AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2

Yuqi GaoaRui HuaaKezheng PengaYuemiao YinaChenye ZengaYannan GuoaYida WangaLiyuan LiaXue LibYing QiubZhao Wanga( )
MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
School of Medicine, Tsinghua University, Beijing 100084, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a high-incidence lipid disorder that affects more than a quarter of the population worldwide, and dietary intervention is the recognized treatment. Starch is the main component of staple foods that are consumed daily, and the effects, metabolic pathway, and molecular mechanism of starch in the context of NAFLD remain unclear. Our study showed that a high-starch carbohydrate diet (HCD) led to the occurrence and exacerbation of NAFLD in mice. Transcriptomics and metabonomic analyses showed that the increased fatty acid influx mediated by NADPH oxidase 2 (NOX2) exacerbated NAFLD. Knocking down NOX2 specifically alleviated HCD-induced NAFLD in vivo and in vitro. Moreover, the large amounts of ROS produced by NOX2 further exacerbated insulin resistance and increased lipolysis in perirenal white adipose tissue (periWAT), thereby providing fatty acids for hepatic lipid synthesis. In addition, the interaction between AMPKα1 and p47phox was the pathway that mediated the high expression of NOX2 induced by a HCD. Our study systematically demonstrated the effect of a HCD on NAFLD. Elevated fatty acid influx is a unique molecular regulatory pathway that mediates HCD-induced NAFLD exacerbation, which is different from the effect of simple sugars. Additionally, NOX2 was suggested to be a specific and effective drug target for NAFLD.

References

[1]

The Lancet Gastroenterology, Redefining non-alcoholic fatty liver disease: what's in a name? Lancet Gastroenterol. Hepatol. 5 (2020) 419. https://doi.org/10.1016/s2468-1253(20)30091-1.

[2]

S.K. Sarin, M. Kumar, M. Eslam, et al., Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission, Lancet Gastroenterol. Hepatol. 5 (2020) 167-228. https://doi.org/10.1016/s2468-1253(19)30342-5.

[3]

Z.Younossi, Q.M. Anstee, M. Marietti, et al., Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention, Nat. Rev. Gastroenterol. Hepatol. 15 (2018) 11-20. https://doi.org/10.1038/nrgastro.2017.109.

[4]

J. Liu, S. Jiang, Y. Zhao, et al., Geranylgeranyl diphosphate synthase (GGPPS) regulates non-alcoholic fatty liver disease (NAFLD)-fibrosis progression by determining hepatic glucose/fatty acid preference under highfat diet conditions, J. Pathol. 246 (2018) 277-288. https://doi.org/10.1002/path.5131.

[5]

T. Jensen, M.F. Abdelmalek, S. Sullivan, et al., Fructose and sugar: a major mediator of non-alcoholic fatty liver disease, J. Hepatol. 68 (2018) 1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019.

[6]

N. Jones, J. Blagih, F. Zani, et al., Fructose reprogrammes glutaminedependent oxidative metabolism to support LPS-induced inflammation, Nat. Commun. 12 (2021) 1209. https://doi.org/10.1038/s41467-021-21461-4.

[7]

Y. Xu, Y. Zhu, S. Hu, et al., Hepatocyte nuclear factor 4α prevents the steatosis-to-NASH progression by regulating p53 and bile acid signaling (in mice), Hepatology 73 (2020) 2251-2265. https://doi.org/10.1002/hep.31604.

[8]

J.M. Schwarz, S.M. Noworolski, A.E. Cakmak, et al., Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017) 743-752. https://doi.org/10.1053/j.gastro.2017.05.043.

[9]

E.C. Jang, D.W. Jun, S.M. Lee, et al., Comparison of efficacy of lowcarbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: a randomized controlled study, Hepatol. Res. 48 (2018) E22-E29. https://doi.org/10.1111/hepr.12918.

[10]

S. Louala, M.L. Senhadji, Beneficial effects of low-calorie-carbohydrate/high-agar diet on cardiometabolic disorders associated with non-alcoholic fatty liver disease in obese rats, Prev. Nutr. Food Sci. 24 (2019) 400-409. https://doi.org/10.3746/pnf.2019.24.4.400.

[11]

V.T. Samuel, G.I. Shulman, Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases, Cell Metab. 27 (2018) 22-41. https://doi.org/10.1016/j.cmet.2017.08.002.

[12]

H.Y. Järvinen, P.K. Luukkonen, L. Hodson, et al., Dietary carbohydrates and fats in nonalcoholic fatty liver disease, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 770-786. https://doi.org/10.1038/s41575-021-00472-y.

