AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Preparation of Multicore Millimeter-Sized Spherical Alginate Capsules to Specifically and Sustainedly Release Fish Oil

Lina TaoPanpan WangTing ZhangMengzhen DingLijie LiuNingping TaoXichang WangJian Zhong( )
National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery. In this work, we reported a monoaxial dispersion electrospraying-ionotropic gelation technique to prepare multicore millimeter-sized spherical capsules for specific and sustained release of fish oil. The spherical capsules had diameters from 2.05 mm to 0.35 mm with the increased applied voltages. The capsules consisted of uniform (at applied voltages of ≤ 10 kV) or nonuniform (at applied voltages of > 10 kV) multicores. The obtained capsules had reasonable loading ratios (9.7%−6.3%) due to the multicore structure. In addition, the obtained capsules had specific and sustained release behaviors of fish oil into the small intestinal phase of in vitro gastrointestinal tract and small intestinal tract models. The simple monoaxial dispersion electrospraying-ionotropic gelatin technique does not involve complicated preparation formulations and polymer modification, which makes the technique has a potential application prospect for the fish oil preparations and the encapsulation of functional active substances in the field of food and drug industries.

References

[1]

S. Eilat-Adar, N. Lipovetzky, U. Goldbourt, et al., Omega-3 fatty acids, fish, fish oil and cardiovascular disease-a review with implications to Israeli nutritional guidelines, Harefuah 143 (2004) 585-591+621-622.

[2]

X. Wang, C. Zhu, T. Peng, et al., Enhanced stability of an emulsion enriched in unsaturated fatty acids by dual natural antioxidants fortified in both the aqueous and oil phases, Food Hydrocoll. 82 (2018) 322-328. https://doi.org/10.1016/j.foodhyd.2018.02.012.

[3]

W. Ma, Y. Ding, M. Zhang, et al., Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation, J. Hazard. Mater. 384 (2020) 121476. https://doi.org/10.1016/j.jhazmat.2019.121476.

[4]

T. Zhang, R. Sun, M. Ding, et al., Commercial cold-water fish skin gelatin and bovine bone gelatin: structural, functional, and emulsion stability differences, LWT-Food Sci. Technol. 125 (2020) 109207. https://doi.org/10.1016/j.lwt.2020.109207.

[5]

S. Freitas, H.P. Merkle, B. Gander, Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology, J. Controll. Rel. 102 (2005) 313-332. https://doi.org/10.1016/j.jconrel.2004.10.015.

[6]

M. Saifullah, M.R.I. Shishir, R. Ferdowsi, et al., Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review, Trends Food Sci. Technol. 86 (2019) 230-251. https://doi.org/10.1016/j.tifs.2019.02.030.

[7]

J. Wang, M. Euring, K. Ostendorf, et al., Biobased materials for food packaging, J. Biores. Biopr. 7 (2022) 1-13. https://doi.org/10.1016/j.jobab.2021.11.004.

[8]

B. Mbituyimana, L. Mao, S. Hu, et al., Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment, J. Biores. Biopr. 6 (2021) 129-141. https://doi.org/10.1016/j.jobab.2021.02.003.

[9]

P. Bejrapha, S.G. Min, S. Surassmo, et al., Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions, Drying Technol. 28 (2010) 481-489. https://doi.org/10.1080/07373931003613684.

[10]

T. Cetinkaya, A.C. Mendes, C. Jacobsen, et al., Development of kafirin-based nanocapsules by electrospraying for encapsulation of fish oil, LWT-Food Sci. Technol. 136 (2021) 110297. https://doi.org/10.1016/j.lwt.2020.110297.

[11]

D.J. McClements, H. Xiao, Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles, NPJ Science of Food 1 (2017) 6. https://doi.org/10.1038/s41538-017-0005-1.

[12]

Y. Sun, W. Ma, Y. Yang, et al., Cancer nanotechnology: enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy, Asian J. Pharm. Sci. 14 (2019) 581-594. https://doi.org/10.1016/j.ajps.2019.04.005.

[13]

S. Gao, G. Tang, D. Hua, et al., Stimuli-responsive bio-based polymeric systems and their applications, J. Mater. Chem. B 7 (2019) 709-729. https://doi.org/10.1039/C8TB02491J.

[14]

K. Nagai, T. Takaki, T. Norimatsu, et al., Fabrication of highly spherical millimeter-sized poly(amic acid) capsules by removing non-volatile solvent, Macromol. Mater. Eng. 22 (2001) 1344-1347. https://doi.org/10.1002/1521-3927(20011101)22:16<1344::AID-MARC1344>3.0.CO;2-M.

[15]

A.B. Bourlinos, D. Petridis, Shape fabrication of millimeter-sized metalcontaining carboxymethyl cellulose hollow capsules, Chem. Commun., https://doi.org/10.1039/B208458A.

