AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (830.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice

Zhihua Niua,1Meijuan Zoua,1Tingting Beia,1Na Zhanga,bDongyao LiaMiaoshu Wangc,dChen Lia,d( )Hongtao Tiana,d,e( )
College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000, China
New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding 071000, China
Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding 071000, China
National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China

1 Authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Lactobacillus rhamnosus and fructooligosaccharides (FOS) have been widely studied so far. However, the effects of L. rhamnosus on the intestinal microecological environment at the species level and the effect of different proportions of FOS on L. rhamnosus colonization in different parts of mice intestine are still unclear. The study results indicated that the specific bands of enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) in the L. rhamnosus (LR) group significantly increased at 7 days. Although the number of bands was similar to the natural recovery (NR) group, the brightness of few bands significantly enhanced in the later stage of recovery. Besides, Southern-blot maps showed strong signals, indicating that the ERIC-PCR fingerprint could accurately reflect the changes in the mouse gut microbiota diversity. Further, the high-throughput results confirmed that the Lactobacillus and Akkermansia had different changes at different periods, but all of them showed an upward trend, while the Klebsiella were inhibited, thereby maintaining the intestinal microecology balance. Moreover, FOS exerted a positive effect on L. rhamnosus colonization in the gut.

References

[1]

A. Saika, T. Nagatake, J. Kunisawa, Host- and microbe-dependent dietary lipid metabolism in the control of allergy, Front. Nutr. 6 (2019) 36. http://dx.doi.org/10.3389/fnut.2019.00036.

[2]

N. Arslan, Obesity, fatty liver disease and intestinal microbiota, World J. Gastroenterol. 20 (2014) 16452-16463. http://dx.doi.org/10.3748/wjg.v20.i44.16452.

[3]

F.H. Karlsson, F. Fåk, I. Nookaew, et al., Symptomatic atherosclerosis is associated with an altered gut metagenome, Nat. Commun. 3 (2012) 1245. http://dx.doi.org/10.1038/ncomms2266.

[4]

J.J. Qin, Y.R. Li, Z.M. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. http://dx.doi.org/10.1038/nature11450.

[5]

M.U. Sohail, M.Z. Shabbir, J.M. Steiner, et al., Molecular analysis of the gut microbiome of diabetic rats supplemented with prebiotic, probiotic, and synbiotic foods, Int. J. Diabetes Developing Countries, 37 (2016) 419-425. http://dx.doi.org/10.1007/s13410-016-0502-9.

[6]

A. Basturk, İ. Isik, A. Atalay, et al., Investigation of the efficacy of Lactobacillus rhamnosus GG in infants with cow's milk protein allergy: a randomised double-blind placebo-controlled trial, Probiotics and Antimicrobial Proteins 12 (2020) 138-143. http://dx.doi.org/10.1007/s12602-019-9516-1.

[7]

M. Toh, S.Q. Liu, Influence of commercial inactivated yeast derivatives on the survival of probiotic bacterium Lactobacillus rhamnosus HN001 in an acidic environment, AMB Express 7 (2017) 156. http://dx.doi.org/10.1186/s13568-017-0456-4.

[8]

L. Capurso, Thirty years of Lactobacillus rhamnosus GG: a review, J. Clin. Gastroenterol. 53 (2019) S1-S41. http://dx.doi.org/ 10.1097/MCG.0000000000001170.

[9]

Q. Xu, Y.L. Chao, Q.B. Wan, Health benefit application of functional oligosaccharides, Carbohydr. Polym. 77 (2009) 435-441. http://dx.doi.org/10.1016/j.carbpol.2009.03.016.

[10]

V. Pieter, K. Venema, V. Tom, et al., Different human gut models reveal the distinct fermentation patterns of Arabinoxylan versus inulin, J. Agric. Food Chem. 41 (2013) 9819-9827. http://dx.doi.org/ 10.1021/jf4021784.

[11]

F.N. Aberra. Handbook of probiotics and prebiotics, Gastroenterology 138 (2010) 2555-2556. http://dx.doi.org/10.1053/j.gastro.2010.04.035.

[12]

C. Ramirez-Farias, K. Slezak, Z. Fuller, et al., Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, Br. J. Nutr. 101 (2009) 541-550. http://dx.doi.org/10.1017/S0007114508019880.

[13]

M. Joossens, G. Huys, K.V. Steen, et al., High-throughput method for comparative analysis of denaturing gradient gel electrophoresis profiles from human fecal samples reveals significant increases in two Bifidobacterial species after inulin-type prebiotic intake, FEMS Microbiol. Ecol. 75 (2011) 343-349. http://dx.doi.org/10.1111/j.1574-6941.2010.01008.x.

[14]

S. Turek, The use of fractionated deproteinization of the blood serum for the determination of the soluble protein fractions, Clin. Chim. Acta. 13 (1960) 689-694. http://dx.doi.org/ 10.1016/0009-8981(60)90010-3.

[15]

P. Thiennimitr, S. Yasom, W. Tunapong, et al., Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats, Nutrition 54 (2018) 40-47. https://doi.org/10.1016/j.nut.2018.03.005.

[16]

C.C. Zhang, Z.M. Yu, J.X. Zhao, et al., Colonization and probiotic function of Bifidobacterium longum, J. Functional Foods 53 (2019) 157-165. http://dx.doi.org/10.1016/j.jff.2018.12.022.

[17]

C. Li, Z.H. Niu, M.J. Zou, et al., Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms, J. Dairy Sci. 103 (2020) 5816-5829. http://dx.doi.org/10.3168/jds.2019-18003.