[13]

L. Hodson, P.J. Gunn, The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state, Nat. Rev. Endocrinol. 15 (2019) 689-700. https://doi.org/10.1038/s41574-019-0256-9.

[14]

S.Y. Kim, J.M. Jeong, S.J. Kim, et al., Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex, Nat. Commun. 8 (2017) 2247. https://doi.org/10.1038/s41467-017-02325-2.

[15]

C.S. Yang, J.J. Kim, S.J. Lee, et al., TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1, J. Immunol. 190 (2013) 6368-6377. https://doi.org/10.4049/jimmunol.1202574.

[16]

G. Musso, M. Cassader, E. Paschetta, et al., Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis, Gastroenterology 155 (2018) 282-302. https://doi.org/10.1053/j.gastro.2018.06.031.

[17]

E. Cremonini, P.I. Oteiza, (–)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells, Arch. Biochem. Biophys. 646 (2018) 55-63. https://doi.org/10.1016/j.abb.2018.03.027.

[18]

A.E. Vendrov, K.C. Vendrov, A. Smith, et al., NOX4 NADPH oxidase-dependent mitochondrial oxidative stress in aging-associated cardiovascular disease, Antioxid.Redox Signal. 23 (2015) 1389-1409. https://doi.org/10.1089/ars.2014.6221.

[19]

T. Kietzmann, A. Petry, A. Shvetsova, et al., The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system, Br. J. Pharmacol. 174 (2017) 1533-1554. https://doi.org/10.1111/bph.13792.

[20]

K.L. Siu, Q. Li, Y. Zhang, et al., NOX isoforms in the development of abdominal aortic aneurysm, Redox Biol. 11 (2017) 118-125. https://doi.org/10.1016/j.redox.2016.11.002.

[21]

U. Förstermann, N. Xia, H. Li, Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis, Circ. Res. 120 (2017) 713-735. https://doi.org/10.1161/circresaha.116.309326.

[22]

A. Maqbool, N.T. Watt, N. Haywood, et al., Divergent effects of genetic and pharmacological inhibition of NOX2 NADPH oxidase on insulin resistancerelated vascular damage, Am. J. Physiol. Cell Physiol. 319 (2020) C64-C74. https://doi.org/10.1152/ajpcell.00389.2019.

[23]

K. Kim, J. Li, A. Tseng, et al., NOX2 is critical for heterotypic neutrophilplatelet interactions during vascular inflammation, Blood 126 (2015) 1952-1964. https://doi.org/10.1182/blood-2014-10-605261.

[24]

H. Buvelot, K.M. Barbe, P. Linder, et al., Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease, FEMS Microbiol. Rev. 41 (2017) 139-157. https://doi.org/10.1093/femsre/fuw042.

[25]

P.L. Hordijk, Regulation of NADPH oxidases: the role of Rac proteins, Circ. Res. 98 (2006) 453-462. https://doi.org/10.1161/01.RES.0000204727.46710.5e.

[26]

C.H. Olguin, J.R. Knudsen, S.H. Raun, et al., Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise, Nat. Commun. 10 (2019) 4623. https://doi.org/10.1038/s41467-019-12523-9.

[27]

L. Loffredo, A.M. Zicari, L. Perri, et al., Does NOX2 overactivate in children with nonalcoholic fatty liver disease? Antioxid.Redox Signal. 30 (2019) 1325-1330. https://doi.org/10.1089/ars.2018.7596.

[28]

E. Grossini, D.P. Garhwal, G. Calamita, et al., Exposure to plasma from non-alcoholic fatty liver disease patients affects hepatocyte viability, generates mitochondrial dysfunction, and modulates pathways involved in fat accumulation and inflammation, Front. Med. 8 (2021) 693997. https://doi.org/10.3389/fmed.2021.693997.

[29]

R. Peng, M. Luo, R. Tian, et al., Dietary nitrate attenuated endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for NADPH oxidase, Arch. Biochem. Biophys. 689 (2020) 108453. https://doi.org/10.1016/j.abb.2020.108453.

[30]

P. Pignatelli, R. Carnevale, D. Pastori, et al., Immediate antioxidant and antiplatelet effect of atorvastatin via inhibition of NOX2, Circulation 126 (2012) 92-103. https://doi.org/10.1161/circulationaha.112.095554.

[31]

M.J. Ronis, N. Sharma, J. Vantrease, et al., Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity, Physiol. Genomics 45 (2013) 351-366. https://doi.org/10.1152/physiolgenomics.00148.2012.

