AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Development of hyaluronic acid-based edible film for alleviating dry mouth

Dong-Keon KweonaJung-Ah Hanb( )
Jinwoo Bio Co., Ltd., Yongin 17111, Korea
Department of Food and Nutrition, Sangmyung University, Seoul 03016, Korea
Show Author Information

Abstract

For alleviating dry mouth symptoms, edible films based on hyaluronic acid (HA) with 3 different mw (800, 1200 and 2300 kDa) were prepared (800F, 1200F and 2300F, respectively), and the properties as well as effectiveness were compared. The concentration of each HA dispersion for film forming was set as 3.0%, 1.5% or 1.0%, for the mw 800, 1200 and 2300 kDa, respectively, based on the solubility. The 800F showed the highest thickness, tensile strength, and water vapor transparency, whereas obtained the lowest transparency and elongation at break among samples. All of the HA films showed safety against microorganism during 28 storage day at 40 °C with 60% humidity. The optimum site for film attachment in mouth was the palate, and 800F was the most effective for stimulating saliva secretion, eliciting a 38% increase compared to control (without film), tested by the elderly over 65 years old. By the sensory test, 800F was also the most acceptable. Based on above results, the edible films effectively stimulating saliva secretion could be produced with HA, and the physical, sensory characteristics as well as disintegration times of the film could be controlled by mw and the dissolution concentration of HA.

References

[1]

M. Bergdahl, J. Bergdahl, Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression, and stress, J. Dent. Res. 79 (2000) 1652-1658. https://doi.org/10.1177/00220345000790090301.

[2]
Y. Ericsson, L. Hardwick, Individual diagnosis, prognosis and counselling for caries prevention, Progress in Caries Prevention, Karger Publishers, 1978, 94-102. https://doi.org/10.1159/000402436.
[3]

G.J.W. Millsop, E.A. Wang, N. Fazel, Etiology, evaluation, and management of xerostomia, Clin. Dermatol. 35 (2017) 468-476. https://doi.org/10.1016/j.clindermatol.2017.06.010.

[4]

Ž. Guobis, N. Basevičienė, P. Paipalienė, et al., Aspects of xerostomia prevalence and treatment among rheumatic inpatients, Medicina 44 (2008) 960. https://doi.org/10.3390/medicina44120120.

[5]

R. Bressler, J.J. Bahl, Principles of drug therapy for the elderly patient, Mayo Clin. Proc. 78 (2003) 1564-1577. https://doi.org/10.4065/78.12.1564.

[6]

A. van Nieuw Amerongen, J.G. Bolscher, E.C. Veerman, Salivary proteins: protective and diagnostic value in cariology? Caries Res. 38 (2004) 247-253. https://doi.org/10.1159/000077762.

[7]

S.F. Cassolato, R.S. Turnbull, Xerostomia: clinical aspects and treatment, Gerodontology 20 (2003) 64-77. https://doi.org/10.1111/j.1741-2358.2003.00064.x.

[8]

E.L. Herod, The use of milk as a saliva substitute, J. Public Health Dent. 54 (1994) 184-189. https://doi.org/10.1111/j.1752-7325.1994.tb01211.x.

[9]

E.M. Walizer, P.M. Ephraim, Double-blind cross-over controlled clinical trial of vegetable oil versus xerolube for xerostomia: an expanded study abstract, ORL Head Neck Nurs. 14 (1996) 11-12.

[10]

P.C. Fox, M.J. Cummins, J.M. Cummins, Use of orally administered anhydrous crystalline maltose for relief of dry mouth, J. Altern. Complement. Med. 7 (2001) 33-43. https://doi.org/10.1089/107555301300004510.

[11]

D.Y.D. Samarawickrama, Saliva substitutes: how effective and safe are they? Oral Dis. 8 (2002) 177-179. https://doi.org/10.1034/j.1601-0825.2002.02848.x.

[12]

C.H. Shiboski, T.A. Hodgson, J.A. Ship, et al., Management of salivary hypofunction during and after radiotherapy, Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endod. 103 (2007) 1-19. https://doi.org/10.1016/j.tripleo.2006.11.013.

[13]

J. Necas, L. Bartosikova, P. Brauner, et al., Hyaluronic acid (hyaluronan): a review, Vet. Med. 53 (2008) 397-411. https://doi.org/10.17221/1930-VETMED.

[14]

H. Xu, L. Ma, H. Shi, Chitosan-hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies, Polym. Adv. Technol. 18 (2007) 869-875. https://doi.org/10.1002/pat.906.

