrahim, et al., Food safety concerns influence neophobic response towards kadazandusun traditional food in domestic tourists, J. Tour. Hosp. Environ. Manag. 4(13) (2019) 34-58.

[40]

A. Juwana, B.A. Seno, L. Lindayani, et al., Identification of probiotic potential Lactobacillus from Mandai using molecular technique, Digital Press Life Sci. 2 (2020) 00001. https://doi.org/10.29037/digitalpress.22324.

[41]

A. Rahmadi, K. Sari, N. Khairiyah, et al., Bacterial population and chemical characteristics of fermented mandai cempedak with starter induction, Microbiol. Indonesia 12(3) (2018) 83-91. https://doi.org/10.5454/mi.12.3.x.

[42]

A. Emmawati, B.S.L. Jenie, L. Nuraida, et al., Aggregation and adhesion abilities to enterocyte-like HCT-116 cells of probiotic candidates Lactobacillus plantarum strains isolated from "mandai, Indonesian fermented food against enteropathogens, Int. Food Res. J. 23 (2016) 5.

[43]
R. Di Cagno, P. Filannino, M. Gobbetti, Fermented foods: fermented vegetables and other products. Reference module in food science, Encyclopedia of Food and Health. 3rd Eds, 2016, vol. 2, pp. 664-674, Cambridge, Ma: Academic Press.
[44]

N. Borah, A. Barman, D. Baishya, Isolation of a novel strain of Lactic Acid Bacteria from traditionally fermented common lime (Citrus aurantifolia) of Assam, India and analysis of exopolymeric substances produced by the strain, BioRxiv (2019) 643650. https://doi.org/10.1101/643650.

[45]

R.W. Hutkins, Microbiology and technology of fermented foods, 2nd edn. (2018) Wiley, New York.

[46]

F. Leroy, L. De Vuyst, Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends Food Sci. Technol. 15(2) (2004) 67-78. https://doi.org/10.1016/j.tifs.2003.09.004.

[47]

E. Vera-Pingitore, M.E. Jimenez, A. Dallagnol, et al., Screening and characterization of potential probiotic and starter bacteria for plant fermentations, LWT-Food Sci. Technol. 71 (2016) 288-294. https://doi.org/10.1016/j.lwt.2016.03.046.

[48]

M. Gobbetti, R. Di Cagno, M. de Angelis, Functional microorganisms for functional food quality, Crit. Rev. Food Sci. Nutr. 50(8) (2010) 716-727. https://doi.org/10.1080/10408398.2010.499770.

[49]
Food and Agriculture Organization / World Health Organization, Probiotics in food: health and nutrition properties and guidelines for evealuation. FAO Food Nutr. Pap. 85 (2006) 46. http://www.fao.org/tempref/docrep/fao/009/a0512e/a0512e00.pdf.
[50]

S.F. Salleh, O.O. Ajibola, C. Nolasco-Hipolito et al., Fatty acid profile and antioxidant capacity of dabai (Canarium odontophyllum L.): effect of origin and fruit component, Molecules 27(12) (2022), 3840. https://doi.org/10.3390/molecules27123840.

[51]
H.J. Buckenhuskes, Fermented Vegetables, ASM Press, Washington, DC, 1997, USA.
[52]

O.O. Ajibola, S. Lihan, A. Husaini, et al., Use of the lactococcus lactis IO-1 for developing a novel functional beverage from coconut water, Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technol. 44(1) (2020) 118-131. https://doi.org/10.35219/foodtechnology.2020.1.07.

[53]

O.K. Achi, The potential for upgrading traditional fermented foods through biotechnology, Afr. J. Biotechnol. 4(5) (2005) 375-380.

[54]
O.O. Ajibola, S. Lihan, A.A.S. Awang Husaini, et al., Probiotic fermentation of coconut juice. proceeding of the international scientific conference on indigenous crops, Potential Indigenous Plants for Commercialization (2018) 22-27.
[55]

A. Blandino, M.E. Al-Aseeri, S.S. Pandiella, et al., Cereal-based fermented foods and beverages, Food Res. Int. 36(6) (2003) 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7.

[56]

G. Giraffa, Studying the dynamics of microbial populations during food fermentation, FEMS Microbiol. Rev. 28(2) (2004) 251-260. https://doi.org/10.1016/j.femsre.2003.10.005.

[57]

K.H. Sutton, Considerations for the successful development and launch of personalised nutrigenomic foods, Mutation Res. 622 (1/2) (2007) 117-121. https://doi.org/10.1016/j.mrfmmm.2007.03.007.

[58]

J.A. Mares-Perlman, A.E. Millen, T.A. Ficek, The body of evidence to support a protective role for lutein and zeaxanthin in in delaying chronic disease, Overview Nutr. J. 132(3) (2002) 518-524. https://doi.org/10.1093/jn/132.3.518S.