[32]

S.K. Shin, K.O. Kim, S.H. Kim, et al., Exogenous 8-hydroxydeoxyguanosine ameliorates liver fibrosis through the inhibition of Rac1-NADPH oxidase signaling, J. Gastroenterol. Hepatol. 35 (2020) 1078-1087. https://doi.org/10.1111/jgh.14979.

[33]

E. Cremonini, P.I. Oteiza, (–)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells, Arch. Biochem. Biophys. 646 (2018) 55-63. https://doi.org/10.1016/j.abb.2018.03.027.

[34]

A. Figueiredo, A.B. Salmon, F. Bruno, et al., NOX2 mediates skeletal muscle insulin resistance induced by a high fat diet, J. Biol. Chem. 290 (2015) 13427-13439. https://doi.org/10.1074/jbc.M114.626077.

[35]

P.G. Reeves, F.H. Nielsen, G.C. Fahey, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr. 123 (1993) 1939-1951. https://doi.org/10.1093/jn/123.11.1939.

[36]

J. Ye, J.Z. Li, Y. Liu, et al., Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B, Cell Metab. 9 (2009) 177-190. https://doi.org/10.1016/j.cmet.2008.12.013.

[37]

H. Chen, S. Gao, W. Liu, et al., RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target, Gastroenterology 160 (2021) 1284-1300. https://doi.org/10.1053/j.gastro.2020.11.013.

[38]

E.V. Gomez, N. Chalasani, Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers, J. Hepatol. 68 (2018) 305-315. https://doi.org/10.1016/j.jhep.2017.11.013.

[39]

C.M. Anderson, A. Stahl, SLC27 fatty acid transport proteins, Mol. Aspects Med. 34 (2013) 516-528. https://doi.org/10.1016/j.mam.2012.07.010.

[40]

D. Gallardo, M. Amills, R. Quintanilla, et al., Mapping and tissue mRNA expression analysis of the pig solute carrier 27A (SLC27A) multigene family, Gene 515 (2013) 220-223. https://doi.org/10.1016/j.gene.2012.11.029.

[41]

P. Dourlen, A. Sujkowski, R. Wessells, et al., Fatty acid transport proteins in disease: new insights from invertebrate models, Prog. Lipid Res. 60 (2015) 30-40. https://doi.org/10.1016/j.plipres.2015.08.001.

[42]

T. Mishima, J.H. Miner, M. Morizane, et al., The expression and function of fatty acid transport protein-2 and -4 in the murine placenta, PLoS One 6 (2011) e25865. https://doi.org/10.1371/journal.pone.0025865.

[43]

A. Stahl, R.E. Gimeno, L.A. Tartaglia, et al., Fatty acid transport proteins: a current view of a growing family, Trends Endocrinol. Metab. 12 (2001) 266-273. https://doi.org/10.1016/s1043-2760(01)00427-1.

[44]

R. Mallick, S. Basak, A.K. Duttaroy, Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers, Prog. Lipid Res. 83 (2021) 101116. https://doi.org/10.1016/j.plipres.2021.101116.

[45]

L.P. Bechmann, R.K. Gieseler, J.P. Sowa, et al., Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis, Liver Int. 30 (2010) 850-859. https://doi.org/10.1111/j.1478-3231.2010.02248.x.

[46]

M.E. Colina, E.L. Cabello, S.S. Campos, et al., Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C, Gut 60 (2011) 1394-1402. https://doi.org/10.1136/gut.2010.222844.

[47]

Y. Song, J. Liu, K. Zhao, et al., Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases, Cell Metab. 33 (2021) 1911-1925. https://doi.org/10.1016/j.cmet.2021.09.001.

[48]

C. Chen, H. Li, J. Song, et al., Role of apolipoprotein A1 in PPAR signaling pathway for nonalcoholic fatty liver disease, PPAR Res. 2022 (2022) 4709300. https://doi.org/10.1155/2022/4709300.

[49]

Y.Q. Chen, T.G. Pottanat, E.Y. Zhen, et al., ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition, J. Lipid Res. 62 (2021) 100068. https://doi.org/10.1016/j.jlr.2021.100068.

[50]

M. Balteau, A.V. Steenbergen, A.D. Timmermans, et al., AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes, Am. J. Physiol. Heart Circ. Physiol. 307 (2014) 1120-1133. https://doi.org/10.1152/ajpheart.00210.2014.

