AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments

Xiaoran Songa,bYanan LiubXin ZhangbPeifang WengbRuilin Zhanga,c( )Zufang Wub
Central Laboratory, Shenzhen University General Hospital, Shenzhen 518055, China
College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Currently, accumulating pieces of evidence indicate that probiotics, living in the gastrointestinal tract, play an important role in regulating host metabolism. As a tool, probiotics have great potential for treating lipid metabolism diseases. However, the relationship between probiotics and abnormal lipid metabolism is still unclear, and the mechanism of action has been become a focus of microbiome research. Therefore, taking intestinal probiotics as the starting point, this article combs the relationship between probiotics and lipid metabolism. Moreover, we discuss the underlying mechanisms of intestinal probiotics regulating lipid metabolism and summarize the therapeutic strategies for abnormal lipids metabolism. This article provides a reference for the further utilization of probiotics in the field of functional foods (food industry). Meanwhile, it will benefit the clinical diagnosis and treatment of lipid metabolism diseases.

References

[1]

M. Rosenbaum, R. Knight, R.L. Leibel, The gut microbiota in human energy homeostasis and obesity, Trends Endocrinol. Metab. 26 (2015) 493-501. https://doi.org/10.1016/j.tem.2015.07.002.

[2]

P.D. Cani, R. Bibiloni, C. Knauf, et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes 57 (2008) 1470-1481. https://doi.org/10.2337/db07-1403.

[3]

R.A. Koeth, Z. Wang, B.S. Levison, et al., Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis, Nat. Medi. 19 (2013) 576-585. https://doi.org/10.1038/nm.3145.

[4]

J. Boursier, O. Mueller, M. Barret, et al., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology 63 (2016) 764-775. https://doi.org/10.1002/hep.28356.

[5]

L.K. Brahe, E. Le Chatelier, E.P. Prifti, et al., Specific gut microbiota features and metabolic markers in ostmenopausal women with obesity, Nutr. Diabetes 5 (2015) e159. https://doi.org/10.1038/nutd.2015.9.

[6]

M. Ye, J. Yu, X. Shi, et al., Polysaccharides catabolism by the human gut Bacterium-Bacteroides thetaiotaomicron: advances and perspectives, Crit. Rev. Food Sci. (2020) 1-20. https://doi.org/10.1080/10408398.2020.1803198.

[7]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444 (2006)1027-1031. https://doi.org/10.1038/nature05414.

[8]

E.L. Johnson, S.L. Heaver, J.L. Waters, et al., Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels, Nat. Commun. 11 (2020) 1. https://doi.org/10.1038/s41467-020-16274-w.

[9]

F. Backhed, H. Ding, T. Wang, et al., The gut microbiota as an environmental factor that regulates fat storage, P. Natl. Acad. Sci. U.S.A. 101 (2004) 15718-15723. https://doi.org/10.1073/pnas.0407076101.

[10]

A.M.VanHook, Microbial metabolites shape lipid metabolism, Sci. Signal. 13 (2020) eabc1552. https://doi.org/10.1126/scisignal.abc1552.

[11]

J.J. Qin, R.Q. Li, J. Raes, et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature 464 (2010) 59-70. https://doi.org/10.1038/nature08821.

[12]

X.Z. Tian, R. Li, Y.M. Jiang, et al., Bifidobacterium breve ATCC15700 pretreatment prevents alcoholic liver disease through modulating gut microbiota in mice exposed to chronic alcohol intake, J. Funct. Foods 72(2020) 104045. https://doi.org/10.1016/j.jff.2020.104045.

[13]

Y. Kadooka, M. Sato, A. Ogawa, et al., Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial, Br. J. Nutr. 110 (2013) 1696-1703. https://doi.org/10.1017/S0007114513001037.

[14]

L. Bai, S. Kumar, S. Verma, et al., Bacteriocin PJ4 from probiotic lactobacillus reduced adipokine and inflammasome in high fat diet induced obesity, 3 Biotech. 10 (2020) 355. https://doi.org/10.1007/s13205-020-02317-y.

[15]

S.Z. Wang, Y.J. Yu, K. Adeli, Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gutbrain-liver axis, Microorganisms 8 (2020) 527. https://doi.org/10.3390/microorganisms8040527.