[15]

Y. Luo, K.R. Kirker, G.D. Prestwich, Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, J. Control Release 69 (2000) 169-184. https://doi.org/10.1016/S0168-3659(00)00300-X

[16]

Y. Matsumoto, Y. Kuroyanagi. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor, J. Biomater. Sci. Polym. Ed. 21(6-7) (2010) 715-726. https://doi.org/10.1163/156856209X435844.

[17]

R. Uppal, G.N. Ramaswamy, C. Arnold, et al., Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior, J. Biomed. Mater. Res. Part B Appl. Biomater. 97 (2011) 20-29. https://doi.org/10.1002/jbm.b.31776.

[18]

C. Kawada, T. Yoshida, H. Yoshida, et al., Ingested hyaluronan moisturizes dry skin, Nutr. J. 13 (2014) 1-9. https://doi.org/10.1186/1475-2891-13-70.

[19]

R.M. Simpson, S. Meran, D. Thomas, et al., Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation, Am. J. Pathol. 175 (2009) 1915-1928. https://doi.org/10.2353/ajpath.2009.090045.

[20]

M.S.A. Aziz, H.E. Salama, M.W. Sabaa, Biobed alginate/castor oil edible films for active food packaging, LWT-Food Sci. Technol. 96 (2018) 455- 460. https://doi.org/10.1016/j.lwt.2018.05.049.

[21]

F.F. Shih, K.W. Daigle, E.T. Champagne, Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films, Food Chem. 127 (2011) 118-121. https://doi.org/10.1016/j.foodchem.2010.12.096.

[22]

N. Alemdar, Fabrication of a novel bone ash-reinforced gelatin/ alginate/hyaluronic acid composite film for controlled drug delivery, Carbohydr. Polym. 151 (2016) 1019-1026. https://doi.org/10.1016/j.carbpol.2016.06.033.

[23]

M. Irfan, S. Rabel, Q. Bukhtar, et al., Orally disintegrating films: a modern expansion in drug delivery system, Saudi Pharm. J. 24 (2016) 537-546. https://doi.org/10.1016/j.jsps.2015.02.024.

[24]

M.A. Bertuzzi, E.C. Vidaurre M. Armada, et al., Water vapor permeability of edible starch based films, J. Food Eng. 80 (2007) 972-978. https://doi.org/10.1016/j.jfoodeng.2006.07.016.

[25]

G. Xiao, Y. Zhu, L. Wang, et al., Production and storage of edible film using gellan gum, Procedia Environ. Sci. 8 (2011) 756-763. https://doi.org/10.1016/j.proenv.2011.10.115.

[26]

T.J. Gutiérrez, M.S. Tapia, E. Pérez, et al., Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch, Food Hydrocoll. 45 (2015) 211-217. https://doi.org/10.1016/j.foodhyd.2014.11.017.

[27]

J. Bonilla, L. Atarés, M. Vargas, et al., Properties of wheat starch filmforming dispersions and films as affected by chitosan addition, J. Food Eng. 114 (2013) 303-312. https://doi.org/10.1016/j.jfoodeng.2012.08.005.

[28]
ASTM. Standard test method for tensile properties of thin plastic sheeting, D882-02, in: Annual Book of ASTM. Philadelphia, PA: American Society for Testing and Materials, 2002.
[29]

S.R.B. Kim, Y.G. Choi, J.Y. Kim, et al., Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums, LWT-Food Sci Technol. 64 (2015) 475-482. https://doi.org/10.1016/j.lwt.2015.05.009.

[30]

T. Sivarooban, N.S. Hettiarachchy, M.G. Johnson, Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films, Food Res. Int. 41 (2008) 781-785. https://doi.org/10.1016/j.foodres.2008.04.007.

[31]

S. Mali, M.V.E. Grossmann, M.A. Garcı́a, et al., Mechanical and thermal properties of yam starch films, Food Hydrocoll. 19 (2005) 157-164. https://doi.org/10.1016/j.foodhyd.2004.05.002.

[32]

D. Jia, Y. Fang, K. Yao, Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films, Food Bioprod. Process. 87 (2009) 7-10. https://doi.org/10.1016/j.fbp.2008.06.002.

[33]

D. Lourdin, L. Coignard, H. Bizot, et al., Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials, Polymer 38 (1997) 5401-5406. https://doi.org/10.1016/S0032-3861(97)00082-7.

[34]

R. Thakur, P. Pristijono, C.J. Scarlett, et al., Starch-based films: major factors affecting their properties, Int. J. Biol. Macromol. 132 (2019) 1079- 1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190.

