AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans

Yanan WangJiachen ShiKun LiuYu WangYongjiang XuYuanfa Liu( )
State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

As an irreplaceable dietary constituent, lipids play a vital important role in health, but their effects on aging process and longevity are still not well known yet. In this paper, the metabolic profiling and gene expression levels of Caenorhabditis elegans were investigated to explore the effects of different edible oils on senescence and lifespan. The results showed that teaseed oil (TO) could prolong the life expectancy and slow down the aging process of C. elegans. Compared to the control group, the intake of lard oil (LO) and TO increased the expression levels of genes related to inhibition of protein aggregation (akt-1, daf-16, hsf-1, hsp-16.2) and lipid metabolism (daf-7, daf-1, mdt-15, lipl-4, fat-5, fat-6, fat-7), with a more significant alteration in TO group. Metabolomics revealed that palm oil can upregulated plenty of fatty acids (palmitic acid, stearic acid, tetracosanoic acid), together with some amino acids (tryptophan, L-aspartate, L-valine) and carbohydrate (D-glucose), while the trend was opposite in TO group. Besides, moderate-to-strong correlations were found between differential metabolites and changed genes. In general, this paper claimed that TO could prolong lifespan and slow down aging process via regulating the lipids, amino acids and carbohydrates metabolism.

References

[1]

M. Golding, T.J. Wooster, The influence of emulsion structure and stability on lipid digestion, Curr. Opin. Colloid Interface Sci. 15(1/2) (2010) 90-101. https://doi.org/10.1016/j.cocis.2009.11.006.

[2]

S. Just, S. Mondot, J. Ecker, et al., The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism, Microbiome 6(1) (2018) 134. https://doi.org/10.1186/s40168-018-0510-8.

[3]

W.T. Lee, Y.T. Tung, C.C. Wu, et al., Camellia oil (Camellia oleifera Abel.) modifies the composition of gut microbiota and alleviates acetic acidinduced colitis in rats, J. Agric. Food Chem. 66(28) (2018) 7384-7392. https://doi.org/10.1021/acs.jafc.8b02166.

[4]

G. Marcelino, P.A. Hiane, K.C. Freitas, et al., Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota, Nutrients 11(8) (2019) 1826. https://doi.org/10.3390/nu11081826.

[5]

H. Li, Y. Zhu, F. Zhao, et al., Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats, Sci. Rep. 7(1) (2017) 826. https://doi.org/10.1038/s41598-017-00969-0.

[6]

S. Ghezzal, B.G. Postal, E. Quevrain, et al., Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865(2) (2020) 158530. https://doi.org/10.1016/j.bbalip.2019.158530.

[7]

K. Hosomi, H. Kiyono, J. Kunisawa, Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases, Gut Microbes 11(3) (2020) 276-284. https://doi.org/10.1080/19490976. 2019.1612662.

[8]

S.N.S. Ahmad, A.H.A. Tarmizi, R.A.A. Razak, et al., Selection of vegetable oils and frying cycles influencing acrylamide formation in the intermittently fried beef nuggets, Foods 10(2) (2021) 257. https://doi.org/10.3390/foods10020257.

[9]

B. Wiege, E. Fehling, B. Matthäus, et al., Changes in physical and chemical properties of thermally and oxidatively degraded sunflower oil and palm fat, Foods 9(9) (2020) 1273. https://doi.org/10.3390/foods9091273.

[10]

M. Zhang, C. Yang, M. Zhu, et al., Saturated fatty acids entrap PDX1 in stress granules and impede islet beta cell function, Diabetologia 64 (2021) 1144-1157. https://doi.org/10.1007/s00125-021-05389-4.

[11]

N. Guffon, F. Mochel, M. Schiff, et al., Clinical outcomes in a series of 18 patients with long chain fatty acids oxidation disorders treated with triheptanoin for a median duration of 22 months, Mol. Genet. Metab. 132 (2021) 227-233. https://doi.org/10.1016/j.ymgme.2021.02.003.

[12]

Y. Gao, X. Li, Q. Gao, et al., Differential effects of olive oil, soybean oil, corn oil and lard oil on carbon tetrachloride-induced liver fibrosis in mice, Biosci. Rep. 39(10) (2019). https://doi.org/10.1042/bsr20191913.

