AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of resistant starch Ⅲ on the serum lipid levels and gut microbiota of Kunming mice under high-fat diet

Xuhui Chena,bZhirong Wanga,bDi Wanga,bJianquan Kana,b( )
College of Food Science, Southwest University, Chongqing 400715, China
Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Chongqing 400715, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Resistant starch Ⅲ (RS3), as a prebiotic, provides health benefits. This study aimed to investigate the role of RS3 in lowering serum lipids and regulating gut microbiota by administering Novelose 330 to Kunming (KM) mice. The results demonstrated that RS3 intervention significantly decreased body weight, food intake, levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and liver fat. RS3 could remarkably improve the quality of the entire cecum, quality of the cecal wall, and wall surface area of mice; enhance the moisture content; and reduce the pH value. Moreover, the decrease in the liver TC content and the increase in the fecal TC content were related to RS3 intervention. The concentrations of total short-chain fatty acids (SCFAs) in the colon and individual levels of acetate, propionate, and butyrate increased with RS3 supplementation. An Illumina-based sequencing approach showed that RS3 notably increased the Bacteroides/Firmicutes ratio in the mice fed a high-fat diet. At the genus level, the relative abundance of Bacteroides, Ruminococcus, and Bifidobacterium and the number of main SCFA producers increased in the mice fed an RS3 diet. These findings provided insights into specific gut microbiota shifts to the hypolipidemic effect of RS3.

References

[1]

J. Xu, Z. Ma, X. Li, et al., A more pronounced effect of type Ⅲ resistant starch vs. type Ⅱ resistant starch on ameliorating hyperlipidemia in high fat diet-fed mice is associated with its supramolecular structural characteristics, Food Funct. 11(3) (2020) 1982-1995. https://doi.org/10.1039/c9fo02025j.

[2]

X. Si, P. Strappe, C. Blanchard, et al., Enhanced anti-obesity effects of complex of resistant starch and chitosan in high fat diet fed rats, Carbohydr. Polym. 157 (2017) 834-841. https://doi.org/10.1016/j.carbpol.2016.10.042.

[3]

P.S. Thondre, M.E. Clegg. Reformulation of foods for weight loss: a focus on carbohydrates and fats. Reformulation as a strategy for developing healthier food products, Springer, Cham, (2019) 7-64. https://doi.org/10.1007/978-3-030-23621-2_2.

[4]

H.C. Yuan, Y. Meng, H. Bai, et al., Meta-analysis indicates that resistant starch lowers serum total cholesterol and low-density cholesterol, Nutr. Res. 54 (2018) 1-11. https://doi.org/10.1016/j.nutres.2018.02.008.

[5]

B. Zheng, T. Wang, H. Wang, et al., Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet, Carbohydr. Polym. 246 (2020) 116637. https://doi.org/10.1016/j.carbpol.2020.116637.

[6]

S.G. Haralampu, Resistant starch-a review of the physical properties and biological impact of RS3, Carbohydr. Polym. 41(3) (2000) 285-292. https://doi.org/10.1016/s0144-8617(99)00147-2.

[7]

H. He, C. Chi, F. Xie, et al., Improving the in vitro digestibility of rice starch by thermomechanically assisted complexation with guar gum, Food Hydrocoll. 102 (2020) 105637. https://doi.org/10.1016/j.foodhyd.2019.105637.

[8]

C. Zhang, M. Qiu, T. Wang, et al., Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis, Food Chem. 351 (2021) 129340. https://doi.org/10.1016/j.foodchem.2021.129340.

[9]

F. Jiang, C. Du, W. Jiang, et al., The preparation, formation, fermentability, and applications of resistant starch, Int. J. Biol. Macromol. 150 (2020) 1155-1161. https://doi.org/10.1016/j.ijbiomac.2019.10.124.

[10]

C.M. Sawicki, K.A. Livingston, M. Obin, et al., Dietary fiber and the human gut microbiota: application of evidence mapping methodology, Nutrients 9(2) (2017) 351. https://doi.org/10.3390/nu9020125.