[16]

A. Santacruz, M. Collado, L. García-Valdés, et al., Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women, Brit. J. Nutr. 104 (2010) 83-92. https://doi.org/10.1017/S0007114510000176.

[17]

R. Fuller, Probiotics in man and animals, J. Appl. Bacteriol. 66 (1989) 365-78. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x.

[18]

D.M. Lilly, R.H. Stillwell, Probiotics: growth-promoting factors produced by microorganisms, Science 147 (1965) 747-748. https://doi.org/10.1126/science.147.3659.747.

[19]
FAO/WHO, Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, World Health Organization and Food and Agriculture Organization of the United Nations, London, Ontario, Canada. (2001). ftp://ftp.fao.org/es/esn/food/wgreport2.
[20]

R.M. Thushara, S. Gangadaran, Z. Solati, et al., Cardiovascular benefits of probiotics: a review of experimental and clinical studies, Food Funct. 7 (2016) 632-642. https://doi.org/10.1039/c5fo01190f.

[21]

G. Wang, W. Huang, Y. Xia, et al., Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice, Food Funct. 10 (2019) 1684-1695. https://doi.org/10.1039/c8fo02181c.

[22]

J.H. Kang, S.I. Yun, M.H. Park, et al., Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice, PLoS One 8 (2013)1-8. https://doi.org/10.1371/journal.pone.0054617.

[23]

D. Curro, G. Ianiro, S. Pecere, et al., Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders, Br. J. Pharmacol. 174 (2017) 1426-1449. https://doi.org/10.1111/bph.13632.

[24]

Y. Wang, H.W. Liu, J.S. Zhao, Macrophage polarization induced by probiotic bacteria: a concise review, Probiotics Antimicro. 12 (2020) 798-808. https://doi.org/10.1007/s12602-019-09612-y.

[25]

Y. Araki, A. Andoh, Y. Fujiyama, et al., Oral administration of a product derived from Clostridium butyricum in rats, Int. J. Mol. Med. 9 (2002) 53-57. https://doi.org/10.3892/ijmm.9.1.53.

[26]

J. Wang, H. Tang, C. Zhang, et al., Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice, ISME J. 9 (2015) 1-15. https://doi.org/10.1038/ismej.2014.99.

[27]

R.A. Bagarolli, N. Tobar, A.G. Oliveira, et al., Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice, J. Nutr. Biochem. 50 (2017) 16-25. https://doi.org/10.1016/j.jnutbio.2017.08.006.

[28]

G.T. Choque Delgado, W.M. da Silva Cunha Tamashiro, Role of prebiotics in regulation of microbiota and prevention of obesity, Food Res. Int.113(2018) 183-188. https://doi.org/10.1016/j.foodres.2018.07.013.

[29]

S.A. Reis, L.L. Conceicao, D.D.Rosa, et al., Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics, Nutr. Res. Rev. 30 (2017) 36-49. https://doi.org/10.1017/S0954422416000226.

[30]

S. Falcinelli, A. Rodiles, A. Hatef, et al., Dietary lipid content reorganizes gut microbiota and probiotic L-rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish, Sci. Rep.-UK. 7 (2017) 5512. https://doi.org/10.1038/s41598-017-05147-w.

[31]

M.Z. Islam, Clinical uses of probiotics, Medicine 95 (2016) 1-5. https://doi.org/10.1097/MD.0000000000002658.

[32]

K.Y. Kareem, F.H. Ling, L.T. Chwen, et al., Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin, Gut Pathog. 6 (2014) 1-15. https://doi.org/10.1186/1757-4749-6-23.

[33]

E.D. Simova, D.B. Beshkova, Z.P. Dimitrov, Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products, J. Appl. Microbiol.106(2009) 692-701. https://doi.org/10.1111/j.1365-2672.2008.04052.x.

[34]

S. Tejero-Sarinena, J. Barlow, A. Costabile, et al., Antipathogenic activity of probiotics against Salmonella typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 24 (2013) 60-65. https://doi.org/10.1016/j.anaerobe.2013.09.011.

