AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A heteropolysaccharide from Rhodiola rosea L.: preparation, purification and anti-tumor activities in H22-bearing mice

Yaru WuQing WangHuiping Liu( )Lulu NiuMengyu LiQi Jia
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Numerous polysaccharides isolated from plants have been used to augment traditional drugs in the treatment of cancer. In order to explore the influence to hepatocellular carcinoma, a novel cold water-soluble polysaccharide was separated from Rhodiola rosea L. root (RLP) and then its structure and anti-cancer activities were tested. The chemical compositions and high performance gel permeation chromatography (HPGPC) results indicated that RLP was an acid heteropolysaccharide with the molecular weight of about 1.15×106 Da. Furthermore, ion chromatography (IC), Fourier transform infrared (FT-IR) and nuclear magnetic resoance (NMR) further indicated that RLP was main composed of →2,4)-α-Rha(1→, →5)-α-L-Araf-(1→, α-D-Glu, →6)-β-D-Galp-(1→, β-D-Man and →4)-α-GalpA-(1→. In vivo antitumor activities of RLP were carried out by using H22 tumor-bearing mice model. The results shown that RLP (100 and 300 mg/kg) could inhibit tumor growth of H22 cells from 23.59% to 45.52% and protect thymuses and spleen without damage. In addition, according to cell cycle, AV-FITC/PI and JC-1, RLP could induce dose-dependent apoptosis of H22 cells via S phase arrested which was through a mitochondrial related pathway. Our data indicated that RLP has a broader application prospect in anti-tumor preparations.

References

[1]

A.S. Marchev, A.T. Dinkova-Kostova, Z. György, et al., Rhodiola rosea L.: from golden root to green cell factories. Phytochem. Rev. 15(4) (2016) 515-536. http://doi.org/10.1007/s11101-016-9453-5.

[2]

A. Panossian, G. Wikman, J. Sarris, Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 17(7) (2010) 481-493. http://doi.org/10.1016/j.phymed.2010.02.002.

[3]

J.X. Nan, Y.Z. Jiang, E.J. Park, et al., Protective effect of Rhodiola sachalinensis extract on carbon tetrachloride-induced liver injury in rats, J. Ethnopharmacol. 84 (2003) 143-148. https://doi.org/10.1016/S0378-8741(02)00293-3.

[4]

L. Yang, Y. Yu, Q. Zhang, et al., Anti-gastric cancer effect of Salidroside through elevating miR-99a expression. Artif. Cells. 47 (2019) 3500-3510. https://doi.org/10.1080/21691401.2019.1652626.

[5]

S.Y. Ding, M.T. Wang, D.F. Dai, et al., Salidroside induces apoptosis and triggers endoplasmic reticulum stress in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 4 (2020) 527. https://doi.org/10.1016/j.bbrc.2020.05.066.

[6]

Y. Cheng, The growth performance and nonspecific immunity of red swamp crayfish T Procambarus clarkia affected by dietary Rhodiola rosea polysaccharide. Fish Shellfish Immunol. 93 (2019) 796-800. https://doi.org/10.1016/j.fsi.2019.08.046.

[7]

Y. Xu, H. Jiang, C. Sun, et al., Antioxidant and hepatoprotective effects of purified Rhodiola rosea polysaccharides. Int. J. Biol. Macromol. 117 (2018) 167-178. https://doi.org/10.1016/j.ijbiomac.2018.05.168.

[8]

Z. Cai, W. Li, H. Wang, et al., Antitumor effects of a purified polysaccharide from Rhodiola rosea and its action mechanism. Carbohydr. Polym. 90(1) (2012) 296-300. http://doi.org/10.1016/j.carbpol.2012.05.039.

[9]

A. Mantovani, The inflammation-cancer connection. FEBS. 285(4) (2018) 638-640. http://doi.org/10.1111/febs.14395.

[10]

Z. Wang, F. Gao, F. Lu, Effect of ethanol extract of Rhodiola rosea on the early nephropathy in type 2 diabetic rats. Sci. Technol. 33 (3) (2013) 375-378. http://doi.org/10.1007/s11596-013-1127-6.

[11]

Y. Zhang, G. Deng, X. Xu, et al., Chemical components and bioactivities of Rhodiola rosea. Int. J. Trad. Nat. Med. 4 (1) (2015) 23-51. http://doi.org/10.3736/jcim20070324.

[12]

W.L. Pu, M.Y. Zhang, R.Y. Bai, et al., Anti-inflammatory effects of Rhodiola rosea L.: a review. Biomed. Pharmacother. 121 (2019) 109552. https://doi.org/10.1016/j.biopha.2019.109552.

[13]

Y. Ben-Neriah, M. Karin, Inflammation meets cancer with NF-κB as the match-maker. Nat. Immunol. 12 (2011) 715. http://doi.org/10.1038/ni.2060.