[11]

C. Zhang, W. Gong, Z. Li, et al., Research progress of gut flora in improving human wellness, Food Sci Human Well. 8(2) (2019) 102-105. https://doi.org/10.1016/j.fshw.2019.03.007.

[12]

D. Haenen, C. Souza Da Silva, J. Zhang, et al., Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs, J. Nutr. 143(12) (2013) 1889-1898. https://doi.org/10.3945/jn.113.182154.

[13]

E.F. Murphy, P.D. Cotter, S. Healy, et al., Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, Gut 59(12) (2010) 1635-1642. https://doi.org/10.1136/gut.2010.215665.

[14]

G.D. Wu, J. Chen, C. Hoffmann, et al., Linking long-term dietary patterns with gut microbial enterotypes, Science 334(6052) (2011) 105-108. https://doi.org/10.1126/science.1208344.

[15]

F. Gu, C. Li, B.R. Hamaker, et al., Fecal microbiota responses to rice RS3 are specific to amylose molecular structure, Carbohydr. Polym. 243((2020) 116475. https://doi.org/10.1016/j.carbpol.2020.116475.

[16]

S.W. Loo, Z.N. Tan, A.A. Karim, et al., Fermentation of Metroxylon sagu resistant starch type Ⅲ by Lactobacillus sp. and Bifidobacterium bifidum, J. Agric. Food Chem. 58(4) (2010) 2274-2278. https://doi.org/10.1021/jf903820s.

[17]

S.O. Park, B.S. Park, Bifidogenic effect of grain larvae extract on serum lipid, glucose and intestinal microflora in rats, J. Biosci. 40(3) (2015) 513-520. https://doi.org/10.1007/s12038-015-9540-6.

[18]

M.H. Hoang, S.J. Houng, H.J. Jun, et al., Barley intake induces bile acid excretion by reduced expression of intestinal ASBT and NPC1L1 in C57BL/6J mice, J. Agric Food Chem. 59(12) (2011) 6798-6805. https://doi.org/10.1021/jf200681n.

[19]

J. Folch, M. Lees, G.H.Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226(1) (1957) 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5.

[20]

L. Zhang, G. Fang, L. Zheng, et al., Hypocholesterolemic effect of capsaicinoids in rats fed diets with or without cholesterol, J. Agric. Food Chem. 61(18) (2013) 4287-4293. https://doi.org/10.1021/jf304471t.

[21]

R.L. Shen, X.Y. Dang, J.L. Dong, et al., Effects of oat beta-glucan and barley beta-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats, J. Agric. Food Chem. 60(45) (2012) 11301-11308. https://doi.org/10.1021/jf302824h.

[22]

K. Loeschke, U. Kautz, U. Lohrs, Effects of antibiotics on caecal electrolyte transport and morphology in rats-Contribution to the pathogenesis of antibiotic-associated diarrhea., Klin Wochenschr. 58(7) (1980) 383-385. https://doi.org/10.1007/bf01477282.

[23]

E.F. Murphy, P.D. Cotter, S. Healy, et al., Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, Gut. 59(12) (2010) 1635-1642. https://doi.org/10.1136/gut.2010.215665.

[24]

M. Kim, H.K. Shin, The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats., J. Nutr. 128(10) (1998) 1731-1736. https://doi.org/10.1093/jn/128.10.1731.

[25]

L.L. Rudel, M.D. Morris, Determination of cholesterol using ortho-phthalaldehyde, J. Lipid Res. 14(3) (1973) 364-366. https://doi.org/10.1016/S0022-2275(20)36896-6.

[26]

T. Magoc, S.L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics 27(21) (2011) 2957-2963. https://doi.org/10.1093/bioinformatics/btr507.

[27]

J.G. Caporaso, J. Kuczynski, J. Stombaugh, et al., QIIME allows analysis of high-throughput community sequencing data, Nature Methods 7(5) (2010) 335-336. https://doi.org/10.1038/nmeth.f.303.