[51]

I. Levin, J. Petrasek, G. Szabo, The presence of p47phox in liver parenchymal cells is a key mediator in the pathogenesis of alcoholic liver steatosis, Alcohol. Clin. Exp. Res. 36 (2012) 1397-1406. https://doi.org/10.1111/j.1530-0277.2012.01739.x.

[52]

M. Taura, K. Miyano, R. Minakami, et al., A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase, Biochem. J. 419 (2009) 329-338. https://doi.org/10.1042/bj20082028.

[53]

J.X. Chen, A. Stinnett, Critical role of the NADPH oxidase subunit p47phox on vascular TLR expression and neointimal lesion formation in high-fat dietinduced obesity, Lab. Invest. 88 (2008) 1316-1328. https://doi.org/10.1038/labinvest.2008.92.

[54]

S. Bunbupha, P. Prasarttong, A. Poasakate, et al., Imperatorin alleviates metabolic and vascular alterations in high-fat/high-fructose dietfed rats by modulating adiponectin receptor 1, eNOS, and p47(phox) expression, Eur. J. Pharmacol. 899 (2021) 174010. https://doi.org/10.1016/j.ejphar.2021.174010.

[55]

Y.A. An, S. Chen, Y. Deng, et al., The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis, J. Hepatol. 75 (2021) 387-399. https://doi.org/10.1016/j.jhep.2021.03.006.

[56]

M.C. Petersen, G.I. Shulman, Mechanisms of insulin action and insulin resistance, Physiol. Rev. 98 (2018) 2133-2223. https://doi.org/10.1152/physrev.00063.2017.

[57]

N. Li, B. Li, T. Brun, et al., NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion, Diabetes 61 (2012) 2842-2850. https://doi.org/10.2337/db12-0009.

[58]

W. Gao, X. Du, L. Lei, et al., NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in nonalcoholic steatohepatitis, J. Cell. Mol. Med. 22 (2018) 3408-3422. https://doi.org/10.1111/jcmm.13617.

[59]

P. Jiang, L. Ren, L. Zhi, et al., Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53, Mol. Cell 81 (2021) 629-637. https://doi.org/10.1016/j.molcel.2020.12.008.

[60]

H.J. Lee, D.Y. Lee, M.M. Mariappan, et al., Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells, J. Biol. Chem. 292 (2017) 5665-5675. https://doi.org/10.1074/jbc.M116.766758.

[61]

P.W. Cheng, W.Y. Ho, Y.T. Su, et al., Resveratrol decreases fructoseinduced oxidative stress, mediated by NADPH oxidase via an AMPKdependent mechanism, Br. J. Pharmacol. 171 (2014) 2739-2750. https://doi.org/10.1111/bph.12648.

[62]

L.B. Torres, K.A. Fortner, P. Iruzubieta, et al., Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation, Nat. Commun. 11 (2020) 3360. https://doi.org/10.1038/s41467-020-16991-2.

[63]

G.N. Zhao, P. Zhang, J. Gong, et al., Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4, Nat. Med. 23 (2017) 742-752. https://doi.org/10.1038/nm.4334.

[64]

H.Y. Järvinen, P.K. Luukkonen, L. Hodson, et al., Dietary carbohydrates and fats in nonalcoholic fatty liver disease, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 770-786. https://doi.org/10.1038/s41575-021-00472-y.

[65]

F. Angelico, L. Loffredo, P. Pignatelli, et al., Weight loss is associated with improved endothelial dysfunction via NOX2-generated oxidative stress down-regulation in patients with the metabolic syndrome, Int. Emerg. Med. 7 (2012) 219-227. https://doi.org/10.1007/s11739-011-0591-x.

[66]

C. Nagata, K. Wada, M. Yamakawa, et al., Intake of starch and sugars and total and cause-specific mortality in a Japanese community: the Takayama Study, Br. J. Nutr. 122 (2019) 820-828. https://doi.org/10.1017/s0007114519001661.

[67]

M. Yamakawa, K. Wada, S. Koda, et al., High intake of free sugars, fructose, and sucrose is associated with weight gain in Japanese men, J. Nutr. 150 (2020) 322-330. https://doi.org/10.1093/jn/nxz227.

[68]

F.J. Warren, B. Zhang, G. Waltzer, et al., The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems, Carbohydr. Polym. 117 (2015) 192-200. https://doi.org/10.1016/j.carbpol.2014.09.043.

[69]

J. Nadia, J. Bronlund, R.P. Singh, et al., Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: in vivo and in vitro considerations, Compr. Rev. Food Sci. F. 20 (2021) 2660-2698. https://doi.org/10.1111/1541-4337.12749.