[35]

I.C. Maruščáková, P. Schusterová, B. Bielik, et al., Effect of application of probiotic pollen suspension on immune response and gut microbiota of honey bees (Apis mellifera), Probiotics Antimicro. 12 (2020) 929-936. https://doi.org/10.1007/s12602-019-09626-6.

[36]

B.C.D. Cruz, V.D. Duarte, A. Giacomini, et al., Synbiotic VSL-3 and yacon-based product modulate the intestinal microbiota and prevent the development of pre-neoplastic lesions in a colorectal carcinogenesis model, Appl. Microbiol. Biot. 104 (2020) 8837-8857. https://doi.org/10.1007/s00253-020-10863-x.

[37]

G.S. Haas, W. Wang, M. Saffar, et al., Probiotic treatment (Bifidobacterium longum subsp.longum 35624 (TM)) affects stress responsivity in male rats after chronic corticosterone exposure, Behav. Brain Res. 393 (2020) 112718. https://doi.org/10.1016/j.bbr.2020.112718.

[38]

S. Takeda, M. Hidaka, H. Yoshida, et al., Antiallergic activity of probiotics from Mongolian dairy products on type I allergy in mice and mode of antiallergic action, J. Funct. Foods 9 (2014) 60-69. https://doi.org/10.1016/j.jff.2014.04.013.

[39]

S. Falcinelli, S. Picchietti, A. Rodiles, et al., Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism, Sci. Rep.-UK. 5 (2015) 9336. https://doi.org/10.1038/srep09336.

[40]

M. Kalliomaki, S. Salminen, E. Isolauri, Positive interactions with the microbiota: probiotics, Adv. Exp. Med. Biol. 635 (2008) 57-66. https://doi.org/10.1007/978-0-387-09550-9_5.

[41]

P. Hlivak, J. Odraska, M. Ferencik, et al., One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels, Bratisl. Lek. Listy. 106 (2005) 67-72. https://www.researchgate.net/publication/7719027.

[42]

A. Malpeli, M.P. Taranto, R.C. Cravero, et al., Effect of daily consumption of Lactobacillus reuteri CRL 1098 on cholesterol reduction in hypercholesterolemic subjects, Food Nutr. Sci. 6 (2015) 1583-1590. https://doi.org/10.4236/fns.2015.617163.

[43]

Z.F. Fang, W.W. Lu, J.X. Zhao, et al., Probiotics modulate the gut microbiota composition and immune responses in patients with atopic dermatitis: a pilot study, Eur. J. Nutr. 59 (2020) 2119-2130. https://doi.org/10.1007/s00394-019-02061-x.

[44]

C.Y. Wang, S.C. Wu, C.C. Ng, et al., Effect of Lactobacillus-fermented adlay-based milk on lipid metabolism of hamsters fed cholesterolenriched diet, Food Res. Int. 43 (2010) 819-824. https://doi.org/10.1016/j.foodres.2009.11.020.

[45]

H.J. Chung, J.H. Sim, T.S. Min, et al., Metabolomics and lipidomics approaches in the science of probiotics: a review, J. Med. Food 21 (2018)1086-1095. https://doi.org/10.1089/jmf.2017.4175.

[46]

Y.H. Wang, Z. Kuang, X.F. Yu, et al., The intestinal microbiota regulates body composition through NFIL3 and the circadian clock, Science 357 (2017)912-916. https://doi.org/10.1126/science.aan0677.

[47]

S. Lin, X.M. Yang, Y.R. Long, et al., Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets, Brit. J. Nutr. 124 (2020) 797-808. https://doi.org/10.1017/S0007114520001774.

[48]

G. Brandi, S. De Lorenzo, M. Candela, et al., Microbiota, NASH, HCC and the potential role of probiotics, Carcinogenesis 38 (2017) 231-240. https://doi.org/10.1093/carcin/bgx007.

[49]

J.Y.L. Chiang, Bile acid metabolism and signaling, Compr. Physiol. 3 (2013)1191-1212. https://doi.org/10.1002/cphy.c120023.

[50]

C.C. Tsai, P.P. Lin, Y.M. Hsieh, et al., Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo, Sci. World J. 2014 (2014) 690752. https://doi.org/10.1155/2014/690752.