[59]

M.C. Polidori, Antioxidant micronutrients in the prevention of agerelated diseases, J. Postgrad. Med. 49(3) (2003) 229-235.

[60]

M.C. Houston, Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension, Prog. Cardiovasc. Dis. 47(6) (2005) 396-449. https://doi.org/10.1016/j.pcad.2005.01.004.

[61]

P.H.S. Santos, M.A. Silva, Retention of vitamin C in drying processes of fruits and vegetables—a review, Drying Technol. An Int. J. 26(12) (2008) 1421-1437. https://doi.org/10.1080/07373930802458911.

[62]
E. Evans, A. Musa, Y. Abubakar, et al., Nigerian indigenous fermented foods: processes and prospects, mycotoxin and food safety in developing countries, Hussaini Anthony Makun, (April 10th 2013) IntechOpen, https://doi.org/10.5772/52877.
[63]

S.A.O. Adeyeye, The role of food processing and appropriate storage technologies in ensuring food security and food availability in Africa, Nutr. Food Sci. 47(1) (2017) 122-139. https://doi.org/10.1108/NFS-03-2016-0037.

[64]
S.S. Deshpande, D.K. Salunkhe, O.B. Oyewole, et al., Fermented grain legumes, seeds and nuts: a global perspective, FAO Agricultural Services Bulletin (2000) 142. FAO.
[65]

J.A.T. Pennington, R.A. Fisher, Classification of fruits and vegetables, J. Food Compos. Anal. 22S (2009) S23-S31. https://doi.org/10.1016/j.jfca.2008.11.012.

[66]

S.S. Behera, A.F. El Sheikha, R. Hammami, et al., Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J. Funct. Foods 70 (2020) 103971. https://doi.org/10.1016/j.jff.2020.103971.

[67]
J.P. Tamang, G.H. Fleet, Yeasts diversity in fermented foods and beverages. In Yeast Biotechnology: Diversity and Applications, 2009, pp. 169-198. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8292-4_9.
[68]

S.Y. Ng, S.S. Koon, B.S. Padam, et al., Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CyTA-J. Food 13(4) (2015) 563-572. https://doi.org/10.1080/19476337.2015.1020342.

[69]

A.M. Amin, J. Zakiah, L.K. Ng, Effect of salt on tempoyak fermentation and sensory evaluation, J. Biol. Sci. 4(5) (2004) 650-653. https://doi.org/10.3923/jbs.2004.650.653.

[70]

S. Gupta, A. Fečkaninová, J. Lokesh, et al., Lactobacillus dominate in the intestine of atlantic salmon fed dietary probiotics, Front. Microbiol. 9 (2019) 3247. https://doi.org/10.3389/fmicb.2018.03247.

[71]

J.C. Amorim, R.H. Piccoli, W.F. Duarte, Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages, Food Res. Int. 107 (2018) 518-527. https://doi.org/10.1016/j.foodres.2018.02.054.

[72]

T. Bintsis, Lactic acid bacteria as starter cultures: an update in their metabolism and genetics, AIMS Microbiol. 4(4) (2018) 665-684. https://doi.org/10.3934/microbiol.2018.4.665.

[73]

E. Stefanovic, G. Fitzgerald, O. McAuliffe, Advances in the genomics and metabolomics of dairy Lactobacilli: a review, Food Microbiol. 61 (2017) 33-49. https://doi.org/10.1016/j.fm.2016.08.009.

[74]

J. Zheng, L. Ruan, M. Sun, et al., A genomic view of Lactobacilli and Pediococci demonstrates that phylogeny matches ecology and physiology, Appl. Environ. Microbiol. 81(20) (2015) 7233-7243. https://doi.org/10.1128/AEM.02116-15.

[75]

R.M. Duar, X.B. Lin, J. Zheng, et al., Lifestyles in transition: evolution and natural history of the genus Lactobacillus, FEMS Microbiol. Rev. 41(Supp_1) (2017) S27-S48. https://doi.org/10.1093/femsre/fux030.

[76]

T. Zotta, E. Parente, A. Ricciardi, Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry, J. Appl. Microbiol. 122(4) (2017) 857-869. https://doi.org/10.1111/jam.13399.

[77]

C. Garcia, M. Guerin, K. Souidi, et al., Lactic fermented fruit or vegetable juices: past, present and future, Beverages 6(1) (2020) 8. https://doi.org/10.3390/beverages6010008.

[78]

M. Guetouache, B. Guessas, Characterization and identification of lactic acid bacteria isolated from traditional cheese (Klila) prepared from cows milk, Afr. J. Microbiol. Res. 9(2) (2015) 71-77. https://doi.org/10.5897/AJMR2014.7279.