[13]

P. Zhuang, L. Mao, F. Wu, et al., Cooking oil consumption is positively associated with risk of type 2 diabetes in a chinese nationwide cohort study, J. Nutr. 150(7) (2020) 1799-1807. https://doi.org/10.1093/jn/nxaa103.

[14]

X. Wang, M. Cheng, M. Zhao, et al., Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats, Eur. J. Nutr. 52(3) (2013) 1181-1189. https://doi.org/10.1007/s00394-012-0428-z.

[15]

Y. Okazaki, T. Katayama, The effects of different high-fat (lard, soybean oil, corn oil or olive oil) diets supplemented with fructo-oligosaccharides on colonic alkaline phosphatase activity in rats, Eur. J. Nutr. 60(1) (2021) 89-99. https://doi.org/10.1007/s00394-020-02219-y.

[16]

W. Zeng, Y. Endo, Lipid characteristics of camellia seed oil, J. Oleo. Sci. 68(7) (2019) 649-658. https://doi.org/10.5650/jos.ess18234.

[17]

M.H. Weng, S.Y. Chen, Z.Y. Li, et al., Camellia oil alleviates the progression of Alzheimer's disease in aluminum chloride-treated rats, Free Radic. Biol. Med. 152 (2020) 411-421. https://doi.org/10.1016/j.freeradbiomed.2020.04.004.

[18]

X. Lei, Q. Liu, Q. Liu, et al., Camellia oil (Camellia oleifera Abel.) attenuates CCl4-induced liver fibrosis via suppressing hepatocyte apoptosis in mice, Food Funct. 11(5) (2020) 4582-4590. https://doi.org/10.1039/c9fo02258a.

[19]

A.A. Johnson, A. Stolzing, The role of lipid metabolism in aging, lifespan regulation, and age-related disease, Aging Cell 18(6) (2019) e13048. https://doi.org/10.1111/acel.13048.

[20]

A. Bouyanfif, S. Jayarathne, I. Koboziev, et al., The nematode Caenorhabditis elegans as a model organism to study metabolic effects of ω-3 polyunsaturated fatty acids in obesity, Adv. Nutr. 10(1) (2019) 165-178. https://doi.org/10.1093/advances/nmy059.

[21]

W. Qi, G.E. Gutierrez, X. Gao, et al., The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins, Aging Cell 16(5) (2017) 1125-1135. https://doi.org/10.1111/acel.12651.

[22]

S. Han, E.A. Schroeder, C.G. Silva-García, et al., Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan, Nature 544(7649) (2017) 185-190. https://doi.org/10.1038/nature21686.

[23]

E.J. O'Rourke, P. Kuballa, R. Xavier, et al., ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy, Genes Dev. 27(4) (2013) 429-440. https://doi.org/10.1101/gad.205294.112.

[24]

C.W. Yu, W.H. Li, F.L. Hsu, et al., Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans, J. Agric. Food Chem. 62(26) (2014) 6159-6165. https://doi.org/10.1021/jf500417y.

[25]

C.F. Rodrigues, W. Salgueiro, M. Bianchini, et al., Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans, Nutr. Metab. (Lond) 15 (2018) 83. https://doi.org/10.1186/s12986-018-0317-4.

[26]

X.Y. Chen, D.C. Liao, Y.T. Yu, et al., Coix seed oil prolongs lifespan and enhances stress resistance in Caenorhabditis elegans, Biogerontology 21(2) (2020) 245-256. https://doi.org/10.1007/s10522-020-09857-z.

[27]

M. Horikawa, K. Sakamoto, Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans, Mol. Cell Endocrinol. 323(2) (2010) 183-192. https://doi.org/10.1016/j.mce.2010.03.004.

[28]

G.M. Lesa, M. Palfreyman, D.H. Hall, et al., Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans, J. Cell Sci. 116(Pt 24) (2003) 4965-4975. https://doi.org/10.1242/jcs.00918.

[29]

H.M. Kim, N.P. Long, S.J. Yoon, et al., Metabolomics and phenotype assessment reveal cellular toxicity of triclosan in Caenorhabditis elegans, Chemosphere 236 (2019) 124306. https://doi.org/10.1016/j.chemosphere.2019.07.037.