[51]

L.D. Guo, L.Q. Wang, F. Liu, et al., Effect of bile salt hydrolase-active Lactobacillus plantarum KLDS 1.0344 on cholesterol metabolism in rats fed a high-cholesterol diet, J. Funct. Foods 61 (2019) 103497. https://doi.org/10.1016/j.jff.2019.103497.

[52]

A. DiCostanzo, J.E. Williams, D.H. Keisler, Effects of short-or long-term infusions of acetate or propionate on luteinizing hormone, insulin, and metabolite concentrations in beef heifers, J. Anim. Sci. 77 (1999) 3050-3056. https://doi.org/10.2527/1999.77113050x.

[53]

T. Arora, R. Sharma, G. Frost, Propionate.Anti-obesity and satiety enhancing factor? Appetite 56 (2011) 511-515. https://doi.org/10.1016/j.appet.2011.01.016.

[54]

F.A. Klaver, R.V.D. Meer, The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugating activity, Appl. Environ. Microb. 59 (1993) 1120-1124. https://doi.org/10.1002/bit.260410811.

[55]

Usman, A. Hosono, Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats, J. Dairy Sci. 83 (2000) 1705-1711. https://doi.org/10.3168/jds.S0022-0302(00)75039-9.

[56]

Y. Fukushima, A.M. Pupin, W.H. Cai, et al., Probiotics and host defense, health claim and evidences, Probiotics Prebiotics (2010) 385-422. https://doi.org/10.1016/B978-0-12-374938-3.00025-6.

[57]

Y. Araki, S.L. Lee, G. Sugihara, et al., New cationic surfactants derived from bile acids: synthesis and thermodynamic and biophysicochemical properties such as membrane perturbation and protein solubilizing abilities, Colloids Surf B Biointerfaces 8 (1996) 81-92. https://doi.org/10.1016/S0927-7765(96)01308-2.

[58]

P.R. Cheeke, Actual and potential applications of Yucca schidigera and Quillaja saponariasaponins in human and animal nutrition, J. Anim. Sci. 77 (2000). https://doi.org/10.1007/978-94-015-9339-7_25.

[59]

S. Torres, E. Fabersani, A. Marquez, et al., Adipose tissue inflammation and metabolic syndrome.The proactive role of probiotics, Eur. J. Nutr. 58 (2019)27-43. https://doi.org/10.1007/s00394-018-1790-2.

[60]

A.J. Cox, N.P. West, A.W. Cripps, Obesity, inflammation, and the gut microbiota, Lancet Diabetes Endo. 3 (2015) 207-215. https://doi.org/10.1016/S2213-8587(14)70134-2.

[61]

T.S. Kemgang, S. Kapila, V.P. Shanmugam, et al., Cross-talk between probiotic Lactobacilli and host immune system, J. Appl Microbiol. 117 (2014) 303-319. https://doi.org/10.1111/jam.12521.

[62]

I.N. Núñez, C.M. Galdeano, A.D. de LeBlanc, et al., Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model, Nutrition 31 (2015) 1000-1007. https://doi.org/10.1016/j.nut.2015.02.006.

[63]

E. Fabersani, M.C. Abeijon-Mukdsi, R. Ross, et al., Specific strains of lactic acid bacteria differentially modulate the profile of adipokines in vitro, Front. Immunol. 8 (2017). https://doi.org/10.3389/fimmu.2017.00266.

[64]

L.C. Tong, Y. Wang, Z.B. Wang, et al., Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress, Front. Pharmacol. 7 (2016). https://doi.org/10.3389/fphar.2016.00253.

[65]

P.V. Bauer, S.C. Hamr, F.A. Duca, Regulation of energy balance by a gutbrain axis and involvement of the gut microbiota, Cell. Mol. Life Sci. 73 (2016) 737-755. https://doi.org/10.1007/s00018-015-2083-z.

[66]

D. Muoio, G. Dohn, F. Fiedorek, et al., Leptin directly alters lipid partitioning in skeletal muscle, Diabetes 8 (1997) 1360-1363. https://doi.org/10.2337/diabetes.46.8.1360.

[67]

D.M. Arble, M.H. Vitaterna, F.W. Turek, Rhythmic leptin is required for weight gain from circadian desynchronized feeding in the mouse, PLoS One 6 (2011) e25079. https://doi.org/10.1371/journal.pone.0025079.

