AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Olive oil ameliorates allergic response in murine ovalbumin-induced food allergy by promoting intestinal mucosal immunity

Yu MaaMing LiubDonghui LiaJie LiaZixin GuoaYunjun LiuaShengnan WanaYixiang Liua,c( )
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
National Food and Strategic Reserves Administration, Beijing 100083, China
Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The numerous health benefits of olive oil are widely known, however, it also provides anti-allergic properties that have not yet been fully defined. In this study, the anti-allergic activity of olive oil was evaluated by analyzing the clinical symptoms and immune-related factors in BALB/c mice that had ingested 600 mg/(kg∙day) olive oil for two weeks prior to the evaluation. An allergy model was subsequently constructed for analysis, the results of which showed that the olive oil reduced the scores of allergic symptoms in the mice, and up-regulated the hypothermia and the decline in the immune organ index. Moreover, fewer allergy-related cytokines and reduced intestinal inflammation was discovered in the olive oil-treated group. In addition, analysis of intestinal mucosal immune-related factors revealed that the olive oil promoted the expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1) and IL-22, and helped maintain the integrity of the intestinal epithelial physical barrier. Increased levels of mucin 2 and β-defensin were also found in the intestinal mucus of the olive oil-treated mice. These findings suggest that the oral administration of olive oil effectively attenuated the ovalbumin-induced allergic immune response in the mice, and had a positive effect on intestinal epithelial mucosal immunity.

References

[1]

S. Prescott, K.J. Allen, Food allergy: riding the second wave of the allergy epidemic, Pediatr. Allergy Immunol. 22 (2011) 155-160. http://dx.doi.org/10.1111/j.1399-3038.2011.01145.x.

[2]

H.A. Sampson, Food allergy: past, present and future, Allergol. Int. 65(4) (2016) 363-369. http://dx.doi.org/10.1016/j.alit.2016.08.006.

[3]

J.D. Colgan, I.L. Hankel, Signaling pathways critical for allergic airway inflammation, Curr. Opin. Allergy Clin. Immunol. 10 (2010) 42-47. http://dx.doi.org/10.1097/ACI.0b013e328334f642.

[4]

S.K. Sathe, C. Liu, V.D. Zaffran, Food allergy, Annu. Rev. Food Sci. Technol. 7 (2016) 191-220. http://dx.doi.org/10.1146/annurev-food-041715-033308.

[5]

J.W.L. Tan, C. Valerio, E.H. Barnes, et al., A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy, J. Allergy Clin. Immunol. 139 (2017) 1621-1628. http://dx.doi.org/10.1016/j.jaci.2016.08.035.

[6]

L.M. Bartnikas, W.J. Sheehan, K.S. Larabee, et al., Ovomucoid is not superior to egg white testing in predicting tolerance to baked egg, J. Allergy Clin. Immunol. Pract. 1 (2013) 354-360. http://dx.doi.org/10.1016/j.jaip.2013.04.002.

[7]

P. Dhanapala, C. De Silva, T. Doran, et al., Cracking the egg: an insight into egg hypersensitivity, Mol. Immunol. 66 (2015) 375-383. http://dx.doi.org/10.1016/j.molimm.2015.04.016.

[8]

C.E. West, M. Dzidic, S.L. Prescott, et al., Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention, Allergol. Int. 66 (2017) 529-538. http://dx.doi.org/10.1016/j.alit.2017.08.001.

[9]

L. Steele, L. Mayer, M.C. Berin, Mucosal immunology of tolerance and allergy in the gastrointestinal tract, Immunol. Res. 54 (2012) 75-82. http://dx.doi.org/10.1007/s12026-012-8308-4.

[10]

K. Dokladny, M.N. Zuhl, P.L. Moseley, Intestinal epithelial barrier function and tight junction proteins with heat and exercise, J. Appl. Physiol. 120 (2016) 692-701. http://dx.doi.org/10.1152/japplphysiol.00536.2015.

[11]

M.C. Berin, H.A. Sampson, Mucosal immunology of food allergy, Curr. Biol. 23 (2013) 389-400. http://dx.doi.org/10.1016/j.cub.2013.02.043.

[12]

M.E. Johansson, D. Ambort, T. Pelaseyed, et al., Composition and functional role of the mucus layers in the intestine, Cell. Mol. Life Sci. 68 (2011) 3635-3641. http://dx.doi.org/10.1007/s00018-011-0822-3.

[13]

N. Samadi, M. Klems, E. Untersmayr, The role of gastrointestinal permeability in food allergy, Ann. Allergy Asthma. Immunol. 121 (2018) 168-173. http://dx.doi.org/10.1016/j.anai.2018.05.010.

[14]

M.J. Barratt, C. Lebrilla, H.Y. Shapiro, et al., The gut microbiota, food science, and human nutrition: a timely marriage, Cell Host. Microbe. 22 (2017) 134-141. http://dx.doi.org/10.1016/j.chom.2017.07.006.