[14]

Z.S. Wang, F. Gao, F.E. Lu. Effect of ethanol extract of Rhodiola rosea on the early nephropathy in type 2 diabetic rats. J. Huazhong Univ. Sci. Technol. 33(3) (2013) 375-378. http://dor.org/10.1007/s11596-013-1127-6.

[15]

Y. Mao, Hypoglycemic and hypolipidaemic activities of polysaccharides from Rhodiola rosea in KKAy mice. J. Food Process. Preserv. (2017) 13219. http://doi.org/10.1111/jfpp.13219.

[16]

S.M. Yang, T. Wang, D.G. Wen, et al., Protective effect of Rhodiola rosea polysaccharides on cryopreserved boar sperm. Carbohydr. Polym. 135 (2016) 44-47. http://doi.org/10.1016/j.carbpol.2015.08.081.

[17]

J. Yu, C. Liu, H.Y. Ji, The caspases-dependent apoptosis of hepatoma cells induced by an acid-soluble polysaccharide from Grifola frondosa. Int. J. Biol. Macromol. 159 (2020) 364-372. https://doi.org/10.1016/j.ijbiomac.2020.05.095.

[18]

P. Chen, H.P. Liu, N.X. Sun, A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway. Int. J. Biol. Macromol. 125 (2018) 1232-1241. http://doi.org/10.1016/j.ijbiomac.2018.09.098.

[19]

M. Jin, K. Zhao, Q. Huang, et al., Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) diels: a review[J]. Carbohyd. Polym. 89(3) (2012) 713-722. http://doi.org/10.1016/j.carbpol.2012.04.049.

[20]

A. de Sousa e Silva, W.T. de Magalhães, L.M. Moreira, et al., Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry[J]. Algal Res. 2018, 35: 178-184. http://doi.org/10.1016/j.algal.2018.08.015.

[21]

Q. Guo, J. Du, Y. Jiang, et al., Pectic polysaccharides from hawthorn: physicochemical and partial structural characterization. Food Hydrocolloids. 90 (2018) 146-153. http://doi.org/10.1016/j.foodhyd.2018.10.011.

[22]

Y. Zhao, H. Sun, L. Ma, et al., Polysaccharides from the peels of Citrus aurantifolia induce apoptosis in transplanted H22 cells in mice. Int. J. Biol. Macromol. 101 (2017) 680-689. http://doi.org/10.1016/j.ijbiomac.2017.03.149.

[23]

Y. Chen, X. Jiang, H. Xie, et al., Structural characterization and antitumor activity of a polysaccharide from ramulus mori. Carbohyd. Polym. 190 (2018) 232-239. https://doi.org/10.1016/j.carbpol.2018.02.036.

[24]

J. Du, J. Li, J. Zhu, et al., Structural characterization and immunomodulatory activity of a novel polysaccharide from Ficus carica. Food Funct. 145 (2018) 547-557. http://doi.org/10.1039/c8fo00603b.

[25]

X.L. Ji, Z. Fan, Z. Rui, et al., An acidic polysaccharide from Ziziphus Jujuba cv. Muzao: purification and structural characterization. Food Chem. 274 (2018) 494-499. https://doi.org/10.1016/j.foodchem.2018.09.037.

[26]

J. Singthong, S.W. Cui, S. Ningsanond, et al., Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohyd. Polym. 58 (2004) 391-400. http://doi.org/10.1016/j.carbpol.2004.07.018.

[27]

M.S. Kokoulin, A.S. Kuzmich, A.I. Kalinovsky, et al., Structure and anticancer activity of sulfated O-polysaccharide from marine bacterium Coberia litoralis KKM. Carbohyd. Polym. 154 (2016) 55-61. https://doi.org/10.1016/j.carbpol.2016.08.036.

[28]

A. Chi, H. Li, C. Kang. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea. Int. J. Biol. Macromol. 80 (2015) 566-572. http://doi.org/10.1016/j.ijbiomac.2015.06.055.

[29]

B. Li, N. Zhang, Q.H. Feng, et al., The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity. Int. J. Biol. Macromol. 123 (2018) 713-722. https://doi.org/10.1016/j.ijbiomac.2018.11.140.

[30]

W.T. Tian, X.W. Zhang, H.P. Liu, et al., Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells. Int. J. Biol. Macromol. 153 (2020) 451-460. https://doi.org/10.1016/j.ijbiomac.2020.02.219.

[31]

Y.Y. Ren, Z.Y. Zhu, H.Q. Sun, et al., Structural characterization and inhibition on α-glucosidase activity of acidic polysaccharide from Annona squamosa. Carbohyd. Polym. 174 (2017) 1-12. http://doi.org/10.1016/j.carbpol.2017.05.092.

[32]

X.H. Yu, Y. Liu, X.L. Wu, et al., Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohyd. Polym. 156 (2017) 9-18. http://doi.org/10.1016/j.carbpol.2016.08.092.