[70]

I.S. Surono, J. Verhoeven, K. Venema, Low glycemic load after digestion of native starch from the indigenous tuber Belitung Taro (Xanthosoma sagittifolium) in a dynamic in vitro model of the upper GI tract (TIM-1), Food Nutr. Res. 64 (2020) 4623. https://doi.org/10.29219/fnr.v64.4623.

[71]

M. Yaman, H.S. Sargın, F. MızrakÖ, Free sugar content, in vitro starch digestibility and predicted glycemic index of ready-to-eat breakfast cereals commonly consumed in Turkey: an evaluation of nutritional quality, Int. J. Biol. Macromol. 135 (2019) 1082-1087. https://doi.org/10.1016/j.ijbiomac.2019.06.037.

[72]

X. Xiao, X. Zhang, J. Bai, et al., Bisphenol S increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans, Food Chem. 339 (2021) 127813. https://doi.org/10.1016/j.foodchem.2020.127813.

[73]

S. Softic, M.K. Gupta, G.X. Wang, et al., Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling, J. Clin. Investig. 128 (2018) 1199. https://doi.org/10.1172/jci99009.

[74]

H.Y. Yang, M. Liu, Y. Sheng, et al., All-trans retinoic acid impairs glucosestimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway, Acta Pharmacol. Sin. 43 (2021) 1441-1452. https://doi.org/10.1038/s41401-021-00740-2.

[75]

J. Hao, L. Zhu, S. Zhao, et al., PTEN ameliorates high glucose-induced lipid deposits through regulating SREBP-1/FASN/ACC pathway in renal proximal tubular cells, Exp. Cell Res. 317 (2011) 1629-1639. https://doi.org/10.1016/j.yexcr.2011.02.003.

[76]

A.G. Linden, S. Li, H.Y. Choi, et al., Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice, J. Lipid Res. 59 (2018) 475-487. https://doi.org/10.1194/jlr.M081836.

[77]

K. Iizuka, K. Takao, D. Yabe, ChREBP-mediated regulation of lipid metabolism: involvement of the gut microbiota, liver, and adipose tissue, Front. Endocrinol. 11 (2020) 587189. https://doi.org/10.3389/fendo.2020.587189.

[78]

F. Rajas, R. Dentin, A.C. Miliano, et al., The absence of hepatic glucose-6 phosphatase/ChREBP couple is incompatible with survival in mice, Mol. Metab. 43 (2021) 101108. https://doi.org/10.1016/j.molmet.2020.101108.

[79]

Y.M. Wang, H.X. Liu, N.Y. Fang, High glucose concentration impairs 5-PAHSA activity by inhibiting AMP-activated protein kinase activation and promoting nuclear factor-kappa-B-mediated inflammation, Front. Pharmacol. 9 (2018) 1491. https://doi.org/10.3389/fphar.2018.01491.

[80]

H. Hosseini, M. Teimouri, M. Shabani, et al., Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway, Int. J. Biochem. Cell Biol. 119 (2020) 105667. https://doi.org/10.1016/j.biocel.2019.105667.

[81]

C.Q. Lai, L.D. Parnell, C.E. Smith, et al., Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A, Am. J. Clin. Nutr. 112 (2020) 1200-1211. https://doi.org/10.1093/ajcn/nqaa233.

[82]

L. Mirarchi, S. Amodeo, R. Citarrella, et al., SGLT2 inhibitors as the most promising influencers on the outcome of non-alcoholic fatty liver disease, Int. J. Mol. Sci. 23 (2022). https://doi.org/10.3390/ijms23073668.

[83]

C. Orhan, M. Tuzcu, P.B. Deeh, et al., Organic chromium form alleviates the detrimental effects of heat stress on nutrient digestibility and nutrient transporters in laying hens, Biol. Trace Elem. Res. 189 (2019) 529-537. https://doi.org/10.1007/s12011-018-1485-9.

[84]

S.G. Resines, P.J. Quinn, R.J. Naftalin, et al., Multiple interactions of glucose with the extra-membranous loops of GLUT1 aid transport, J. Chem. Inf. Model. 61 (2021) 3559-3570. https://doi.org/10.1021/acs.jcim.1c00310.

Food Science and Human Wellness
Pages 1081-1101
Cite this article:
Gao Y, Hua R, Peng K, et al. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. Food Science and Human Wellness, 2023, 12(4): 1081-1101. https://doi.org/10.1016/j.fshw.2022.10.026

706

Views

65

Downloads

12

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 23 March 2022
Revised: 25 April 2022
Accepted: 23 May 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return