[16]

T. Takei, Y. Yamasaki, Y. Yuji, et al., Millimeter-sized capsules prepared using liquid marbles: encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force, J. Colloid Interface Sci. 536 (2019) 414-423. https://doi.org/10.1016/j.jcis.2018.10.058.

[17]

M. Zhu, J. Han, F. Wang, et al., Electrospun nanofibers membranes for effective air filtration, Macromol. Mater. Eng. 302 (2017) 1600353. https://doi.org/10.1002/mame.201600353.

[18]

T. Wu, M. Ding, C. Shi, et al., Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering, Chin. Chem. Lett. 31 (2020) 617-625. https://doi.org/10.1016/j.cclet.2019.07.033.

[19]

D. Zhou, B. Jiang, R. Yang, et al., One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution, Chin. Chem. Lett. 31 (2020) 1540-1544. https://doi.org/10.1016/j.cclet.2019.11.014.

[20]

L.G. Gómez-Mascaraque, M. Hernández-Rojas, P. Tarancón, et al., Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits, LWT-Food Sci. Technol. 81 (2017) 77-86. https://doi.org/10.1016/j.lwt.2017.03.041.

[21]

D. Zaeim, M. Sarabi-Jamab, B. Ghorani, et al., Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization, LWT-Food Sci. Technol. 110 (2019) 102-109. https://doi.org/10.1016/j.lwt.2019.04.040.

[22]

D. Lv, R. Wang, G. Tang, et al., Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity, ACS Appl. Mater. Interfaces 11 (2019) 12880-12889. https://doi.org/10.1021/acsami.9b01508.

[23]

D. Lv, M. Zhu, Z. Jiang, et al., Green electrospun nanofibers and their application in air filtration, Macromol. Mater. Eng. 303 (2018) 1800336. https://doi.org/10.1002/mame.201800336.

[24]

N. Zhang, X. Wang, C. Ma, et al., Electrospun nanofibrous cellulose acetate/curcumin membranes for fast detection of Pb ions, J. Nanosci. Nanotechol. 19 (2019) 670-674. https://doi.org/10.1166/jnn.2019.15893.

[25]

M. Zhang, W. Ma, J. Cui, et al., Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment, J. Hazard. Mater. 383 (2020) 121152. https://doi.org/10.1016/j.jhazmat.2019.121152.

[26]

S. Jiang, F. Liu, A. Lerch, et al., Unusual and superfast temperature-triggered actuators, Adv. Mater. 27 (2015) 4865-4870. https://doi.org/10.1002/adma.201502133.

[27]

S. Agarwal, S. Jiang, Y. Chen, Progress in the field of water-and/or temperature-triggered polymer actuators, Macromol. Mater. Eng. 304 (2019) 1800548. https://doi.org/10.1002/mame.201800548.

[28]

J. Zhong, H. Zhang, J. Yan, et al., Effect of nanofiber orientation of electrospun nanofibrous scaffolds on cell growth and elastin expression of muscle cells, Colloids Surf. B: Biointerfaces 136 (2015) 772-778. https://doi.org/10.1016/j.colsurfb.2015.10.017.

[29]

X. Liu, D. Wei, J. Zhong, et al., Electrospun nanofibrous P(DLLA-CL) nalloons as calcium phosphate cement filled containers for bone repair: in vitro and in vivo studies, ACS Appl. Mater. Interfaces 7 (2015) 18540-18552. https://doi.org/10.1021/acsami.5b04868.

[30]

G. Sun, D. Wei, X. Liu, et al., Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures, Nanomed. Nanotechnol. Biol. Med. 9 (2013) 829-838. https://doi.org/10.1016/j.nano.2012.12.003.

[31]

A. Madni, R. Kousar, N. Naeem, et al., Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering, J. Biores. Biopr. 6 (2021) 11-25. https://doi.org/10.1016/j.jobab.2021.01.002.

[32]

J. Zeng, X. Xu, X. Chen, et al., Biodegradable electrospun fibers for drug delivery, J. Controll. Rel. 92 (2003) 227-231. https://doi.org/10.1016/S0168-3659(03)00372-9.

[33]

S. Chen, R. Li, X. Li, et al., Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine, Adv. Drug Deliv. Rev. 132 (2018) 188-213. https://doi.org/10.1016/j.addr.2018.05.001.

[34]

M. Aceituno-Medina, A. Lopez-Rubio, S. Mendoza, et al., Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning, Food Hydrocoll. 31 (2013) 289-298. https://doi.org/10.1016/j.foodhyd.2012.11.009.

[35]

R. Leidy, Q.C.Maria Ximena, Use of electrospinning technique to produce nanofibres for food industries: a perspective from regulations to characterisations, Trends Food Sci. Technol. 85 (2019) 92-106. https://doi.org/10.1016/j.tifs.2019.01.006.