[79]

M.A.D. Sousa, G.R. Rama, C.F. Volken de Souza, et al., Acid lactic Lactobacilli as a biotechnological toll to improve food quality and human health, Biotechnol. Prog. 36(2) (2020) e2937. https://doi.org/10.1002/btpr.2937.

[80]

M.P. Mokoena, Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review, Molecules 22(8) (2017) 1255. https://doi.org/10.3390/molecules22081255.

[81]

L.C. Oliveira, T.D.L. Saraiva, W.M. Silva, et al., Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays, PLoS One 12(4) (2017) e0175116. https://doi.org/10.1371/journal.pone.0175116.

[82]

S. Ngasotter, D. Waikhom, S. Mukherjee, et al., Diversity of lactic acid bacteria (LAB) in fermented fish products: a review, Int. J. Curr. Microbiol. Appl. Sci. 9(5) (2020) 2238-2249. https://doi.org/10.20546/ijcmas.2020.905.255.

[83]

A. Komesu, J.A.R. de Oliveira, L.H. da Silva Martins, et al., Lactic acid production to purification: a review, BioResources 12(2) (2007) 4364-4383. https://doi.org/10.15376/biores.12.2.Komesu.

[84]

J.G. Gibbons, D.C. Rinker, The genomics of microbial domestication in the fermented food environment, Curr. Opin. Genet. Dev. 35 (2015) 1-8. https://doi.org/10.1016/j.gde.2015.07.003.

[85]

D. Kantachote, A. Ratanaburee, W. Hayisama-ae, et al., The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water, J. Funct. Foods 32 (2017) 401-408. https://doi.org/10.1016/j.jff.2017.03.018.

[86]

S.S. Giri, S.S. Sen, S. Saha, et al., Use of a potential probiotic, Lactobacillus plantarum L7, for the preparation of a rice-based fermented beverage, Front. Microbiol. 9 (2018) 473. https://doi.org/10.3389/fmicb.2018.00473.

[87]

G. Giraffa, N. Chanishvili, Y. Widyastuti, Importance of Lactobacilli in food and feed biotechnology, Res. Microbiol. 161 (2010) 480-487. https://doi.org/10.5897/AJMR2014.7279.

[88]

J.A. Mora-Villalobos, J. Montero-Zamora, N. Barboza, et al., Multi-product lactic acid bacteria fermentations: a review, Fermentation 6(1) (2020) 23. https://doi.org/10.3390/fermentation6010023.

[89]

R.E. Muck, E.M.G. Nadeau, T.A. McAllister, et al., Silage review: recent advances and future uses of silage additives, J. Dairy Sci. 101(5) (2018) 3980-4000. https://doi.org/10.3168/jds.2017-13839.

[90]

L. Santacroce, I.A. Charitos, L. Bottalico, A successful history: probiotics and their potential as antimicrobials, Expert Rev. Anti-Inf. Ther. 17(8) (2019) 635-645. https://doi.org/10.1080/14787210.2019.1645597.

[91]

S. Kaur, P. Sharma, N. Kalia, et al., Anti-biofilm properties of the fecal probiotic lactobacilli against Vibrio spp., Front. Cell. Infect. Microbiol. 8 (2018) 120. https://doi.org/10.3389/fcimb.2018.00120.

[92]

M. Papizadeh, M. Rohani, H. Nahrevanian, et al., Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends, Microb. Pathog. 111 (2017) 118-131. https://doi.org/10.1016/j.micpath.2017.08.021.

[93]

C. Parolin, A. Marangoni, L. Laghi, et al., Isolation of vaginal Lactobacilli and characterization of anti-candida activity, PLoS One 10(6) (2015) e0131220. https://doi.org/10.1371/journal.pone.0131220.

[94]

V. Taverniti, C. Scabiosi, S. Arioli, et al., Short-term daily intake of 6 billion live probiotic cells can be insufficient in healthy adults to modulate the intestinal bifidobacteria and Lactobacilli, J. Funct. Foods 6 (2013) 482-491. https://doi.org/10.1128/AEM.00325-12.

[95]

J. Walter, Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research, Appl. Environ. Microbiol. 74(16) (2008) 4985-4996. https://doi.org/10.1128/AEM.00753-08.

[96]

E.F. Garcia, W.A. Luciano, D.E. Xavier, et al., Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus Strains, Front Microbiol. 7 (2016) 1371. https://doi.org/10.3389/fmicb.2016.01371.

[97]

E. Khalil, M. Abd Manap, S. Mustafa, et al., Probiotic properties of exopolysaccharide-producing Lactobacillus strains isolated from Tempoyak, Molecules 23(2) (2018) 398. https://doi.org/10.3390/molecules23020398.

[98]

W.J. Dobrogosz, R.W. Stone, Oxidative metabolism in Pediococcus pentosaceus Ⅱ. Factors controlling the formation of oxidative activities, J. Bacteriol. 84(4) (1962) 724-729. https://doi.org/10.1128/jb.84.4.724-729.1962.