[68]

Y.C. Cheng, J.R. Liu, Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity, Nutrients 12 (2020) 2557. https://doi.org/10.3390/nu12092557.

[69]

R. Sousa, J. Halper, J. Zhang, et al., Effect of Lactobacillus acidophilus supernatants on body weight and leptin expression in rats, BMC Complement. Altern. Med. 8 (2008) 5. https://doi.org/10.1186/1472-6882-8-5.

[70]

K.J. Williams, X.D. Wu, Imbalanced insulin action in chronic over nutrition: clinical harm, molecular mechanisms, and a way forward, Atherosclerosis 247 (2016) 225-282. https://doi.org/10.1016/j.atherosclerosis.2016.02.004.

[71]

D.H. Kim, S. Kim, J.H. Lee, et al., Lactobacillus acidophilus suppresses intestinal inflammation by inhibiting endoplasmic reticulum stress, J. Gastroen. Hepatol. 34 (2019) 178-185. https://doi.org/10.1111/jgh.14362.

[72]

P. Schonfeld, L. Wojtczak, Short-and medium-chain fatty acids in energy metabolism: the cellular perspective, J. Lipid Res. 57 (2016) 943-954. https://doi.org/10.1194/jlr.R067629.

[73]

G. Tolhurst, H. Heffron, Y.S. Lam, et al., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes 61 (2012) 364-371. https://doi.org/10.2337/db11-1019.

[74]

R.E. Steinert, C. Beglinger, W. Langhans, Intestinal GLP-1 and satiation: from man to rodents and back, Int. J. Obes. 40 (2016) 198-205. https://doi.org/10.1038/ijo.2015.172.

[75]

A. Psichas, M.L. Sleeth, K.G. Murphy, et al., The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents, Int. J. Obes. 39 (2015) 424-429. https://doi.org/10.1038/ijo.2014.153.

[76]

H. Yadav, J.H. Lee, J. Lloyd, et al., Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion, J. Biol. Chem. 288 (2013) 25088-25097. https://doi.org/10.1074/jbc.M113.452516.

[77]

R.L. Batterham, H. Heffron, S. Kapoor, et al., Critical role for peptide YY in protein-mediated satiation and body-weight regulation, Cell. Metab. 4 (2006)223-233. https://doi.org/10.1016/j.cmet.2006.08.001.

[78]

Y.Y. Lu, C.N. Fan, P. Li, et al., Short chain fatty acids prevent high-fat-dietinduced obesity in mice by regulating G protein-coupled receptors and gut microbiota, Sci. Rep.-UK. 6 (2016) 37589. https://doi.org/10.1038/srep37589.

[79]

H.B. Wang, P.Y. Wang, X. Wang, et al., Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription, Dig. Dis. Sci. 57 (2012) 3126-3135. https://doi.org/10.1007/s10620-012-2259-4.

[80]

E. Gaudier, M. Rival, M.P. Buisine, et al., Butyrate enemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon, Physiol. Res. 58 (2009) 111-119. https://doi.org/10.1002/1531-8257(199905)14:33.0.CO;2-S.

[81]

S. Tedelind, F. Westberg, M. Kjerrulf, et al., Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease, World J. Gastroentero. 13 (2007) 2826-2832. https://doi.org/10.1186/1471-230X-7-17.

[82]

T. Li, J.Y. Chiang, Bile acid signaling in metabolic disease and drug therapy, Pharmacol. Rev. 4 (2014) 948-983. https://doi.org/10.1124/pr.113.008201.

[83]

H. Hirokane, M. Nakahara, S. Tachibana, et al., Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4, J. Biol. Chem. 279 (2004) 45685-45692. https://doi.org/10.1074/jbc.M404255200.

[84]

J.Y.L. Chiang, J.M. Ferrell, Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy, Am. J. Physiol.-Gastr. L. 318 (2020)G554-G573. https://doi.org/10.1152/ajpgi.00223.2019.

[85]

Y. Yu, F. Raka, K. Adeli, The role of the gut microbiota in lipid and lipoprotein metabolism, J. Clin. Med. 8 (2019) 2227. https://doi.org/10.3390/jcm8122227.