[18]

L.F. Chen, H.Y. Li, Y. Chen, et al., Probiotic Lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles, Nutrition 78 (2020) 110863. http://dx.doi.org/10.1016/j.nut.2020.110863.

[19]

J. Versalovic, T. Koeuth, J.R. Lupski, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial enomes, Nucleic Acids. Res. 19 (1991) 6823-6831. http://dx.doi.org/10.1093/nar/19.24.6823.

[20]

J.H. Apajalahti, L.K. Särkilahti, B.R. Mäki, et al., Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens, Appl. Environ. Microbiol. 64 (1998) 4084-4088. http://dx.doi.org/10.1128/AEM.64.10.4084-4088.1998.

[21]

C.Li, T.T. Bei, Z.H. Niu, et al., Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by Dsred2 in mouse gut, Curr, Microbiol. 76 (2019) 896-903. http://dx.doi.org/ 10.1007/s00284-019-01706-8.

[22]

H. Su, J. Chen, S. Miao, et al., Lotus seed oligosaccharides at various dosages with prebiotic activity regulate gut microbiota and relieve constipation in mice, Food Chem. Toxicol. 134 (2019) 110838. http://dx.doi.org/10.1016/j.fct.2019.110838.

[23]

A.K. Samanta, S. Senani, A.P. Kolte, Production and in vitro evaluation of xylooligosaccharides generated from corn cobs, Food Bioprod. Process. 90 (2012) 466-474. http://dx.doi.org/ 10.1016/j.fbp.2011.11.001.

[24]

T. Solomon, Probiotics, prebiotics and synbiotics as functional food ingredients: production, health benefits and safety, Journal of Biologically Active Products from Nature 2 (2012) 124-134. http://dx.doi.org/ 10.1080/22311866.2012.10719119.

[25]

M. Toral, M. Gómez-Guzmán, R. Jiménez, et al., The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice, Clin. Sci. 127 (2014) 33-45. http://dx.doi.org/10.1042/CS20130339.

[26]

S. Park, Y. Ji, H.Y. Jung, et al., Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model, Appl. Microbiol. Biotechnol. 101 (2017) 1605-1614. http://dx.doi.org/ 10.1007/s00253-016-7953-2.

[27]

L. Zhao, F. Zhang, X. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359 (2018) 1151-1156. http://dx.doi.org/10.1126/science.aao5774.

[28]

L. Nuraida, A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods, Food Sci. Human Wellness 4 (2019) 47-55. http://dx.doi.org/10.1016/j.fshw.2015.06.001.

[29]

F. Bu, S.H. Zhang, Z.L. Duan, et al., A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health, Biomed. Pharmacother. 128 (2020) 110352. http://dx.doi.org/10.1016/j.biopha.2020.110352.

[30]

Y.Y. Li, F. Lu, X. Wang, et al., Biological transformation of chlorophyll-rich spinach (Spinacia oleracea L.) extracts under in vitro gastrointestinal digestion and colonic fermentation, Food Res. Int. 139 (2021) 109941. http://dx.doi.org/10.1016/j.foodres.2020.109941.

[31]

A. Florowska, K. Krygier, T. Florowski, et al., Prebiotics as functional food ingredients preventing diet-related diseases, Food Funct. 7 (2016) 2147-2155. http://dx.doi.org/10.1039/c5fo01459j.

[32]

L. Zhang, B. de Vries, J. Gerritsen, et al., Microbiome-based stratification to guide dietary interventions to improve human health, Nutr. Res. 82 (2020) 1-10. http://dx.doi.org/ 10.1016/j.nutres.2020.07.004.

[33]

Y. Yue, K. Ye, J. Lu, et al., Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium, LWT-Food Sci. Technol. 118 (2020) 1-7. http://dx.doi.org/10.1016/j.lwt.2019.108761.

[34]

Y.C. Yue, K. Ye, J. Lu, et al., Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment, Biomed. Pharmacother. 127 (2020) 110159. http://dx.doi.org/10.1016/j.biopha.2020.110159.

[35]

T.C. Pimentel, W.K.A. da Costa, C.E. Barão, et al., Vegan probiotic products: a modern tendency or the newest challenge in functional foods, Food Res. Int. 140 (2021) 110033. http://dx.doi.org/10.1016/j.foodres.2020.110033.

[36]

P. Mallon, D. McKay, S. Kirk, et al., Probiotics for improving life quality in ulcerative colitis: exploring patient perspective, Cochrane Database Syst Rev. 4 (2007) CD005573. http://dx.doi.org/ 10.1002/14651858.CD005573.pub2.

[37]

Y.G. Song, S.H. Lee. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface, Archives of Oral Biology 76 (2017) 1-6. http://dx.doi:10.1016/j.archoralbio.2016.12.014.

[38]

W. Wu, B. Pang, R.R. Yang, et al., Improvement of the probiotic potential and yield of Lactobacillus rhamnosus cells using corn steep liquor, LWT-Food Sci. Technol. 131 (2020) 109862. http://dx.doi:10.1016/j.lwt.2020.109862.

Food Science and Human Wellness
Pages 607-613
Cite this article:
Niu Z, Zou M, Bei T, et al. Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice. Food Science and Human Wellness, 2023, 12(2): 607-613. https://doi.org/10.1016/j.fshw.2022.07.063

684

Views

51

Downloads

13

Crossref

10

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 02 May 2021
Revised: 27 June 2021
Accepted: 13 October 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return