[30]

L. Badimon, G. Vilahur, T. Padro, Systems biology approaches to understand the effects of nutrition and promote health, Br. J. Clin. Pharmacol. 83(1) (2017) 38-45. https://doi.org/10.1111/bcp.12965.

[31]

W.B. Dunn, N.J. Bailey, H.E. Johnson, Measuring the metabolome: current analytical technologies, Analyst 130(5) (2005) 606-625. https://doi.org/10.1039/b418288j.

[32]

W. Si, Y. Zhang, X. Li, et al., Understanding the functional activity of polyphenols using omics-based approaches, Nutrients 13(11) (2021) 3953.

[33]

A. Valdés, G. Álvarez-Rivera, B. Socas-Rodríguez, et al., Foodomics: analytical opportunities and challenges, Anal. Chem. 94(1) (2022) 366-381. https://doi.org/10.1021/acs.analchem.1c04678.

[34]

S. Li, Y. Tian, P. Jiang, et al., Recent advances in the application of metabolomics for food safety control and food quality analyses, Crit. Rev. Food Sci. Nutr. 61(9) (2021) 1448-1469. https://doi.org/10.1080/10408398. 2020.1761287.

[35]

F. Jiang, L. Yuan, N. Shu, et al., Foodomics revealed the effects of extract methods on the composition and nutrition of peanut oil, J. Agric. Food Chem. 68(4) (2020) 1147-1156. https://doi.org/10.1021/acs.jafc.9b06819.

[36]

P. Wang, B. Liu, D. Zhang, et al., Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations, Angew. Chem. Int. Ed. Engl. 53(44) (2014) 11787-11792. https://doi.org/10.1002/anie.201406029.

[37]

F. Macedo, G.L. Martins, L.A. Luevano-Martinez, et al., Lipase-like 5 enzyme controls mitochondrial activity in response to starvation in Caenorhabditis elegans, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865(2) (2020) 158539. https://doi.org/10.1016/j.bbalip.2019.158539.

[38]

B.K. Kim, S.K. Park, Phosphatidylserine modulates response to oxidative stress through hormesis and increases lifespan via DAF-16 in Caenorhabditis elegans, Biogerontology 21(2) (2020) 231-244. https://doi.org/10.1007/s10522-020-09856-0.

[39]

M. Rodriguez, L.B. Snoek, M. de Bono, et al., Worms under stress: C. elegans stress response and its relevance to complex human disease and aging, Trends Genet. 29(6) (2013) 367-374. https://doi.org/10.1016/j.tig.2013.01.010.

[40]

M. Markaki, N. Tavernarakis, Modeling human diseases in Caenorhabditis elegans, Biotechnol. J. 5(12) (2010) 1261-1276. https://doi.org/10.1002/biot.201000183.

[41]

F. Calahorro, M. Ruiz-Rubio, Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder, Invert. Neurosci. 11(2) (2011) 73-83. https://doi.org/10.1007/s10158-011-0126-1.

[42]

A.G. Alexander, V. Marfil, C. Li, Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases, Front Genet. 5 (2014) 279. https://doi.org/10.3389/fgene.2014.00279.

[43]

Y. Yu, H. Chen, X. Hua, et al., Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans, Sci. Total Environ. 726 (2020) 138679. https://doi.org/10.1016/j.scitotenv.2020.138679.

[44]

S. Kim, N. Kim, S. Park, et al., Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance, Autophagy 16(7) (2020) 1200-1220. https://doi.org/10.1080/15548627.2019.1659616.

[45]

R.M. Chin, X. Fu, M.Y. Pai, et al., The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR, Nature 510(7505) (2014) 397-401. https://doi.org/10.1038/nature13264.

[46]

H.M. Kim, N.P. Long, J.E. Min, et al., Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties, J. Hazard. Mater. 399 (2020) 15. https://doi.org/10.1016/j.jhazmat.2020.123005.

[47]

R. Liang, Y. Jiang, W. Yokoyama, et al., Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their in vitro digestion properties, Rsc. Adv. 6(101) (2016) 99496-99508. https://doi.org/10.1039/c6ra18468e.

[48]

A. Lita, A. Pliss, A. Kuzmin, et al., IDH1 mutations induce organelle defects via dysregulated phospholipids, Nat. Commun. 12(1) (2021) 614. https://doi.org/10.1038/s41467-020-20752-6.