[15]

M. Hussain, G. Bonilla-Rosso, C.K.C.K. Chung, et al., High dietary fat intake induces a microbiota signature that promotes food allergy, J. Allergy Clin. Immunol. 144 (2019) 157-170. http://dx.doi.org/10.1016/j.jaci.2019.01.043.

[16]

Y.H. Yang, R. Istomine, F. Alvarez, et al., Salt sensing by serum/glucocorticoid-regulated kinase 1 promotes Th17-like inflammatory adaptation of Foxp3+ regulatory T cells, Cell Rep. 30 (2020) 1515-1529. http://dx.doi.org/10.1016/j.celrep.2020.01.002.

[17]

S.L.F. Aguiar, M.C.G. Miranda, M.A.F. Guimaraes, et al., High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice, Front. Immunol. 8 (2017) 1969. http://dx.doi.org/10.3389/fimmu.2017.01969.

[18]

S. Khan, S. Waliullah, V. Godfrey, et al., Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice, Sci. Transl. Med. 12 (2020) eaay6218. http://dx.doi.org/10.1126/scitranslmed.aay6218.

[19]

J. Tan, C. McKenzie, P.J. Vuillermin, et al., Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways, Cell Rep. 15 (2016) 2809-2824. http://dx.doi.org/10.1016/j.celrep.2016.05.047.

[20]

D. Martini, Health benefits of mediterranean diet, Nutrients 11 (2019) 1802. http://dx.doi.org/10.3390/nu11081802.

[21]

A. Mazzocchi, L. Leone, C. Agostoni, et al., The secrets of the Mediterranean diet. does [only] olive oil matter?, Nutrients 11 (2019) 2941. http://dx.doi.org/10.3390/nu11122941.

[22]

Y. Liu, Y. Ma, Z. Chen, et al., Depolymerized sulfated galactans from Eucheuma serra ameliorate allergic response and intestinal flora in food allergic mouse model, Int. J. Biol. Macromol. 166 (2021) 977-985. http://dx.doi.org/10.1016/j.ijbiomac.2020.10.254.

[23]

B.C. van Esch, S. Abbring, M.A. Diks, et al., Post-sensitization administration of non-digestible oligosaccharides and Bifidobacterium breve M-16V reduces allergic symptoms in mice, Immun. Inflamm. Dis. 4 (2016) 155-165. http://dx.doi.org/10.1002/iid3.101.

[24]

M. Wang, X.Y. Meng, R.L. Yang, et al., Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice, Carbohydr. Polym. 89 (2012) 461-466. http://dx.doi.org/10.1016/j.carbpol.2012.03.029.

[25]

R. Azumi, K. Morita, Y. Mizutani, et al., Dynamics of basal lamina fenestrations in the rat intestinal villous epithelium in response to dietary conditions, Biomed. Res. 39 (2018) 65-74. http://dx.doi.org/10.2220/biomedres.39.65.

[26]

R.C. Chen, L.M. Xu, S.J. Du, et al., Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and Th17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding, Toxicol. Lett. 241 (2016) 103-110. http://dx.doi.org/10.1016/j.toxlet.2015.11.019.

[27]

Y. Xie, L. Wang, H. Sun, et al., Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice, Int. J. Biol. Macromol. 133 (2019) 1107-1114. http://dx.doi.org/10.1016/j.ijbiomac.2019.04.144.

[28]

W. Wang, J.B. Lu, C. Wang, et al., Effects of Sargassum fusiforme polysaccharides on antioxidant activities and intestinal functions in mice, Int. J. Biol. Macromol. 58 (2013) 127-132. http://dx.doi.org/10.1016/j.ijbiomac.2013.03.062.

[29]

X. Xiong, H.S. Yang, X.C. Wang, et al., Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets, J. Anim. Sci. 93 (2015) 1089-1097. http://dx.doi.org/10.2527/jas.2014-7851.

[30]

B. Lee, K.M. Moon, C.Y. Kim, Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals, J. Immunol. Res. 2018 (2018) 2645465. http://dx.doi.org/10.1155/2018/2645465.

[31]

L. Patnaude, M. Mayo, R. Mario, et al., Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair, Life Sci. 271 (2021) 119195. http://dx.doi.org/10.1016/j.lfs.2021.119195.

[32]

L. Etienne-Mesmin, B. Chassaing, M. Desvaux, et al., Experimental models to study intestinal microbes-mucus interactions in health and disease, FEMS Microbiol. Rev. 43 (2019) 457-489. http://dx.doi.org/10.1093/femsre/fuz013.

[33]

A. Fusco, V. Savio, M. Cammarota, et al., Beta-defensin-2 and beta-defensin-3 reduce intestinal damage caused by Salmonella typhimurium modulating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium, J. Immunol. Res. 2017 (2017) 6976935. http://dx.doi.org/10.1155/2017/6976935.

[34]

M. de Martinis, M.M. Sirufo, M. Suppa, et al., New perspectives in food allergy, Int. J. Mol. Sci. 21 (2020) 1474. http://dx.doi.org/10.3390/ijms21041474.

