AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly(L-malic acid) biosynthesis pathway under the CaCO3 addition

Genan Wanga,bHaisong Yina,b,cTingbin ZhaodDonglin Yanga,bShiru Jiaa,b( )Changsheng Qiaoa,b,d( )
Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457,China
Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin 300350, China
Tianjin Huizhi Biotrans Bioengineering Co., Ltd., Tianjin 300457, China
Show Author Information

Abstract

β-Poly(L-malic acid) (PMLA) is a water-soluble biopolymer used in food, medicine and other industries. To date, the biosynthesis pathway of PMLA has not been fully elucidated. In this study, we sequenced the transcriptome of strain Aureobasidium melanogenum under 20 g/L CaCO3 addition. The resulting sequencing reads were assembled and annotated for the differentially expressed genes (DEGs) analysis and novel transcripts identification. The result indicated that with the CaCO3 addition, the tricarboxylic cycle (TCA) cycle and glyoxylate pathway were up-regulated, and it also found that a non-ribosomal peptide synthetase (NRPS) like protein was highly expressed. The DEGs analysis showed a high expression level of malate dehydrogenase (MDHC) and phosphoenolpyruvate carboxykinase (PCKA) in the CaCO3 group, which indicated a cytosolic malate activity. We speculated that the malate should be transported to or synthesized in the cytoplasm, which was then polymerized to PMLA by the NRPS-like protein, accompanied by the up-regulated TCA cycle providing ATP for the polymerization. Depending on the analysis, we assumed that an NRPS-like protein, the TCA cycle, and the cytosolic malate together are contributing to the PMLA biosynthesis.

References

[1]

E. Holler, B. Angerer, G. Achhammer, et al., Biological and biosynthetic properties of poly-L-malate, FEMS Microbiol. Lett. 103 (1992) 109-118.https://doi.org/10.1016/0378-1097(92)90300-D.

[2]

H. Ding, J. Portilla-arias, R. Patil, et al., The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery, Biomaterials 32 (2011) 5269-5278. https://doi.org/10.1016/j.biomaterials.2011.03.073.

[3]

Y. Li, Z. Chi, G.Y. Wang, et al., Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers, Crit. Rev. Microbiol. 41 (2015) 228-237. https://doi.org/10.3109/1040841x.2013.826176.

[4]

W.F. Cao, J.Q. Luo, B.K. Qi, et al., β-Poly(L-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars, Eng. Life Sci. 14 (2014) 180-189. https://doi.org/10.1002/elsc.201200189.

[5]

B.S. Lee, E. Holler, β-Poly(L-malate) production by non-growing microplasmodia of Physarum polycephalum-effects of metabolic intermediates and inhibitors, FEMS Microbiol. Lett. 193 (2000) 69-74.https://doi.org/10.1111/j.1574-6968.2000.tb09404.x.

[6]

W. Zeng, B. Zhang, Q. Liu, et al., Analysis of the L-malate biosynthesis pathway involved in poly(-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors, J. Microbiol 57 (2019) 281-287. https://doi.org/10.1007/s12275-019-8424-0.

[7]

W.F. Cao, W.L. Cao, F. Shen, et al., Membrane-assisted β-poly(L-malic acid) production from bagasse hydrolysates by Aureobasidium pullulans ipe-1, Bioresour. Technol. 295 (2020) 122260. https://doi.org/10.1016/j.biortech.2019.122260.

[8]

H.S. Yin, C. Gao, K. Ye, et al., Evaluation of surfactant effect on β-poly(L-malic acid) production by Aureobasidium pullulans, Biotechnol. Biotec. Eq. 33 (2019) 954-966. https://doi.org/10.1080/13102818.2019.1631718.

[9]

G.N. Wang, B.Y. Shi, P. Zhang, et al., Effects of corn steep liquor on β-poly(L-malic acid) production in Aureobasidium melanogenum, AMB Express 10 (2020) 211. https://doi.org/10.1186/s13568-020-01147-8.

[10]

B. Willibald, W.G. Bildl, B.S. Lee, et al., Is β-poly(L-malate) synthesis catalysed by a combination of β-L-malyl-AMP-ligase and β-poly(L-malate) polymerase?, Eur. J. Biochem. 265 (1999) 1085-1090.https://doi.org/10.1046/j.1432-1327.1999.00834.x.

[11]

K. Wang, Z. Chi, G.L. Liu, et al., A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921, Int. J. Biol. Macromol. 156 (2020) 1053-1063. https://doi.org/10.1016/j.ijbiomac.2019.11.188.

[12]

R. Hrdlickova, M. Toloue, B. Tian, RNA-Seq methods for transcriptome analysis, WIREs RNA 8 (2017) e1364. https://doi.org/10.1002/wrna.1364.