[99]

P. Semjonovs, P. Zikmanis, Evaluation of novel lactose-positive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods, Eur. Food Res. Technol. 227(3) (2018) 851-856. https://doi.org/10.1007/s00217-007-0796-4.

[100]

G.E. Felis, S. Torriani, F. Dellaglio, Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov. Int. J. Syst. Evol. Microbiol. 55 (2005) 1325-1327. https://https://doi.org/10.1099/ijs.0.63324-0.

[101]

M. Haakensen, C.M. Dobson, J.E. Hill, et al., Reclassification of Pediococcus dextrinicus (Coster and White 1964) back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus, Int. J. Syst. Evol. Microbiol. 59(3) (2009) 615-621. https://doi.org/10.1099/ijs.0.65779-0

[102]

A. Delaherche, O. Claisse, A. Lonvaud-Funel, Detection and quantification of Brettanomyces bruxellensis and 'ropy' Pediococcus damnosus strains in wine by real-time polymerase chain reaction, J. Appl. Microbiol. 97(5) (2004) 910-915. https://doi.org/10.1111/j.1365-2672.2004.02334.x.

[103]

V. Renouf, O. Claisse, A. Lonvaud-Funel, Inventory and monitoring of wine microbial consortia, Appl. Microbiol. Biotechnol. 75(1) (2007) 149-164. https://doi.org 10.1007/s00253-006-0798-3.

[104]

K. Sakamoto, W.N. Konings, Beer spoilage bacteria and hop resistance, Int. J. Food Microbiol. 89 (2/3) (2003) 105-124. https://doi.org/10.1016/S0168-1605(03)00153-3.

[105]

M. Papagianni, S. Anastasiadou, Pediocins: the bacteriocins of Pediococci. Sources, production, properties and applications, Microb. Cell Fact 8 (2009) 3-18. https://doi.org/ 10.1186/1475-2859-8-3.

[106]

A. García-Ruiz, D. González de Llano, A. Esteban-Fernández, et al., Assessment of probiotic properties in lactic acid bacteria isolated from wine, Food Microbiol. 44 (2014) 220-225. https://doi.org/10.1016/j.fm.2014.06.015.

[107]

P.M. Halami, A. Ramesh, A. Chandrashekar, Fermenting cucumber, a potential source for the isolation of pediocin-like bacteriocin producers, World J. Microbiol. Biotechnol. 21 (2005) 1351-1358. https://doi.org/10.1007/s11274-005-4858-0.

[108]

S. Midha, M. Ranjan, V. Sharma, et al., Genome sequence of Pediococcus pentosaceus strain IE-3, J. Bacteriol. 194(16) (2012) 4468. https://doi.org/10.1128/JB.00897-12.

[109]

I. Carafa, T. Nardin, R. Larcher, et al., Identification and characterization of wild Lactobacilli and Pediococci from spontaneously fermented Mountain Cheese, Food Microbiol. 48 (2015) 123-132. https://doi.org/10.1016/j.fm.2014.12.003.

[110]

S. Ilavenil, M. Vijayakumar, D.H. Kim, et al., Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass, J. Sci. Food Agric. 96(2) (2016) 593-601. https://doi.org/10.1002/jsfa.7128.

[111]

L.X. Lv, Y.D. Li, X.J. Hu, et al., Whole-genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains, Gut Pathog. 6 (2014) 36. https://doi.org/10.1186/s13099-014-0036-y.

[112]
C.M.A.P. Franz, A. Endo, H. Abriouel, et al., The genus Pediococcus, in Lactic Acid bacteria: biodiversity and taxonomy, eds Holzapfel W.H., Wood B.J. B. (Chichester; West Sussex, UK: Wiley Blackwell), (2014) 359-376. https://doi.org/10.1002/9781118655252.ch21.
[113]

F. Zendeboodi, N. Khorshidian, A.M. Mortazavian, et al., Probiotic: conceptualization from a new approach, Curr. Opin. Food Sci. 32 (2020) 103-123. https://doi.org/10.1016/j.cofs.2020.03.009.

