AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phenolic compounds from Chaenomeles speciosa alleviate inflammation in lipopolysaccharide-treated RAW264.7 macrophages via the NF-κB and MAPK pathways

Fuxia Hua,1Chao Liub,1Fengqin WangaChangxin ZhouaMaotong ZhuaDongxiao Sun-Waterhousec( )Zhaosheng Wanga( )
Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Jinan 250100, China
School of Chemical Sciences, The University of Auckland, Private Bag 92019, New Zealand

1 The authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Chaenomeles speciosa (Sweet) Nakai cultivated widely in temperate regions possesses anti-inflammatory properties, however, the underlying molecular mechanisms remain not fully understood. In this study, a purified phenolic extract of C. speciosa rich in chlorogenic acid, procyanidin B1 and catechin (determined by HPLC-Q-TOF-MS/MS) exhibited dose-dependent anti-inflammatory effects on lipopolysaccharide (LPS)-treated RAW264.7 macrophages. The extract at 30 μg/mL was most potent and enabled most cells in normal morphology under LPS stimulation without causing cytotoxicity. The extract suppressed the levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), and the mRNA and protein expressions of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The mechanisms underlying such anti-inflammatory actions included the regulation of phosphorylation of related proteins to monitor the expressions of inflammatory mediators and genes in the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, the phenolic extract from C. speciosa is a desirable anti-inflammatory agent for inflammatory conditions to meet the rising demand for natural and cost-effective therapeutics.

References

[1]

R. Chovatiya, R. Medzhitov, Stress, inflammation, and defense of homeostasis, Mol. Cell 54 (2014) 281-288. https://doi.org/10.1016/j.molcel.2014.03.030.

[2]

P.C. Calder, N. Ahluwalia, R. Albers, et al., A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies, Br. J. Nutr. 109 (2013) S1-S34. https://doi.org/10.1017/S0007114513000081.

[3]

C. Ricordi, M. Garcia-Contreras, S. Farnetti, Diet and inflammation: possible effects on immunity, chronic diseases, and life span, J. Am. Coll. Nutr. 34 (2015) 10-13. https://doi.org/10.1080/07315724.2015.1080101.

[4]

M.J. Hossen, J.Y. Chou, S.M. Li, et al., An ethanol extract of the rhizome of Atractylodes chinensis exerts antigastritis activities and inhibits Akt/NF-κB signaling, J. Ethnopharmacol. 228 (2019) 18-25. https://doi.org/10.1016/j.jep.2018.09.015.

[5]

E. Kim, Y. Yi, S. Son, et al., BIOGF1K, a compound K-rich fraction of ginseng, plays an antiinflflammatory role by targeting an activator protein-1 signaling pathway in RAW264.7 macrophage-like cells, Ginseng Res. 42 (2018) 233-237. https://doi.org/10.1016/j.jgr.2018.02.001.

[6]

Z. Zhong, A. Umemura, E. Sanchez-Lopez, et al., Nf-κB restricts inflammasome activation via elimination of damaged mitochondria, Cell 164 (2016) 896-910. https://doi.org/10.1016/j.cell.2015.12.057.

[7]

Z.A. Ratan, D. Jeong, N.Y. Sung, et al., Lomix, a mixture of flaxseed linusorbs, exerts anti-inflammatory effects through Src and Syk in the NF-κB pathway, Biomolecules 10 (2020) 843-859. https://doi.org/10.3390/biom10060859.

[8]

R.K. Sang, K.I. Park, H.S. Park, et al., Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, Food Chem. 129 (2011) 1721-1728. https://doi.org/10.1016/j.foodchem.2011.06.039.

[9]

M. Wang, H. Zhong, X. Zhang, et al., EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-90398-x.

[10]

M. Mittal, M.R. Siddiqui, K. Tran, et al., Reactive oxygen species in inflammation and tissue injury, Antioxid. Redox. Signal. 20 (2014) 1126-1167. https://doi.org/10.1089/ars.2012.5149.

[11]

C.C. Wang, Inflammatory response of macrophages in infection, Hepastob. Pancreat. Dis. Int. 13 (2014) 138-152. https://doi.org/10.1016/S1499-3872(14)60024-2.

[12]

R. Aruna, A. Geetha, P. Suguna, Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis, Mol. Cell. Biochem. 396 (2014) 269-280. https://doi.org/10.1007/s11010-014-2162-8.

[13]

B.J. Newsome, M.C. Petriello, S.G. Han, et al., Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes, J. Nutr. Biochem. 25 (2014) 126-135. https://doi.org/10.1016/j.jnutbio.2013.10.003.

[14]

M. Tordera, M.L. Ferrandiz, M.J. Alcaraz, Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils, Z. Naturforsch, C. J. Biosci. 49 (1994) 235-240. https://doi.org/10.1515/znc-1994-3-412.