[28]

R.C. Edgar, B.J. Haas, J.C. Clemente, et al., UCHIME improves sensitivity and speed of chimera detection, Bioinformatics 27(16) (2011) 2194-2200. https://doi.org/10.1093/bioinformatics/btr381.

[29]

R.C. Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods 10(10) (2013) 996-998. https://doi.org/10.1038/nmeth.2604.

[30]

P. Yilmaz, L.W. Parfrey, P. Yarza, et al., The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks, Nucleic Acids Research 42(D1) (2014) D643-D648. https://doi.org/10.1093/nar/gkt1209.

[31]

J. Sun, Q. Zhang, J. Zhou, et al., Illumina amplicon sequencing of 16S rRNA Tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site, PLoS One 9(10) (2014) https://doi.org/10.1371/journal.pone.0111744.

[32]

M. Baloi, C.V.A. De Carvalho, F.C. Sterzelecki, et al., Effects of feeding frequency on growth, feed efficiency and body composition of juveniles Brazilian sardine, Sardinella brasiliensis (Steindacher 1879), Aquac. Res. 47(2) (2016) 554-560. https://doi.org/10.1111/are.12514.

[33]

G.H. Mcintosh, R.K. Leleu, P.J. Royle, et al., A comparative study of the influence of differing barley brans on DMH-induced intestinal tumours in male Sprague-Dawley rats, J. Gastroenterol Hepatol 11(2) (1996) 113-119. https://doi.org/10.1111/j.1440-1746.1996.tb00046.x.

[34]

A. Koh, F. De Vadder, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165(6) (2016) 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041.

[35]

H. Guo, W. Chou, Y. Lai, et al., Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites, Science 370(6516) (2020) eaay9097. https://doi.org/10.1126/science.aay9097.

[36]

U. Lesmes, E.J. Beards, G.R. Gibson, et al., Effects of resistant starch type Ⅲ polymorphs on human colon microbiota and short chain fatty acids in human gut models, J. Agric. Food Chem. 56(13) (2008) 5415-5421. https://doi.org/10.1021/jf800284d.

[37]

J.L. Jane, K.S. Wong, A.E. Mcpherson, Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins, Carbohydr. Res. 300(3) (1997) 219-227. https://doi.org/10.1016/s0008-6215(97)00056-6.

[38]

Z. Ma, J.I. Boye, Research advances on structural characterization of resistant starch and its structure-physiological function relationship: a review, Crit. Rev. Food Sci. Nutr. 58(7) (2018) 1059-1083. https://doi.org/10.1080/10408398.2016.1230537.

[39]

S. Liu, M. Reimer, Y. Ai, In vitro digestibility of different types of resistant starches under high-temperature cooking conditions, Food Hydrocoll. 107 (2020) https://doi.org/10.1016/j.foodhyd.2020.105927.

[40]

G. Jacobasch, G. Dongowski, D. Schmiedl, et al., Hydrothermal treatment of Novelose 330 results in high yield of resistant starch type 3 with beneficial prebiotic properties and decreased secondary bile acid formation in rats, Br. J. Nutr. 95(6) (2006) 1063-1074. https://doi.org/10.1079/bjn20061713.

[41]

J.A. Charrier, R.J. Martin, K.L. Mccutcheon, et al., High fat diet partially attenuates fermentation responses in rats fed resistant starch from high-amylose maize, Obesity 21(11) (2013) 2350-2355. https://doi.org/10.1002/oby.20362.

[42]

L. Shen, M.J. Keenan, A. Reggio, et al., Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat, Molecular Nutrition & Food Research 55(10) (2011) 1499-1508. https://doi.org/10.1002/mnfr.201000605.

[43]

J. Zhou, R.J. Martin, R.T. Tulley, et al., Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss, J. Agr. Food Chem. 57(19) (2009) 8844-8851. https://doi.org/10.1021/jf901548e.