[35]

H.A. Sampson, L. O'Mahony, A.W. Burks, et al., Mechanisms of food allergy, J. Allergy Clin. Immunol. 141 (2018) 11-19. http://dx.doi.org/10.1016/j.jaci.2017.11.005.

[36]

A. Reboldi, T.I. Arnon, L.B. Rodda, et al., IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches, Science 352 (2016) aaf4822. http://dx.doi.org/10.1126/science.aaf4822.

[37]

J.J. Worthington, B.I. Czajkowska, A.C. Melton, et al., Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8, Gastroenterology 141 (2011) 1802-1812. http://dx.doi.org/10.1053/j.gastro.2011.06.057.

[38]

J. Bollrath, F.M. Powrie, Controlling the frontier: regulatory T-cells and intestinal homeostasis, Semin. Immunol. 25 (2013) 352-357. http://dx.doi.org/10.1016/j.smim.2013.09.002.

[39]

W. Yu, D.M.H. Freeland, K.C. Nadeau, Food allergy: immune mechanisms, diagnosis and immunotherapy, Nat. Rev. Immunol. 16 (2016) 751-765. http://dx.doi.org/10.1038/nri.2016.111.

[40]

M. Clausen, K. Jonasson, T. Keil, et al., Fish oil in infancy protects against food allergy in Iceland-results from a birth cohort study, Allergy 73 (2018) 1305-1312. http://dx.doi.org/10.1111/all.13385.

[41]

L.W. Van Den Elsen, M. Bol-Schoenmakers, B.C. Van Esch, et al., DHA-rich tuna oil effectively suppresses allergic symptoms in mice allergic to whey or peanut, J. Nutr. 144 (2014) 1970-1976. http://dx.doi.org/10.3945/jn.114.198515.

[42]

L.W. Van Den Elsen, L.A. Meulenbroek, B.C.Van Esch, et al., CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow's milk protein, Allergy 68 (2013) 1562-1570. http://dx.doi.org/10.1111/all.12300.

[43]

L.W. Van Den Elsen, B.C. Van Esch, G.M. Dingjan, et al., Increased intake of vegetable oil rich in n-6 PUFA enhances allergic symptoms and prevents oral tolerance induction in whey-allergic mice, Br. J. Nutr. 114 (2015) 577-585. http://dx.doi.org/10.1017/S0007114515002007.

[44]

O.G. De Matos, S.S. Amaral, P.E.M. Pereira da Silva, et al., Dietary supplementation with omega-3-PUFA-rich fish oil reduces signs of food allergy in ovalbumin-sensitized mice, Clin. Dev. Immunol. 2012 (2012) 236564. http://dx.doi.org/10.1155/2012/236564.

[45]

M. Gorzynik-Debicka, P. Przychodzen, F. Cappello, et al., Potential health benefits of olive oil and plant polyphenols, Int. J. Mol. Sci. 19 (2018) 686. http://dx.doi.org/10.3390/ijms19030686.

[46]

L. Tordesillas, M.C. Berin, H.A. Sampson, Immunology of food allergy, Immunity 47 (2017) 32-50. http://dx.doi.org/10.1016/j.immuni.2017.07.004.

[47]

Q. Liu, Y. Zhang, Z. Shu, et al., Sulfated oligosaccharide of Gracilaria lemaneiformis protect against food allergic response in mice by up-regulating immunosuppression, Carbohydr. Polym. 230 (2020) 115567. http://dx.doi.org/10.1016/j.carbpol.2019.115567.

[48]

D.B. Price, M.L. Ackland, W. Burks, et al., Peanut allergens alter intestinal barrier permeability and tight junction localisation in Caco-2 cell cultures, Cell Physiol. Biochem. 33 (2014) 1758-1777. http://dx.doi.org/10.1159/000362956.

[49]

T. Chen, X. Liu, L. Ma, et al., Food allergens affect the intestinal tight junction permeability in inducing intestinal food allergy in rats, Asian Pac. J. Allergy Immunol. 32 (2014) 345-353. http://dx.doi.org/10.12932/AP0443.32.4.2014.

[50]

Y.S. Kim, S.B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr. Gastroenterol. Rep. 12 (2010) 319-330. http://dx.doi.org/10.1007/s11894-010-0131-2.

[51]

C.L. Bevins, N.H. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis, Nat. Rev. Microbiol. 9 (2011) 356-368. http://dx.doi.org/10.1038/nrmicro2546.

Food Science and Human Wellness
Pages 801-808
Cite this article:
Ma Y, Liu M, Li D, et al. Olive oil ameliorates allergic response in murine ovalbumin-induced food allergy by promoting intestinal mucosal immunity. Food Science and Human Wellness, 2023, 12(3): 801-808. https://doi.org/10.1016/j.fshw.2022.09.015

1028

Views

93

Downloads

14

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 15 March 2021
Revised: 19 April 2021
Accepted: 05 May 2021
Published: 15 October 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return