[114]

M. Saarela, G. Mogensen, R. Fondén, et al., Probiotic bacteria: safety, functional and technological properties, J. Biotechnol. 84 (2000) 197-215. https://doi.org/10.1016/s0168-1656(00)00375-8

[115]
A.Y. Tamime, M. Saarela, A.K. Sondergaard, et al., Production and maintenance of viability of probiotic microorganisms in dairy products, In Tamime, A.Y. (Ed.), Probiotic Dairy Products, 2005, pp. 39-72. UK: Blackwell Publishing Ltd.
[116]
H. Korbekandi, A.M. Mortazavian, S. Iravani, Technology and stability of probiotic in fermented milks, In N. Shah, A.G. Cruz and J.A.F. Faria (Ed.), Probiotic and Prebiotic Foods: Technology, Stability and Benefits to the Human Health, 2011, pp. 131-169. New York: Nova Science Publishers.
[117]

R. Karimi, A.M. Mortazavian, A.G. Da Cruz, Viability of probiotic microorganisms in cheese during production and storage: a review, Dairy Sci. Technol. 91 (2011) 283-308. https://doi.org/10.1007/s13213-010-0188-z

[118]

R. Mohammadi, A.M. Mortazavian, R. Khosrokhavar, et al., Probiotic ice cream: viability of probiotic bacteria and sensory properties, Ann. Microbiol. 61 (2011) 411-424. https://doi.org/10.1007/s13213-010-0188-z.

[119]

C. Caballero-Franco, K. Keller, C. De Simone, et al., The VSL# 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells, Am. J. Physiolo. Gastrointest Liver Physiol, 292(1) (2007) G315-G322. https://doi.org/10.1152/ajpgi.00265.2006.

[120]

N. Saad, C. Delattre, M. Urdaci, et al., An overview of the last advances in probiotic and prebiotic field, LWT-Food Sci. Technol. 50(1) (2013) 1-16. https://doi.org/10.1016/j.lwt.2012.05.014.

[121]

B. Kelsall, Innate and adaptive mechanisms to control of pathological intestinal inflammation, J. Pathol. 214(2) (2008) 242-259. https://doi.org/10.1002/path.2286.

[122]

M. Schlee, J. Harder, B. Köten, et al., Probiotic Lactobacilli and VSL#3 induce enterocyte β-defensin 2, Clin. Exp. Immunol. 151(3) (2008) 528-535. https://doi.org/10.1111/j.1365-2249.2007.03587.x.

[123]

K. Ragul, S. Kandasamy, P.B. Devi, et al., Evaluation of functional properties of potential probiotic isolates from fermented brine pickle, Food Chem. 311 (2019) 126057. https://doi.org/10.1016/j.foodchem.2019.126057.

[124]

Y. Wang, Y. Wu, Y. Wang, et al., Antioxidant properties of probiotic bacteria, Nutrients 9(5) (2017) 521. https://doi.org/10.3390/nu9050521.

[125]

M. Sharma, M. Devi, Probiotics: a comprehensive approach toward health foods, Crit. Rev. Food Sci. Nutr. 54(4) (2014) 537-552. https://doi.org/10.1080/10408398.2011.594185.

[126]

Y. Yu, T.Z. Jin, G. Xiao, Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries, J. Food Process. Preserv, 41(6) (2017) e13303. https://doi.org/ 10.1111/jfpp.13303.

[127]

Y. Chen, L.J. Yu, H.P.V. Rupasinghe, Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review, J. Sci. Food Agric. 93 (2013) 981-986. https://doi.org/10.1002/jsfa.5989.

[128]

J. Wang, B. Xie, Z. Sun, Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage, LWT-Food Sci. Technol. 137 (2021) 110438. https://doi.org/10.1016/j.lwt.2020.110438.

[129]

C.U.I. Li, L.Y. Niu, D.J. Li, et al., Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks, J. Integr. Agric. 17(1) (2018) 247-255. https://doi.org/10.1016/S2095-3119(17)61742-8.

[130]

X. Zheng, Y. Yu, G. Xiao, et al., Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innov. Food Sci. Emerg. Technolo. 23(3) (2014) 61-67. https://doi.org/10.1016/j.ifset.2014.01.013.

[131]

Y. Cai, M. Augustin, H. Jegasothy, et al., Mild heat combined with lactic acid fermentation: a novel approach for enhancing sulforaphane yield in Broccoli puree, Food Funct. 11 (2020) 779-786. https://doi.org/10.1039/c9fo02089f.

[132]

K. Dogan, P.K. Akman, F. Tornuk, Role of non-thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice, J. Sci Food Agric. 101(11) (2021) 4779-4788. https://doi.org/10.1002/jsfa.11124.

[133]

J. Wu, Y. Tian, Z. Wu, et al., Effects of pretreatment with dimethyl dicarbonate on the quality characteristics of fermented huyou juice and storage stability, J. Food Process. Preserv. 45(4) (2021) e15343. https://doi.org/10.1111/jfpp.15343

[134]

A.J. Chen, W. Luo, Y.T. Peng, et al., Quality and microbial flora changes of radish paocai during multiple fermentation rounds, Food Control 106 (2019) 106733. https://doi.org/10.1016/j.foodcont.2019.106733.