[44]

S. Kuhnast, M. Fiocco, J.W.A. Van Der Hoorn, et al., Innovative pharmaceutical interventions in cardiovascular disease: Focusing on the contribution of non-HDL-C/LDL-C-lowering versus HDL-C-raising A systematic review and meta-analysis of relevant preclinical studies and clinical trials, Eur. J. Pharmacol 763 (2015) 48-63. https://doi.org/10.1016/j.ejphar.2015.03.089.

[45]

F. Huet, M. Akodad, J. Fauconnier, et al., Anti-inflammatory drugs as promising cardiovascular treatments, Expert Rev. Cardiovas. 15(2) (2017) 109-125. https://doi.org/10.1080/14779072.2017.1273771.

[46]

E. Hosseini, C. Grootaert, W. Verstraete, et al., Propionate as a health-promoting microbial metabolite in the human gut, Nutr. Rev. 69(5) (2011) 245-258. https://doi.org/10.1111/j.1753-4887.2011.00388.x.

[47]

Y. Qian, G.J. Li, K. Zhu, et al., Effects of three types of resistant starch on intestine and their gastric ulcer preventive activities in vivo, J. Korean Soc. Appl. Bi. 56(6) (2013) 739-746. https://doi.org/10.1007/s13765-013-3229-z.

[48]

M.J. Keenan, J. Zhou, K.L. Mccutcheon, et al., Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat, Obesity, 14(9) (2006) 1523-1534. https://doi.org/DOI10.1038/oby.2006.176.

[49]

G. Dongowski, G. Jacobasch, D. Schmiedl, Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation, J. Agr. Food Chem. 53(23) (2005) 9257-9267. https://doi.org/10.1021/jf0507792.

[50]

S. Tachon, J.N. Zhou, M. Keenan, et al., The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses, Fems. Microbiol. Ecol. 83(2) (2013) 299-309. https://doi.org/10.1111/j.1574-6941.2012.01475.x.

[51]

J. Liu, Z. He, N. Ma, et al., Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota, J. Agric. Food Chem. 68(1) (2020) 33-47. https://doi.org/10.1021/acs.jafc.9b06817.

[52]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 444(7122) (2006) 1027-1031. https://doi.org/10.1038/nature05414.

[53]

P.J. Turnbaugh, F. Baeckhed, L. Fulton, et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell Host Microbe. 3(4) (2008) 213-223. https://doi.org/10.1016/j.chom.2008.02.015.

[54]

Y. Zhou, Y. Wei, B. Yan, et al., Regulation of tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet, Food Sci. Nutr. (2020) https://doi.org/10.1002/fsn3.1601.

[55]

H.J. Flint, K.P. Scott, S.H. Duncan, et al., Microbial degradation of complex carbohydrates in the gut, Gut Microbes 3(4) (2012) 289-306. https://doi.org/10.4161/gmic.19897.

[56]

Y. Wang, Q. Tong, J.W. Shou, et al., Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine, Theranostics 7(9) (2017) 2443-2451. https://doi.org/10.7150/thno.18290.

[57]

A.E. Reeves, M.J. Koenigsknecht, I.L. Bergin, et al., Suppression of clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae, Infect Immun. 80(11) (2012) 3786-3794. https://doi.org/10.1128/iai.00647-12.

[58]
P.G. Reeves, F.H. Nielsen, G.C. Fahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet, J. Nutr. (1993) 123.
Food Science and Human Wellness
Pages 575-583
Cite this article:
Chen X, Wang Z, Wang D, et al. Effects of resistant starch Ⅲ on the serum lipid levels and gut microbiota of Kunming mice under high-fat diet. Food Science and Human Wellness, 2023, 12(2): 575-583. https://doi.org/10.1016/j.fshw.2022.07.060

906

Views

61

Downloads

20

Crossref

16

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 24 February 2021
Revised: 13 April 2021
Accepted: 12 June 2022
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return