AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Incorporation of κ-carrageenan improves the practical features of agar/konjac glucomannan/κ-carrageenan ternary system

Dongling QiaoaHao LibFatang JiangbSiming ZhaocSheng Chend( )Binjia Zhanga( )
Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
Yellow Crane Tower Science and Technology Park (Group) Co., Ltd., Wuhan 430040, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Three materials (agar, konjac glucomannan (KGM) and κ-carrageenan) were used to prepare ternary systems, i.e., sol-gels and their dried composites conditioned at varied relative humidity (RH) (33%, 54% and 75%). Combined methods, e.g., scanning electron microscopy, small-angle X-ray scattering, infrared spectroscopy (IR) and X-ray diffraction (XRD), were used to disclose how κ-carrageenan addition tailors the features of agar/KGM/κ-carrageenan ternary system. As affirmed by IR and XRD, the ternary systems with κ-carrageenan below 25% (agar/KGM/carrageenan, 50:25:25, m/m) displayed proper component interactions, which increased the sol-gel transition temperature and the hardness of obtained gels. For instance, the ternary composites could show hardness about 3 to 4 times higher than that for binary counterpart. These gels were dehydrated to acquire ternary composites. Compared to agar/KGM composite, the ternary composites showed fewer crystallites and nanoscale orders, and newly-formed nanoscale structures from chain assembly. Such multi-scale structures, for composites with κ-carrageenan below 25%, showed weaker changes with RH, as revealed by especially morphologic and crystalline features. Consequently, the ternary composites with less κ-carrageenan (below 25%) exhibited stabilized elongation at break and hydrophilicity at different RHs. This hints to us that agar/KGM/κ-carrageenan composite systems can display series applications with improved features, e.g., increased sol-gel transition point.

References

[1]

M. Pereda, D. Poncelet, D. Renard, Characterization of core-shell alginate capsules, Food Biophys. 14(4) (2019) 467-478, http://dx.doi.org/10.1007/s11483-019-09595-x.

[2]

S. Kuang, J. Oliveira, A. Crean, Microencapsulation as a tool for incorporating bioactive ingredients into food, Crit. Rev. Food Sci. Nutr. 50 (2010) 951-968, http://dx.doi.org/10.1080/10408390903044222.

[3]

M.I. Dias, I.C.F.R. Ferreira, M.F. Barreiro, Microencapsulation of bioactives for food applications, Food Funct. 6(4) (2015) 1035-1052, http://dx.doi.org/10.1039/C4FO01175A.

[4]

T.A. Comunian, C.S. Favaro-Trindade, Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: a review, Food Hydrocolloid. 61 (2016) 442-457, http://dx.doi.org/10.1016/j.foodhyd.2016.06.003.

[5]
H.Y. Ong, B.B. Lee, Z. Zakaria, et al., Diameter prediction mathematical models for xanthan gum-alginate capsules produced by extrusiondripping method, in: M.F. Ramli, A.K. Junoh, N. Roslan, et al. (Eds.), AIP Conference Proceedings 1660, International conference on mathematics, engineering and industrial applications, 2015, pp. 070034, http://dx.doi.org/10.1063/1.4915752.
[6]

K. Kailasapathy, Microencapsulation of probiotic bacteria: technology and potential applications, Curr. Issues Intestinal Microbiol. 3 (2002) 39-48.

[7]

T. Heidebach, P. Först, U. Kulozik, Microencapsulation of probiotic cells for food applications, Crit. Rev. Food Sci. Nutr. 52 (2012) 291-311, http://dx.doi.org/10.1080/10408398.2010.499801.

[8]

G.P. Lim, B.B. Lee, M.S. Ahmad, et al., Influence of process variables and formulation composition on sphericity and diameter of Ca-alginate-chitosan liquid core capsule prepared by extrusion dripping method, Particul. Sci. Technol. 34(6) (2016) 681-690, http://dx.doi.org/10.1080/02726351.2015.1107160.

[9]

O. Smidsrød, G. Skja˚k-Br˦k, Alginate as immobilization matrix for cells, Trends Biotechnol. 8 (1990) 71-78, http://dx.doi.org/10.1016/0167-7799(90)90139-o.

[10]

T. Gürkan Polat, O. Duman, S. Tunç, Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels, Colloids Surf. Physicochem. Eng. Aspects 602 (2020) 124987, http://dx.doi.org/10.1016/j.colsurfa.2020.124987.

[11]

B. Blanco-Fernandez, M. Lopez-Viota, A. Concheiro, et al., Synergistic performance of cyclodextrin-agar hydrogels for ciprofloxacin delivery and antimicrobial effect, Carbohydr. Polym. 85(4) (2011) 765-774, http://dx.doi.org/10.1016/j.carbpol.2011.03.042.

[12]

W.K. Lee, Y.Y. Lim, A.T.C. Leow, et al., Biosynthesis of agar in red seaweeds: a review, Carbohydr. Polym. 164 (2017) 23-30,http://dx.doi.org/10.1016/j.carbpol.2017.01.078.

[13]

P. Wongphan, N. Harnkarnsujarit, Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films, Int. J. Biol. Macromol. 156 (2020) 80-93, http://dx.doi.org/10.1016/j.ijbiomac.2020.04.056.

[14]

K. Katsuraya, K. Okuyama, K. Hatanaka, et al., Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy, Carbohydr. Polym. 53(2) (2003) 183-189, http://dx.doi.org/10.1016/S0144-8617(03)00039-0.