[135]

Y. Ma, X. Yin, X. Bi, et al., Physicochemical properties and bioactive compounds of fermented pomegranate juice as affected by high-pressure processing and thermal treatment, Int. J. Food Prop. 22(1) (2019) 1250-1269. https://doi.org/10.1080/10942912.2019.1640737.

[136]

C.K. Yong, M.R. Islam, A.S. Mujumdar, Mechanical means of enhancing drying rates: effect on drying kinetics and quality, Drying Technol. 24(3) (2006) 397-404. https://doi.org/10.1080/07373930600616678.

[137]

Q. Zhang, H. Xiao, X. Yang, et al., Effects of pretreatment on air impingement drying characteristics and product color for line pepper, Transactions of the Chinese Society of Agricultural Engineering 28(1) (2012) 276-281.

[138]

G. Adiletta, S.R. Alam, L. Cinquanta, et al., Effect of abrasive pretreatment on hot dried goji berry, Chem. Eng. Trans. 44 (2015) 127-132. https://doi.org/10.3303/CET1544022.

[139]

G. Adiletta, P. Russo, W. Senadeera, et al., Drying characteristics and quality of grape under physical pretreatment, J. Food Eng. 172 (2016) 9-18. https://doi.org/10.1016/j.jfoodeng.2015.06.031.

[140]

N.K. Rastogi, Recent trends and developments in infrared heating infood processing, Criti. Rev. Food Sci. Nutri. 52(9) (2012) 737-760. https://doi.org/10.1080/10408398.2010.508138.

[141]

R. Fu, Z. Xiao, Z. Pan, et al., Effects of infrared radiation combined with heating on grape seeds and oil quality, Food Sci. Technol. Int. 25(2) (2019) 160-170. https://doi.org/10.1177/1082013218808902.

[142]

G. Bingol, W. Bei, A. Zhang, et al., Comparison of water and infrared blanching methods for processing performance and final product quality of french fries, J. Food Eng. 121(1) (2014) 135-142. https://doi.org/10.1016/j.jfoodeng.2013.08.001.

[143]

S. Kayran, İ. Doymaz, Infrared drying and effective moisture diffusivity of apricot halves: influence of pretreatment and infrared power, J. Food Process. Preserv. 41(2) (2017) e12827. https://doi.org/10.1111/jfpp.12827.

[144]

H. Kocabiyik, N. Yilmaz, N.B. Tuncel, et al., Drying, energy, and some physical and nutritional quality properties of tomatoes dried with short-infrared radiation, Food Bioproc. Technol. 8(3) (2014) 516-525. https://doi.org/10.1007/s11947-014-1418-3.

[145]

H. Puspito, G.H. Fleet, Microbiology of sayur asin fermentation, Appl. Microbiol. Biotechnol. 22(6) (1985) 442-445. https://doi.org/10.1007/BF00252788.

[146]

T.V. Balogu, O. Towobola, Production and quality analysis of wine from honey and coconut milk blend using Saccharomyces cerevisiae, Fermentation 3(2) (2017) 16. https://doi.org/10.3390/fermentation3020016.

[147]

J. Twilley, C. Jutzi, E. Tomasino, Influence of fermentation temperature and nutrient addition on chemical and sensory characteristics of traditional honey wine, Ann. Food Process. Preserv. 3(1) (2018) 1022.

[148]

S.M.P. Cavalcante da Silva, C.A.L. de Carvalho, G.D.S. Sodré, et al., Production and characterization of mead from the honey of Melipona scutellaris stingless bees, J. Inst. Brew. 124(2) (2018) 194-200. https://doi.org/10.1002/jib.485.

[149]

R. Mărgăoan, M., Cornea-Cipcigan, E. Topal, et al., Impact of fermentation processes on the bioactive profile and health-promoting properties of bee bread, mead and honey vinegar, Processes 8(9) (2020) 1081. https://doi.org/10.3390/pr8091081.

[150]

G.A. Elmowalid, M.I. Abd El-Hamid, A.M. Abd El-Wahab, et al., Garlic and ginger extracts modulated broiler chicks innate immune responses and enhanced multidrug resistant Escherichia coli O78 clearance, Comp. Immunol. Microbiol. Infect. Dis. 66 (2019) 101334. https://doi.org/10.1016/j.cimid.2019.101334.

[151]

L.D. Lawson, S.M. Hunsaker, Allicin bioavailability and bioequivalence from garlic supplements and garlic foods, Nutrients 10(7) (2018) 812. https://doi.org/10.3390/nu10070812.

[152]
S. Barberis, H.G. Quiroga, C. Barcia, et al., Natural food preservatives against microorganisms. In: Grumezescu, A.M., Holban, A.M. (eds) Food Safety and Preservation, Cambridge: Academic Press, 2018, pp. 621-658.
[153]

L. Siroli, F. Patrignani, D.I. Serrazanetti, et al., Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce, Food Microbiol. 47 (2015) 74-84. https://doi.org/10.1016/j.fm.2014.11.008.