[15]

V. Sosa, T. Moliné, R. Somoza, et al., Oxidative stress and cancer: an overview, Ageing Res. Rev. 12 (2013) 376-390. https://doi.org/10.1016/j.arr.2012.10.004.

[16]

S.Y. Zhang, L.Y. Han, H. Zhang, et al., Chaenomeles speciosa: a review of chemistry and pharmacology, Biomed. Rep. 2 (2014) 12-18. https://doi.org/10.3892/br.2013.193.

[17]

M.J. Hossen, K.S. Baek, E. Kim, et al., In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB, J. Ethnopharmacol. 159 (2015) 9-16. https://doi.org/10.1016/j.jep.2014.10.064.

[18]

H.C. Chen, L.S. Ding, S.L. Peng, et al., Study on the chemical constituents in Chaenomeles speciosa, Chin. Tradit. Herb. Drugs 36 (2005) 30-33. https://doi.org/10.7501/j.issn.0253-2670.2005.1.017.

[19]

J. Miao, C. Zhao, X. Li, et al., Chemical composition and bioactivities of two common chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis, J. Food Sci. 81 (2016) H2049-H2058. https://doi.org/10.1111/1750-3841.13377.

[20]

Y.L. Song, Z.B. Feng, Y.X. Cheng, et al., Chemical components of Chaenomeles speciosa (Sweet) Nakai, Acta Botanica BorealiOccidentalia Sinica 27 (2007) 831-833. https://doi.org/10.3321/j.issn:1000-4025.2007.04.030.

[21]

K. Yin, H.Y. Gao, X.N. Li, et al., Chemical constituents of Chaenomeles speciosa (Sweet. ) Nakai, Journal of Shenyang Pharmaceutical University 23 (2006) 760-763. https://doi.org/10.3969/j.issn.1006-2858.2006.12.005.

[22]

R. Zhang, S. Li, Z. Zhu, et al., Recent advances in valorization of Chaenomeles fruit: a review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities, Trends Food Sci. Technol. 91 (2019) 467-482. https://doi.org/0.1016/j.tifs.2019.07.012.

[23]

L.Y. Foo, R. Newman, G. Waghorn, et al., Proanthocyanidins from Lotus corniculatus, Phytochemistry 41 (1996) 617-624. https://doi.org/10.1016/0031-9422(95)00602-8.

[24]

N. Ji, L. Zhang, L. Xiong, et al., Preliminary identification of peanut seed coat proanthocyanidin structure, J. Chinese Cereals Oils Assoc. 30 (2015) 119-124.

[25]

G.Q. Liu, J. Dong, H. Wang, et al., Study on the cleavage law of four catechins by electrospray mass spectrometry, Chem. J. Chinese U. 30 (2009) 1566-1570. https://doi.org/10.3321/j.issn:0251-0790.2009.08.017.

[26]

C.X. Tian, X.P. Xu, L.Y. Liao, et al., Separation and identification of chlorogenic acid and its related impurities by high performance liquid chromatography-tandem mass spectrometry, Chromatography 25 (2007) 496-500.

[27]

D. Lissner, M. Schumann, A. Batra, et al., Monocyte and M1 macrophageinduced barrier defect contributes to chronic intestinal inflammation in IBD, Inflamm. Bowel Dis. 21 (2015) 1297-1305. https://doi.org/10.1097/MIB.0000000000000384.

[28]

L. Elbling, R.M. Weiss, O. Teufelhofer, et al., Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities, FASEB J. 9 (2005) 807-809. https://doi.org/10.1096/fj.04-2915fje.

[29]

Q. Xue, Y. Yan, R. Zhang, et al., Regulation of iNOS on immune cells and its role in diseases, Int. J. Mol. Sci. 19 (2018) 3805. https://doi.org/10.3390/ijms19123805.

[30]

C. Nathan, Q.W. Xie, Regulation of biosynthesis of nitric oxide, J. Biol. Chem. 269 (1994) 13725-13728. https://doi.org/10.1016/0891-5849(88)90111-6.

[31]

L. Chen, H. Deng, H. Cui, et al., Inflammatory responses and inflammationassociated diseases in organs, Oncotarget 9 (2018) 7204-7218. https://doi.org/10.18632/oncotarget.23208.

[32]

T.K. Lee, T.A. Trinh, S.R. Lee, et al., Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells, Bioorg. Chem. 82 (2018) 26-32. https://doi.org/10.1016/j.bioorg.2018.09.027.

[33]

M. Pudla, R. Srisatjaluk, P. Utaisincharoen, Induction of inducible nitric oxide synthase (iNOS) in Porphyromonas gingivalis LPS-treated mouse macrophage cell line (RAW264.7) requires Toll-like receptor 9, Inflamm. Res. 67 (2018) 1-13. https://doi.org/10.1007/s00011-018-1168-1.