[86]

M. Murakami, N. Une, M. Nishizawa, et al., Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects, Springerplus 2 (2013) 20. https://doi.org/10.1186/2193-1801-2-20.

[87]

M.W. Schwartz, S.C. Woods, D. Porte, et al., Central nervous system control of food intake, Nature 404 (2000) 661-671. https://doi.org/10.1038/35007534.

[88]

A. Bernard, D. Ancel, A.M. Neyrinck, et al., A preventive prebiotic supplementation improves the sweet taste perception in diet-induced obese mice, Nutrients 11 (2019) 549. https://doi.org/10.3390/nu11030549.

[89]

B.J. Li, D.Y. Shao, Y.G. Luo, et al., Role of 5-HT3 receptor on food intake in fed and fasted mice, PLoS One 10 (2015) 1-14. https://doi.org/10.1371/journal.pone.0121473.

[90]

M.D. Klok, S. Jakobsdottir, M.L. Drent, The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review, Obes. Rev. 8 (2007) 21-34. https://doi.org/10.1111/j.1467-789X.2006.00270.x.

[91]

V. Di Marzo, S.K. Goparaju, L. Wang, et al., Leptin-regulated endocannabinoids are involved in maintaining food intake, Nature 410 (2001)822-825. https://doi.org/10.1038/35071088.

[92]

V. Di Marzo, I. Matias, Endocannabinoid control of food intake and energy balance, Nat. Neurosci. 8 (2005) 585-589. https://doi.org/10.1038/nn1457.

[93]

M. Sanchez, C. Darimont, S. Panahi, et al., Effects of a diet-based weightreducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals, Nutrients 9 (2017) 284. https://doi.org/10.3390/nu9030284.

[94]
E. Metchnikoff, P.C. Mitchell, The prolongation of life, New York & London, 1908.
[95]

B. Pourrajab, S. Fatahi, A. Dehnad, et al., The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: a systematic review and meta-analysis of randomized controlled trials, Nutr. Metab. Carbiovasc. Dis. 30 (2020) 11-22. https://doi.org/10.1016/j.numecd.2019.10.001.

[96]

Y. Xia, E.M. Yu, M.X. Lu, et al., Effects of probiotic supplementation on gut microbiota as well as metabolite profiles within Nile tilapia, Oreochromis niloticus, Aquaculture 527 (2020) 735428. https://doi.org/10.1016/j.aquaculture.2020.735428.

[97]

A.S. Machado, J.R. Oliveira, D.D. Lelis, et al., Oral probiotic Bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver, Biol. Res. Nurs. 23 (2020) 100-108. https://doi.org/10.1177/1099800420942942.

[98]

V. Behrouz, N. Aryaeian, M.J. Zahedi, et al., Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial, J. Food Sci. 10 (2020) 3611-3617. https://doi.org/10.1111/1750-3841.15367.

[99]

T.Y. Jiang, H. Wu, X. Yang, et al., Lactobacillus mucosae strain promoted by a high-fiber diet in genetic obese child alleviates lipid metabolism and modifies gut microbiota in apoE(-/-) mice on a western diet, Microorganisms 8 (2020). https://doi.org/10.3390/microorganisms8081225.

[100]

A. Nilsson, E. Johansson, L. Ekstrom, et al., Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study, PLoS One 8 (2013) 1-10. https://doi.org/10.1371/journal.pone.0059985.

[101]

J.F. Long, J.P. Yang, S.M. Henning, et al., Xylooligosaccharide supplementation decreases visceral fat accumulation and modulates cecum microbiome in mice, J. Funct. Foods 52 (2019) 138-146. https://doi.org/10.1016/j.jff.2018.10.035.

[102]

G.R. Gibson, M.B. Roberfroid, dietary modulation of the human colonic microbiota -introducing the concept of prebiotics, Nutr. J. 125 (1995) 1401-1412. https://doi.org/10.1093/jn/125.6.1401.

[103]

T. Vincenzo, L. Vito, An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics, J. Exp. Biol. Agric. Sci. 4 (2016) 273-278. https://doi.org/10.18006/2016.4(3S).273.278.