[154]
W.P. Hammes, R.F. Vogel, "The genus Lactobacillus, " in the genera of lactic acid bacteria, B.J.B. Wood, W.H. Holzapfel, Eds. 1995, vol. 2, pp. 19-54, Springer, New York, NY, USA.
[155]

B. Agirman, H. Erten, The influence of various chloride salts to reduce sodium content on the quality parameters of şalgam (Shalgam): a traditional Turkish beverage based on black carrot, J. Food Qual. 11 (2018) 3292185. https://doi.org/10.1155/2018/3292185.

[156]
P.M. Davidson, Chemical preservatives and natural antimicrobial compounds. In: Doyle M.P., Beauchat L.R., Montville T.J., editors. Food Microbiology: Fundamentals and Frontiers (2001) 2nd edn. ASM Press, Washington, DC.
[157]
Institute of Medicine (US) Committee on Strategies to Reduce Sodium Intake. (2010). Preservation and physical property roles of sodium in foods. In: Henney, J.E., Taylor, C.L., Boon, C.S. (Eds), Strategies to reduce sodium intake in the United States. National Academies Press, Washington, DC, pp. 91-118.
[158]
B. Caballero, L.C. Trugo, P.M. Finglas, Encyclopedia of food sciences and nutrition, Academic (2003) 1-10, 2nd Ed, pp. 6601. https://doi.org/10.1016/B0-12-227055-X/01251-7.
[159]
J.B. Marcus, Food science basics: healthy cooking and baking demystified: the science behind healthy foods, cooking and baking, In culinary Nutritrion; Marcus, J.B., Ed, Academic Press: San Diego, CA, USA, 2013, pp. 51-97. https://doi.org/10.1016/B978-0-12-391882-6.00002-9.
[160]

B. Çetin. Production of probiotic mixed pickles (Tursu) and microbiological properties, Afr. J. Biotechnol. 10(66) (2011), 14926-14931.

[161]

H. Antolak, A. Czyzowska, D. Kregiel, Antibacterial and antiadhesive activities of extracts from edible plants against soft drink spoilage by Asaia spp, J. Food Prot. 80(1) (2017) 25-34. https://doi.org/10.4315/0362-028X.JFP-16-13.

[162]

R. Veberic, J. Jakopic, F. Stampar, et al., European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols, Food Chem. 114 (2009) 511-515. https://doi.org/10.1016/j.foodchem.2008.09.080.

[163]

O.O. Ajibola, S. Lihan, A. Hussaini, et al., Toxicity assessment of Lactococcus lactis IO-1 used in coconut beverages against artemia salina using brine shrimp lethality test, Appl. Food Biotechnol. 7(3) (2020b) 127-134. https://doi.org/10.22037/afb.v7i3.29346.

[164]

M.A. Amiza, J. Zakiah, N.L. Khim, et al., Fermentation of tempoyak using isolated tempoyak culture, Res. J. Microbiol. 1(3) (2006) 243-254. https://doi.org/10.3923/jm.2006.243.254.

[165]

H. Pyar, K.K. Peh, M.T. Liong, Inhibitory effect of metabolites from probiotics Lactobacillus acidophilus strains on growth of pathogenic bacteria, J. Pharmacol. Toxicol. 6(5) (2011) 533-540. https://doi.org/10.3923/jpt.2011.533.540

[166]

M.E. Falagas, G.I. Betsi, S. Athanasiou, Probiotics for the treatment of women with bacterial vaginosis, Clin. Microbiol. Infect. 13(7) (2007) 657-664. https://doi.org/10.1111/j.1469-0691.2007.01688.x.

[167]

O.O. Ajibola, S. Lihan, A. Hussaini et al., Cell viability, physicochemical and sensory characteristics of probiotic coconut juice during cold storage. J. Sustain. Sci. Manag. 16(8) (2021) 1-13. https://doi.org/10.46754/jssm.2021.12.001.

[168]

S.G. Nkhata, E. Ayua, E.H. Kamau, et al., Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes, Food Sci. Nutr. 6 (2018) 2446-2458. https://doi.org/10.1002/fsn3.846.

[169]

S. Susanto, A. Sumarpo, A. A Parikesit, et al., Immunostimulatory effect of tempoyak (fermented durian) on inducing cytokine production (IL-6 and TNF-α) by RAW264.7 cells, Biodiversitas 19(1) (2018) 318-322. https://doi.org/10.13057/biodiv/d190143.

[170]

O. Gillor, A. Etzion, M.A. Riley, The dual role of bacteriocins as Anti- and probiotics, Appl. Microbiol. Biotechnol. 81(4) (2008) 591-606. https://doi.org/10.1007/s00253-008-1726-5.