[13]
S. Andrews, FastQC A Quality Control tool for High Throughput Sequence Data, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2014.
[14]

P. Ewels, M. Magnusson, S. Lundin, et al., MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics 32 (2016) 3047-3048. https://doi.org/10.1093/bioinformatics/btw354.

[15]

S.F. Chen, Y.Q. Zhou, Y.R. Chen, et al., fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics 34 (2018) i884-i890.https://doi.org/10.1093/bioinformatics/bty560.

[16]

M.G. Grabherr, B.J. Haas, M. Yassour, et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol. 29 (2011) 644-652. https://doi.org/10.1038/nbt.1883.

[17]

B.J. Haas, A. Papanicolaou, M. Yassour, et al., De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc. 8 (2013) 1494-1512.https://doi.org/10.1038/nprot.2013.084.

[18]

F.A. Simão, R.M. Waterhouse, P. Ioannidis, et al., BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics 31 (2015) 3210-3212. https://doi.org/10.1093/bioinformatics/btv351.

[19]

D. Bryant, K. Johnson, T. Ditommaso, et al., A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors, Cell Rep 18 (2017) 762-776. https://doi.org/10.1016/j.celrep.2016.12.063.

[20]

S. El-gebali, J. Mistry, A. Bateman, et al., The Pfam protein families database in 2019, Nucleic. Acids. Res. 47 (2018) D427-D432https://doi.org/10.1093/nar/gky995.

[21]

A.P. Pandurangan, J. Stahlhacke, M.E. Oates, et al., The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver, Nucleic. Acids Res. 47 (2018) D490-D494. https://doi.org/10.1093/nar/gky1130.

[22]

S. Möller, M.D. Croning, R. Apweiler, Evaluation of methods for the prediction of membrane spanning regions, Bioinformatics 17 (2001) 646-653. https://doi.org/10.1093/bioinformatics/17.7.646.

[23]

B.S. Lee, T. Maurer, H.R. Kalbitzer, et al., β-Poly(L-malate) production by Physarum polycephalum, Appl. Microbiol. Biotechnol. 52 (1999) 415-420.https://doi.org/10.1007/s002530051540.

[24]

X. Zou, C. Cheng, J. Feng, et al., Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application, Crit. Rev. Biotechnol. 39 (2019) 408-421. https://doi.org/10.1080/07388551.2019.1571008.

[25]

J. Satrústegui, B. Pardo, A.D. Arco, Mitochondrial transporters as novel targets for intracellular calcium signaling, Physiol. Rev. 87 (2007) 29-67.https://doi.org/10.1152/physrev.00005.2006.

[26]

S. Cavero, V. Angelo, A.D. Arco, et al., Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae, Mol. Microbiol. 50 (2003) 1257-1269. https://doi.org/10.1046/j.1365-2958.2003.03742.x.

[27]

V. Medina, R. Pontarollo, D. Glaeske, et al., Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae, J. Bacteriol, (1990) 7151-7156. https://doi.org/10.1128/jb.172.12.7151-7156.1990.

[28]

N. Zamboni, H. Maaheimo, T. Szyperski, et al., The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis, Metab. Eng. 6 (2004) 277-284.https://doi.org/10.1016/j.ymben.2004.03.001.

[29]

I.J.V.D. Klei, M. Veenhuis, Yeast and filamentous fungi as model organisms in microbody research, Biochim. Biophys. Acta 2006 (1763) 1364-1373.https://doi.org/10.1016/j.bbamcr.2006.09.014.

[30]

D. Managadze, C. Würtz, S. Wiese, et al., A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa, Proteomics 10 (2010) 3222-3234.https://doi.org/10.1002/pmic.201000095.

[31]

L.C. Du, L.L. Lou, PKS and NRPS release mechanisms, Nat. Prod. Rep. 27 (2010) 255-278. https://doi.org/10.1039/b912037h.

[32]

C. Gostinčar, R.A. Ohm, T. Kogej, et al., Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species, BMC Genomics 15 (2014) 549.https://doi.org/10.1186/1471-2164-15-549.

[33]

Z. Chi, G.L. Liu, C.G. Liu, et al., Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings, Appl. Microbiol. Biotechnol. 100 (2016) 3841-3851. https://doi.org/10.1007/s00253-016-7404-0.

Food Science and Human Wellness
Pages 1248-1256
Cite this article:
Wang G, Yin H, Zhao T, et al. De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly(L-malic acid) biosynthesis pathway under the CaCO3 addition. Food Science and Human Wellness, 2023, 12(4): 1248-1256. https://doi.org/10.1016/j.fshw.2022.10.007

808

Views

46

Downloads

3

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 01 February 2021
Revised: 16 March 2021
Accepted: 28 April 2021
Published: 18 November 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return