[34]

F.M.A. Hossain, J.Y. Choi, E. Uyangaa, et al., The interplay between host immunity and respiratory viral infection in asthma exacerbation, Immune Netw. 19 (2019) 31-33. https://doi.org/10.4110/in.2019.19.e31.

[35]

L. Zhang, Y.X. Cheng, A.L. Liu, et al., Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa, Molecules 15 (2010) 8507-8517. https://doi.org/10.3390/molecules15118507.

[36]

S.C. Gupta, C. Sundaram, S. Reuter, et al., Inhibiting NF-κB activation by small molecules as a therapeutic strategy, BBA-Gene Regul. Mech. 1799 (2010) 775-787. https://doi.org/10.1016/j.bbagrm.2010.05.004.

[37]

H.Y. Jeong, Y.S. Choi, J.K. Lee, et al., Anti-inflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages, Nutrients 9 (2017) 730-746. https://doi.org/10.3390/nu9070730.

[38]

S.G. Pereira, F. Oakley, Nuclear factor-kappa B1: regulation and function, Int. J. Biochem. Cell Biol. 40 (2008) 1425-1430. https://doi.org/10.1016/j.biocel.2007.05.004.

[39]

U. Moens, S. Kostenko, B. Sveinbjørnsson, The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation, Genes 4 (2013) 101-133. https://doi.org/10.3390/genes4020101.

[40]

M.J. Hossen, W.S. Yang, D. Kim, et al., Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities, Sci. Rep. 7 (2017) 429-455. https://doi.org/10.1038/srep42995.

[41]

M.J. Hossen, Y.D. Hong, K.S. Baek, et al., In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng, J. Ginseng Res. 41 (2017) 1-11. https://doi.org/10.1016/j.jgr.2015.12.009.

[42]

J.H. Muh, A. Aftab, X.Q. Fu, The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition, J. Ethnopharmacol. 228 (2018) 18-29. https://doi.org/10.1016/j.jep.2021.114183.

[43]

S.D. Haij, A.C. Bakker, R.N.V.D. Geest, et al., NF-κB mediated IL-6 production by renal epithelial cells is regulated by c-Jun NH2-terminal kinase, J. Am. Soc. Nephrol. 16 (2005) 1603-1611. https://doi.org/10.1681/ASN.2004090781.

[44]

Z. Manzoor, Y.S. Koh, Mitogen-activated protein kinases in inflammation, J. Bacteriol. Virol. 42 (2012) 189-195. https://doi.org/10.4167/jbv.2012.42.3.189.

[45]

C. Ling, H.X. Miao, Y. Tao, et al., The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-κB and MAPK activation, Food Chem. 290 (2019) 239-245. https://doi.org/10.1016/j.foodchem.2019.04.005.

[46]

P. Du, J. Song, H.R. Qiu, et al., Polyphenols extracted from Shanxiaged vinegar inhibit inflammation in LPS-induced RAW264.7 macrophages and ICR mice via the suppression of MAPK/NF-кB pathway activation, Molecules 26 (2016) 2745-2764. https://doi.org/10.3390/molecules26092745.

[47]

X. Li, Y.B. Yang, Q. Yang, et al., Anti-inflammatory and analgesic activities of Chaenomeles speciosa fractions in laboratory animals, J. Med. Food 12 (2009) 1016-1022. https://doi.org/10.1089/jmf.2008.1217.

[48]

L. Yao, S. Zhu, Z. Hu, et al., Anti-inflammatory constituents from Chaenomeles speciosa, Nat. Prod. Commun. 15 (2020) 1-5. https://doi.org/10.1177/1934578X20913691.

[49]

J. Xing, R. Li, N. Li, et al., Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4-MD-2 heterodimer and p38 MAPK and NF-κB signaling, Mol. Cell. Biochem. 407 (2015) 89-95. https://doi.org/10.1007/s11010-015-2457-4.

[50]

F.Y. Fan, L.X. Sang, M. Jiang, Catechins and their therapeutic benefits to inflammatory bowel disease, Molecules 22 (2017) 484. https://doi.org/10.3390/molecules22030484.

Food Science and Human Wellness
Pages 1071-1080
Cite this article:
Hu F, Liu C, Wang F, et al. Phenolic compounds from Chaenomeles speciosa alleviate inflammation in lipopolysaccharide-treated RAW264.7 macrophages via the NF-κB and MAPK pathways. Food Science and Human Wellness, 2023, 12(4): 1071-1080. https://doi.org/10.1016/j.fshw.2022.10.025

809

Views

87

Downloads

16

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 23 December 2021
Revised: 19 January 2022
Accepted: 25 January 2022
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return