[15]

D. Qiao, W. Tu, L. Zhong, et al., Microstructure and mechanical/hydrophilic features of agar-based films incorporated with konjac glucomannan, Polymers 11(12) (2019) 1952, http://dx.doi.org/10.3390/polym11121952.

[16]

K. Wu, Q. Zhu, H. Qian, et al., Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films, Food Hydrocolloid. 79 (2018) 301-309, http://dx.doi.org/10.1016/j.foodhyd.2017.12.034.

[17]

L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31(6) (2006) 576-602, http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002.

[18]

H.F. Tian, J.A. Yan, A.V. Rajulu, et al., Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity, Int. J. Biol. Macromol. 96 (2017) 518-523, http://dx.doi.org/10.1016/j.ijbiomac.2016.12.067.

[19]

F.S. Mostafavi, D. Zaeim, Agar-based edible films for food packaging applications: a review, Int. J. Biol. Macromol. 159 (2020) 1165-1176, http://dx.doi.org/10.1016/j.ijbiomac.2020.05.123.

[20]

O. Duman, T.G. Polat, C.Ö. Diker, et al., Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water, Int. J. Biol. Macromol. 160 (2020) 823-835, http://dx.doi.org/10.1016/j.ijbiomac.2020.05.191.

[21]

O. Duman, S. Tunç, B.K. Bozoğlan, et al., Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd. 687 (2016) 370-383, http://dx.doi.org/10.1016/j.jallcom.2016.06.160.

[22]
A. Imeson, Food stabilisers, thickners and gelling agents, willey-blackwell, 2009, http://dx.doi.org/10.1002/9781444314724.ch13.
[23]

N. Hani, S.L. Foo, A. Karim, Rheological studies on mixtures of agar (Gracilaria changii) and κ-carrageenan, Food Hydrocolloid. 20 (2006) 204-217, http://dx.doi.org/10.1016/j.foodhyd.2005.03.020.

[24]

T. Brenner, R. Tuvikene, Y. Fang, et al., Rheology of highly elastic iota-carrageenan/kappa-carrageenan/xanthan/konjac glucomannan gels, Food Hydrocolloid. 44 (2015) 136-144, http://dx.doi.org/10.1016/j.foodhyd.2014.09.016.

[25]

M. Fan, T. Hu, S. Zhao, et al., Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites, Food Chem. 218 (2017) 221-230, http://dx.doi.org/10.1016/j.foodchem.2016.09.068.

[26]

D. Qiao, W. Tu, B. Zhang, et al., Understanding the multi-scale structure and digestion rate of water chestnut starch, Food Hydrocolloid. 91 (2019) 311-318, http://dx.doi.org/10.1016/j.foodhyd.2019.01.036.

[27]

B. Zhang, W. Zhou, D. Qiao, et al., Changes in nanoscale chain assembly in sweet potato starch lamellae by downregulation of biosynthesis enzymes, J. Agric. Food Chem. 67(22) (2019) 6302-6312, http://dx.doi.org/10.1021/acs.jafc.8b06523.

[28]

B. Zhang, X. Li, J. Liu, et al., Supramolecular structure of A- and B-type granules of wheat starch, Food Hydrocolloid. 31(1) (2013) 68-73, http://dx.doi.org/10.1016/j.foodhyd.2012.10.006.

[29]

P. Kanmani, J.W. Rhim, Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract, Carbohydr. Polym. 102 (2014) 708-716, http://dx.doi.org/10.1016/j.carbpol.2013.10.099.

[30]

X. Li, F. Jiang, X. Ni, et al., Preparation and characterization of konjac glucomannan and ethyl cellulose blend films, Food Hydrocolloid. 44 (2015) 229-236, http://dx.doi.org/10.1016/j.foodhyd.2014.09.027.

[31]

N. Li, Z. Cai, Y. Guo, et al., Hierarchical structure and slowly digestible features of rice starch following microwave cooking with storage, Food Chem. 295 (2019) 475-483, http://dx.doi.org/10.1016/j.foodchem.2019.05.151.

[32]

B. Zhang, E.P. Gilbert, D. Qiao, et al., A further study on supramolecular structure changes of waxy maize starch subjected to alkaline treatment by extended-q small-angle neutron scattering, Food Hydrocolloid. 95 (2019) 133-142, http://dx.doi.org/10.1016/j.foodhyd.2019.04.031.

[33]

C. Chen, B. Zhang, Characteristics of κ-carrageenan, Food Sci. Technol. 36(3) (2011) 237-240, http://dx.doi.org/10.13684/j.cnki.spkj.2011.03.067.

[34]

F. Liu, H. Majeed, J. Antoniou, et al., Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature, Food Hydrocolloid. 58 (2016) 20-28, http://dx.doi.org/10.1016/j.foodhyd.2016.01.026.

Food Science and Human Wellness
Pages 512-519
Cite this article:
Qiao D, Li H, Jiang F, et al. Incorporation of κ-carrageenan improves the practical features of agar/konjac glucomannan/κ-carrageenan ternary system. Food Science and Human Wellness, 2023, 12(2): 512-519. https://doi.org/10.1016/j.fshw.2022.07.053

657

Views

47

Downloads

19

Crossref

17

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 06 October 2020
Revised: 06 November 2020
Accepted: 27 December 2020
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return