[49]

R.J. Shmookler Reis, L. Xu, H. Lee, et al., Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants, Aging (Albany NY) 3(2) (2011) 125-147. https://doi.org/10.18632/aging.100275.

[50]

S.Y. Lee, C.S. Bae, N.S. Seo, et al., Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid, Phytomedicine 57 (2019) 84-94. https://doi.org/10.1016/j.phymed.2018.12.004.

[51]

C.C. Wu, Y.T. Tung, S.Y. Chen, et al., Anti-inflammatory, antioxidant, and microbiota-modulating effects of camellia oil from Camellia brevistyla on acetic acid-induced colitis in rats, Antioxidants (Basel) 9(1) (2020) 58. https://doi.org/10.3390/antiox9010058.

[52]

C.X. Li, L.R. Shen, New observations on the effect of camellia oil on fatty liver disease in rats, J. Zhejiang Univ. Sci. B. 21(8) (2020) 657-667. https://doi.org/10.1631/jzus.B2000101.

[53]

P.S. Tu, Y.T. Tung, W.T. Lee, et al., Protective effect of camellia oil (Camellia oleifera Abel.) against ethanol-induced acute oxidative injury of the gastric mucosa in mice, J. Agric. Food Chem. 65(24) (2017) 4932-4941. https://doi.org/10.1021/acs.jafc.7b01135.

[54]

X. Palomer, J. Pizarro-Delgado, E. Barroso, et al., Palmitic and oleic acid: the Yin and Yang of fatty acids in type 2 diabetes mellitus, Trends Endocrinol. Metab. 29(3) (2018) 178-190. https://doi.org/10.1016/j.tem.2017.11.009.

[55]

K. Rehman, K. Haider, K. Jabeen, et al., Current perspectives of oleic acid: regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes, Rev. Endocr. Metab. Disord. 21(4) (2020) 631-643. https://doi.org/10.1007/s11154-020-09549-6.

[56]

J. Wang, Y. Zhang, Z. Fang, et al., Oleic acid alleviates cadmium-induced oxidative damage in rat by its radicals scavenging activity, Biol. Trace. Elem. Res. 190(1) (2019) 95-100. https://doi.org/10.1007/s12011-018-1526-4.

[57]

N.K.H. Khoo, M. Fazzari, D.V. Chartoumpekis, et al., Electrophilic nitrooleic acid reverses obesity-induced hepatic steatosis, Redox. Biol. 22 (2019) 101132. https://doi.org/10.1016/j.redox.2019.101132.

[58]

F.R.G. Amrit, N. Naim, R. Ratnappan, et al., The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity, Nat. Commun. 10(1) (2019) 3042. https://doi.org/10.1038/s41467-019-10759-z.

[59]

M. Lu, L. Tan, X. G. Zhou, et al., Tectochrysin increases stress resistance and extends the lifespan of Caenorhabditis elegans via FOXO/DAF-16, Biogerontology 21(5) (2020) 669-682. https://doi.org/10.1007/s10522-020-09884-w.

[60]

A.M. McGehee, B.J. Moss, P. Juo, The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1, Mol. Cell Neurosci. 67 (2015) 66-74. https://doi.org/10.1016/j.mcn.2015.06.003.

[61]

D.J. Dues, C.E. Schaar, B.K. Johnson, et al., Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans, Free Radic. Biol. Med. 108 (2017) 362-373. https://doi.org/10.1016/j.freeradbiomed.2017.04.004.

[62]

A. Buis, S. Bellemin, J. Goudeau, et al., Coelomocytes regulate starvationinduced fat catabolism and lifespan extension through the lipase LIPL-5 in Caenorhabditis elegans, Cell Rep. 28(4) (2019) 1041-1049. https://doi.org/10.1016/j.celrep.2019.06.064.

Food Science and Human Wellness
Pages 1391-1401
Cite this article:
Wang Y, Shi J, Liu K, et al. Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans. Food Science and Human Wellness, 2023, 12(4): 1391-1401. https://doi.org/10.1016/j.fshw.2022.10.032

966

Views

83

Downloads

9

Crossref

8

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 29 November 2021
Revised: 30 December 2021
Accepted: 11 February 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return