[171]

P. Duboc, B. Mollet, Application of exopolysaccharides in the dairy industry, Int. Dairy J. 11(9) (2001) 759-768. https://doi.org/10.1016/S0958-6946(01)00119-4.

[172]

B. German, E. Schiffrin, R. Reniero, et al., The development of functional foods: lessons from the gut, Trends Biotechnol. 17(12) (1997) 492-499. https//doi. org/10.1016/s0167-7799(99)01380-3.

[173]

H.J. Ruijssenaars, F. Stingele, S. Hartmans, Biodegradability of food-associated extracellular polysaccharides, Curr. Microbiol. 4(3) (2000) 194-199. https://doi.org/10.1007/s002849910039.

[174]

P. Cadieux, J. Burton, G. Gardiner, et al., Lactobacillus strains and vaginal ecology, JAMA 287(15) (2002) 1940-1941. https://doi.org/10.1001/jama.287.15.1940.

[175]

G. Reid, D. Beuerman, C. Heinemann, A.W. Bruce, Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora, FEMS Immunol. Med. Microbiol. 32(1) (2001a) 37-41. https://doi.org/10.1111/j.1574-695X.2001.tb00531.x.

[176]

G. Reid, A.W. Bruce, N. Fraser, et al., Oral probiotics can resolve urogenital infections, FEMS Immunol. Med. Microbiol. 30(1) (2001b) 49-52. https://doi.org/10.1111/j.1574-695X.2001.tb01549.x.

[177]

S. Alonso, M. Carmen Castro, M. Berdasco, et al., Isolation and partial characterization of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture, Probiotics Antimicrob. Proteins 11(2) (2019) 569-579. https://doi.org/10.1007/s12602-018-9439-2.

[178]

M. Diaz, L. Kellingray, N. Akinyemi, et al. Comparison of the microbial composition of African fermented foods using amplicon sequencing, Sci. Rep. 9(1) (2019) 1-8. https://doi.org/10.1038/s41598-019-50190-4.

[179]

J. Zheng, S. Wittouck, E. Salvetti, et al., A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae, Int. J. Syst. Evol. Microbiol. 70(4) (2020) 2782-2858. https://doi.org/10.1099/ijsem.0.004107.

[180]

Y.S. Chen, H.C. Wu, C.R. Yu, et al., Isolation and characterization of lactic acid bacteria from xi-gua-mian (fermented watermelon), a traditional fermented food in Taiwan, Italian J. Food Sci. 28(1) (2018) 9-14. https://doi.org/10.14674/1120-1770/ijfs.v451.

[181]

Y. Hong, H.S. Yang, H.C. Chang, et al., Comparison of bacterial community changes in fermenting Kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis, J. Microbio. Biotechnol. 23(1) (2013) 76-84. https://doi.org/10.4014/jmb.1210.10002.

[182]

Y.Y. Ong, W.S. Tan, M. Rosfarizan, et al., Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices, J. Food Sci. 77(10) (2012) M560-M564. https://doi.org/10.1111/j.1750-3841.2012.02894.x.

[183]

B. Tamang, J.P. Tamang, U. Schillinger, et al., Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented bamboo tender shoots of North East India, Int. J. Food Microbiol. 121(1) (2008) 35-40. https://doi.org/10.1016/j.ijfoodmicro.2007.10.009.

[184]

Y. Hong, H.S. Yang, J. Li, et al., Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE, J. Sci. Food Agric. 94(2) (2014) 296-300. https://doi.org/10.1002/jsfa.6257.

[185]

D.T.L. Nguyen, K. Van Hoorde, M. Cnockaert, et al., A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam, Int. J. Food Microbiol. 163(1) (2013) 19-27. https://doi.org/10.1016/j.ijfoodmicro.2013.01.024.

[186]

R. Pérez Pulido, N. Ben Omar, H. Abriouel, et al., Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods, Appl. Environ. Microbiol. 71(12) (2005) 7872-7879. https://doi.org/10.1128/AEM.71.12.7872-7879.2005.

[187]

G. Reid, Probiotics and prebiotics - Progress and challenges, Int. Dairy J. 18(10/11) (2008) 969-975. https://doi.org/10.1016/j.idairyj.2007.11.025.

[188]

K. Vishwakarma, N. Kumar, C. Shandilya, et al., Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review, Front. Microbiol. 11 (2020) 560406. https://doi.org/10.3389/fmicb.2020.560406.

Food Science and Human Wellness
Pages 1493-1509
Cite this article:
Ajibola OO, Thomas R, Bakare BF. Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health. Food Science and Human Wellness, 2023, 12(5): 1493-1509. https://doi.org/10.1016/j.fshw.2023.02.011

870

Views

41

Downloads

30

Crossref

22

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 17 August 2021
Revised: 12 October 2021
Accepted: 13 January 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return