[104]

J. Li, Y.F. Cheng, Y.P. Chen, et al., Effects of dietary synbiotic supplementation on growth performance, lipid metabolism, antioxidant status, and meat quality in Partridge shank chickens, J. Appl. Anim. Res. 47 (2019) 586-590. https://doi.org/10.1080/09712119.2019.1693382.

[105]

E. Likotrafiti, K.M. Tuohy, G.R. Gibson, et al., An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota, Anaerobe 27 (2014) 50-55. https://doi.org/10.1016/j.anaerobe.2014.03.009.

[106]

H. Shakeri, H. Hadaegh, F. Abedi, et al., Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes, Lipids 49 (2014) 695-701. https://doi.org/10.1007/s11745-014-3901-z.

[107]

X.X. Ke, A. Walker, S.B. Haange, et al., Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice, Mol. Metab. 22 (2019) 96-109. https://doi.org/10.1016/j.molmet.2019.01.012.

[108]

H.S. Ejtahed, A.R. Soroush, P. Angoorani, et al., Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents, Horm. Metab. Res. 48 (2016) 349-358. https://doi.org/10.1055/s-0042-107792.

[109]

O.C. Aroniadis, L.J. Brandt, Fecal microbiota transplantation: past, present and future, Curr. Opin. Gastroenterol. 29 (2013) 79-84. https://doi.org/10.1097/MOG.0b013e32835a4b3e.

[110]

B. Eiseman, W. Silen, G.S. Bascom, et al., Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis, Surgery 44 (1958) 854-859. https://pubmed.ncbi.nlm.nih.gov/13592638.

[111]

Y. Taur, K. Coyte, J. Schluter, et al., Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant, Sci. Transl. Med. 10 (2018) 8. https://doi.org/10.1126/scitranslmed.aap9489.

[112]

Y. Fan, O. Pedersen, Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol. 19 (2021) 55-71. https://doi.org/10.1038/s41579-020-0433-9.

[113]

M.W. Brand, M.J. Wannemuehler, G.J. Phillips, et al., The altered schaedler flora: continued applications of a defined murine microbial community, ILAR J. 56 (2015) 169-178. https://doi.org/10.1093/ilar/ilv012.

[114]

V.D. Palumbo, M. Romeo, A.M. Gammazza, et al., The long-term effects of probiotics in the therapy of ulcerative colitis: a clinical study, Biomed. Pap. 160 (2016) 372-377. https://doi.org/10.5507/bp.2016.044.

[115]

N. Bruni, E. Martello, E. Fusi, et al., Study of faecal parameters and body condition in dogs with a diet supplemented with Lactobacillus acidophilus D2/CSL (CECT 4529), Ital. J. Anim. Sci. 19 (2020) 704-711. https://doi.org/10.1080/1828051x.2020.1783378.

[116]

K.K. Sharafedtinov, O.A. Plotnikova, R.I. Alexeeva, et al., Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients -a randomized doubleblind placebo-controlled pilot study, Nutr. J. 12 (2013) 29-52. https://doi.org/10.1186/1475-2891-12-138.

[117]

T. Sakai, T. Taki, A. Nakamoto, et al., Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet, J. Nutr. Sci. Vitaminol. 59 (2013) 144-147. https://doi.org/10.3177/jnsv.59.144.

[118]

D.Y. Park, Y.T. Ahn, S.H. Park, et al., Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity, PLoS One 8 (2013) 1-12. https://doi.org/10.1371/journal.pone.0059470.

[119]

M. Sanchez, C. Darimont, V. Drapeau, et al., Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women, Brit. J. Nutr. 111 (2014) 1507-1519. https://doi.org/10.1017/S0007114513003875.

[120]

M.C. Fuentes, T. Lajo, J.M. Carrion, et al., Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults, Brit. J. Nutr. 109 (2013) 1866-1872. https://doi.org/10.1017/S000711451200373x.

Food Science and Human Wellness
Pages 1439-1449
Cite this article:
Song X, Liu Y, Zhang X, et al. Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments. Food Science and Human Wellness, 2023, 12(5): 1439-1449. https://doi.org/10.1016/j.fshw.2023.02.005

1061

Views

149

Downloads

20

Crossref

21

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 24 February 2021
Revised: 19 March 2021
Accepted: 28 April 2021
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return