[36]

Y. Zhu, Y. Chen, G. Xu, et al., Micropattern of nano-hydroxyapatite/silk fibroin composite onto Ti alloy surface via template-assisted electrostatic spray deposition, Mater. Sci. Eng.: C 32 (2012) 390-394. https://doi.org/10.1016/j.msec.2011.11.002.

[37]

A. Javadi, A. Solouk, M. Haghbin Nazarpak, et al., Surface engineering of titanium-based implants using electrospraying and dip coating methods, Mater. Sci. Eng.: C 99 (2019) 620-630. https://doi.org/10.1016/j.msec.2019.01.027.

[38]

A. Pawar, S. Thakkar, M. Misra, A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field, J. Controll. Rel. 286 (2018) 179-200. https://doi.org/10.1016/j.jconrel.2018.07.036.

[39]

Y. Ma, M. Björnmalm, A.K. Wise, et al., Gel-mediated electrospray assembly of silica supraparticles for sustained drug delivery, ACS Appl. Mater. Interfaces 10 (2018) 31019-31031. https://doi.org/10.1021/acsami.8b10415.

[40]

B. Niu, P. Shao, Y. Luo, et al., Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application, Food Hydrocoll. 99 (2020) 105376. https://doi.org/10.1016/j.foodhyd.2019.105376.

[41]

S. Khoshnoudi-Nia, N. Sharif, S.M. Jafari, Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles, Trends Food Sci. Technol. 95 (2020) 59-74. https://doi.org/10.1016/j.tifs.2019.11.013.

[42]

I. Dapic, R. Kobetic, L. Brkljacic, et al., Quantification of free fatty acids in human stratum corneum using tandem mass spectrometry and surrogate analyte approach, Biomed. Chromatogr. 32 (2018) e4056. https://doi.org/10.1002/bmc.4056.

[43]

P. Wang, M. Li, D. Wei, et al., Electrosprayed soft capsules of millimeter-size for specifically delivering fish oil/nutrients to stomach and intestines, ACS Appl. Mater. Interfaces 12 (2020) 6536-6545. https://doi.org/10.1021/acsami.9b23623.

[44]

I.A. Siddiqui, V.M. Adhami, N. Ahmad, et al., Nanochemoprevention: sustained release of bioactive food components for cancer prevention, Nutr. Cancer 62 (2010) 883-890. https://doi.org/10.1080/01635581.2010.509537.

[45]

M. Ding, T. Zhang, H. Zhang, et al., Gelatin-stabilized traditional emulsions: emulsion forms, droplets, and storage stability, Food Sci. Hum. Well. 9 (2020) 320-327. https://doi.org/10.1016/j.fshw.2020.04.007.

[46]

M. Ding, T. Zhang, H. Zhang, et al., Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions, Food Chem. 309 (2020) 125642. https://doi.org/10.1016/j.foodchem.2019.125642.

[47]

D. Hao, R. Zhang, J. Ge, et al., Rapid and high-capacity loading of IgG monoclonal antibodies by polymer brush and peptides functionalized microspheres, J. Chromatogr. A 1640 (2021) 461948. https://doi.org/10.1016/j.chroma.2021.461948.

[48]

Y. Qiao, C. Shi, X. Wang, et al., Electrospun nanobelt-shaped polymer membranes for fast and high-sensitivity detection of metal ions, ACS Appl. Mater. Interfaces 11 (2019) 5401-5413. https://doi.org/10.1021/acsami.8b19839.

[49]

A.M. Bakry, Z. Fang, Y. Ni, et al., Stability of tuna oil and tuna oil/peppermint oil blend microencapsulated using whey protein isolate in combination with carboxymethyl cellulose or pullulan, Food Hydrocoll. 60 (2016) 559-571. https://doi.org/10.1016/j.foodhyd.2016.04.026.

[50]

S. Mun, Y.R. Kim, M. Shin, et al., Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: influence of starch and surfactant type, Food Hydrocoll. 44 (2015) 380-389. https://doi.org/10.1016/j.foodhyd.2014.10.013.

[51]

M. Ding, L. Liu, T. Zhang, et al., Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides, Food Chem. 336 (2021) 127686. https://doi.org/10.1016/j.foodchem.2020.127686.

[52]

Y. Chang, D.J. McClements, Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): caseinate, whey protein, lecithin, or Tween 80, Food Hydrocoll. 61 (2016) 92-101. https://doi.org/10.1016/j.foodhyd.2016.04.047.

[53]

F.E. Vasile, M.A. Judis, M.F. Mazzobre, Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system, Carbohydr. Polym. 166 (2017) 309-319. https://doi.org/10.1016/j.carbpol.2017.03.004.