[33]

Y.J. Zeng, H.R. Yang, X.L. Wu, et al., Structure and immunomodulatory activity of polysaccharides from Fusarium solani DO7 by solid-state fermentation. Int. J. Biol. Macromol. 137 (2019) 568-575. https://doi.org/10.1016/j.ijbiomac.2019.07.019.

[34]

Y.L. Hao, H.Q. Sun, X.J. Zhang, et al., A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: hypoglycemic activity in vitro and chemical structure. J. Mol. Struct. 1220 (2020) 128717. https://doi.org/10.1016/j.molstruc.2020.128717.

[35]

J.W. Choia, S. Andriy, P. Capek, et al., Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohyd. Polym. 146 (2016) 187-196. https://doi.org/10.1016/j.carres.2009.09.014.

[36]

R.G. Ovodova, O.A. Bushneva, A.S. Shashkov, et al., Structural studies on pectin from marsh cinquefoil Comarum palustre L. Biochem. 70 (2005) 867-877. http://doi.org/10.1016/j.carbpol.2016.03.043.

[37]

J. Yu, H.Y. Ji, C. Liu, The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int. J. Biol. Macromol. 158 (2020) 1288-1298. https://doi.org/10.1016/j.ijbiomac.2020.05.054.

[38]

J. Chen, X.Q. Zhu, L. Yang, et al., Effect of Glycyrrhiza uralensis Fisch polysaccharide on growth performance and immunologic function in mice in Ural City, Xinjiang. Asian Pac. J. Trop. Med. 9(11) (2016) 1078-1083. http://doi.org/10.1016/j.apjtm.2016.08.004.

[39]

J. Feng, X. Chang, Y. Zhang, et al., Characterization of a polysaccharide HP-02 from Honeysuckle flowers and its immunoregulatory and anti-Aeromonas hydrophila effects in Cyprinus carpio L. Int. J. Biol. Macromol. 140 (2019) 477-483. https://doi.org/10.1016/j.ijbiomac.2019.08.041.

[40]

Y.L. Fan, W. Wang, W. Song, et al., Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis. Carbohyd. Polym. 88 (2012) 1313-1318. https://doi.org/10.1016/j.carbpol.2012.02.014.

[41]

B.Q. Zhu, C.D. Qian, F.M. Zhou, et al., Antipyretic and antitumor effects of a purified polysaccharide from aerial parts of Tetrastigma hemsleyanum. J. Ethnopharmacol. 253 (2020) 112663. https://doi.org/10.1016/j.jep.2020.112663.

[42]

X.D. Dong, Y. Feng, Y.N. Liu, et al., A novel polysaccharide from Castanea mollissima Blume: preparation, characteristics and antitumor activities in vitro and in vivo. Carbohyd. Polym. 240 (2020) 116323. https://doi.org/10.1016/j.carbpol.2020.116323.

[43]

X.D. Dong, J. Yu, H.Y. Ji, et al., Alcohol-soluble polysaccharide from Castanea mollissima Blume: preparation, characteristics and antitumor activit. J. Funct Food. 63 (2019) 103563. https://doi.org/10.1016/j.jff.2019.103563.

[44]

H. Perumalsamy, K. Sankarapandian, N. Kandaswamy, et al., Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells. Int. J. Biochem. Cell Biol. 92 (2017) 104-114. http://doi.org/10.1016/j.biocel.2017.09.019.

[45]

N. Sun, A. Teng, Y. Zhao, et al., Immunological and anticancer activities of seleno-ovalbumin (Se-OVA) on H22-bearing mice. Int. J. Biol. Macromol. 163 (2020) 657-665. https://doi.org/10.1016/j.ijbiomac.2020.07.006.

[46]

D. Chen, S. Sun, D. Cai, et al. Induction of mitochondrial-dependent apoptosis in T24 cells by a selenium (Se)-containing polysaccharide from Ginkgo biloba L. leaves. Int. J. Biol. Macromol. 101 (2017) 126-130. http://doi.org/10.1016/j.ijbiomac.2017.03.033.

[47]

P. Wu, S. Yu, C. Liu, et al., Seleno-chitosan induces apoptosis of lung cancer cell line SPC-A-1 via Fas/FasL pathway. Bioorganic. Chem. 97 (2020) 103701. https://doi.org/10.1016/j.bioorg.2020.103701.

Food Science and Human Wellness
Pages 536-545
Cite this article:
Wu Y, Wang Q, Liu H, et al. A heteropolysaccharide from Rhodiola rosea L.: preparation, purification and anti-tumor activities in H22-bearing mice. Food Science and Human Wellness, 2023, 12(2): 536-545. https://doi.org/10.1016/j.fshw.2022.07.056

686

Views

34

Downloads

9

Crossref

9

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 17 December 2020
Revised: 01 March 2021
Accepted: 05 June 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return