[54]

P. Wang, M. Ding, T. Zhang, et al., Electrospraying technique and its recent application advances for biological macromolecule encapsulation of food bioactive substances, Food Rev. Int., https://doi.org/10.1080/87559129.2020.1738455.

[55]

V. Pillay, C.M. Dangor, T. Govender, et al., Ionotropic gelation: encapsulation of indomethacin in calcium alginate gel discs, J. Microencapsul. 15 (1998) 215-226. https://doi.org/10.3109/02652049809006851.

[56]

M.J. Nalbandian, M. Zhang, J. Sanchez, et al., Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources, Chemosphere 144 (2016) 975-981. https://doi.org/10.1016/j.chemosphere.2015.08.056.

[57]

H. Park, S.J. Lee, S.Y. Jung, X-ray imaging analysis on behaviors of boiling bubbles in nanofluids, Int. J. Heat Mass Transfer 128 (2019) 443-449. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.015.

[58]
W. Cao, Y. Zhang, S. Bao, A survey of patents on boron neutron capture therapy in China, 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE) (2019) 1-3.
[59]

X. Chou, K. Niu, Y. Liu, et al., Infrared-light interferometry and a phase-stepping algorithm for measuring the three-dimensional topography of components covered with GaAs or Si, Opt. Rev. 19 (2012) 34-38. https://doi.org/10.1007/s10043-012-0006-x.

[60]

S. Chavoshizadeh, S. Pirsa, F. Mohtarami, Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date, Eur. J. Lipid Sci. Technol. 122 (2020) 1900385. https://doi.org/10.1002/ejlt.201900385.

[61]

M. Abbas Ali, M. Anowarul Islam, N.H. Othman, et al., Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil, J. Food Sci. Technol. 54 (2017) 4335-4343. https://doi.org/10.1007/s13197-017-2904-1.

[62]

E. Martins, D. Poncelet, R.C. Rodrigues, et al., Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks, J. Microencapsul. 34 (2017) 754-771. https://doi.org/10.1080/02652048.2017.1403495.

[63]

E.S. Chan, Preparation of Ca-alginate beads containing high oil content: influence of process variables on encapsulation efficiency and bead properties, Carbohydr. Polym. 84 (2011) 1267-1275. https://doi.org/10.1016/j.carbpol.2011.01.015.

[64]

A.S. Motamedi, H. Mirzadeh, F. Hajiesmaeilbaigi, et al., Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds, Prog. Biomater. 6 (2017) 113-123. https://doi.org/10.1007/s40204-017-0071-0.

[65]

M. Ahmadi, A. Madadlou, A.A. Saboury, Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil, Food Chem. 196 (2016) 1016-1022. https://doi.org/10.1016/j.foodchem.2015.10.031.

[66]

X. Gong, Y. Lu, Z. Xiang, et al., Preparation of uniform microcapsules with silicone oil as continuous phase in a micro-dispersion process, J. Microencapsul. 24 (2007) 767-776. https://doi.org/10.1080/02652040701640560.

[67]

D.A. Botrel, S.V. Borges, R.V.D.B. Fernandes, et al., Optimization of fish oil spray drying using a protein:inulin system, Drying Technol. 32 (2014) 279-290. https://doi.org/10.1080/07373937.2013.823621.

[68]

P.R. Hari, T. Chandy, C.P. Sharma, Chitosan/calcium–alginate beads for oral delivery of insulin, J. Appl. Polym. Sci. 59 (1996) 1795-1801. https://doi.org/10.1002/(SICI)1097-4628(19960314)59:11<1795::AID-APP16>3.0.CO;2-T.

[69]

T.T. Zhang, J. Xu, Y.M. Wang, et al., Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids, Prog. Lipid Res. 75 (2019) 100997. https://doi.org/10.1016/j.plipres.2019.100997.

[70]

R. Gorjão, A.K. Azevedo-Martins, H.G. Rodrigues, et al., Comparative effects of DHA and EPA on cell function, Pharm. Therap. 122 (2009) 56-64. https://doi.org/10.1016/j.pharmthera.2009.01.004.

[71]

N. Kawahara, E. Tomita, T. Kadowaki, et al., In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method, Exp. Fluids 49 (2010) 925-936. https://doi.org/10.1007/s00348-010-0884-2.

Food Science and Human Wellness
Pages 397-406
Cite this article:
Tao L, Wang P, Zhang T, et al. Preparation of Multicore Millimeter-Sized Spherical Alginate Capsules to Specifically and Sustainedly Release Fish Oil. Food Science and Human Wellness, 2023, 12(2): 397-406. https://doi.org/10.1016/j.fshw.2022.07.041

733

Views

46

Downloads

7

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 27 December 2020
Revised: 12 January 2021
Accepted: 30 April 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return