[35]

G.O. Lim, Y.H. Hong, K.B. Song, Preparation of gelatin film containing grapefruit seed extract and its antimicrobial effect, Korean J. Food Preserv. 16 (2009) 134-137.

[36]

Y. Pranoto, V.M. Salokhe, S.K. Rakshit, Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil, Food Res. Int. 38 (2005) 267-272. https://doi.org/10.1016/j.foodres.2004.04.009.

[37]

W. Tsai, H. Tsai, Y. Wong, et al., Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch, Mater. Sci. Eng. C 82 (2018) 317-322. https://doi.org/10.1016/j.msec.2017.05.040.

[38]

V.A. dos Santos Garcia, J.G. Borges, V.B.V. Maciel, et al., Gelatin/ starch orally disintegrating films as a promising system for vitamin C delivery, Food Hydrocoll. 79 (2018) 127-135. https://doi.org/10.1016/j.foodhyd.2017.12.027.

[39]

A. Gennadios, A.H. Brandenburg, J.W. Park, et al., Water vapor permeability of wheat gluten and soy protein isolate films, Ind. Crops. Prod. 2 (1994) 189-195. https://doi.org/10.1016/0926-6690(94)90035-3.

[40]

R.Y. Aguirre-Loredo, A.I. Rodríguez-Hernández, E. Morales-Sánchez, et al., Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films, Food Chem. 196 (2016) 560-566. https://doi.org/10.1016/j.foodchem.2015.09.065.

[41]

P. Cazón, M. Vázquez, G. Velázquez, Regenerated cellulose films with chitosan and polyvinyl alcohol: effect of the moisture content on the barrier, mechanical and optical properties, Carbohydr. Polym. 236 (2020) 116031. https://doi.org/10.1016/j.carbpol.2020.116031.

[42]

A. Riaz, A. Lei, H.M.S. Akhtar, et al., Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols, Int. J. Biol. Macromol. 114 (2018) 547-555. https://doi.org/10.1016/j.ijbiomac.2018.03.126.

[43]

R. Sharma, S. Kamboj, G. Singh, et al., Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance, Eur. J. Pharm. Sci. 84 (2016) 55-69.

[44]

J. Chick, Z. Ustunol, Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films, J. Food Sci. 63 (1998) 1024- 1027. https://doi.org/10.1111/j.1365-2621.1998.tb15846.x.

[45]

S.S. Sablani, F. Dasse, L. Bastarrachea, et al., Apple peel-based edible film development using a high‐pressure homogenization, J. Food Sci., 74 (2009) 372-381. https://doi.org/10.1111/j.1750-3841.2009.01273.x.

[46]

H.J. Kang, S.C. Min., Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound, LWT-Food Sci. Techno. 43 (2010) 903-909. https://doi.org/10.1016/j.lwt.2010.01.025.

[47]

G.G. Pereira, C.B. Detoni, A.G. Balducci, et al., Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds, Eur. J. Oral. Sci. 83 (2016) 203-211. https://doi.org/10.1016/j.ejps.2016.01.002.

[48]

J.H. Ha, Y.S. Lee, S.K. Heo, et al., Combined effects of antibacterial film and storage temperature on shelf-life and microbiological safety of mackerel, J. Food Hyg. Saf. 22 (2007) 317-322.

[49]

R.F.A. Lokerse, K.A. Maslowska-Corker, L.C. van de Wardt, et al., Growth capacity of Listeria monocytogenes in ingredients of ready-toeat salads, Food Control 60 (2016) 338-345. https://doi.org/10.1016/j.foodcont.2015.07.041.

[50]

P. Pirnazar, L. Wolinsky, S. Nachnani, et al., Bacteriostatic effects of hyaluronic acid, J. Periodontol. 70 (1999) 370-374. https://doi.org/10.1902/ jop.1999.70.4.370.

[51]

A. Ardizzoni, R.G. Neglia, M.C. Baschieri et al., BlasiInfluence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens, J. Mat. Sci.: Mater. Med. 22 (2011) 2329-2338. https://doi.org/10.1007/s10856-011-4408-2.

[52]

P.C. Fox, K.A. Busch, B.J. Baum, Subjective reports of xerostomia and objective measures of salivary gland performance, J. Am. Dent. Assoc. 115 (1987) 581-584. https://doi.org/10.1016/s0002-8177(87)54012-0.

[53]

M. Bergdahl, Salivary flow and oral complaints in adult dental patients, Community Dent. Oral Epidemiol. 28 (2000) 59-66. https://doi.org/10.1034/j.1600-0528.2000.280108.x.

[54]

A. Arya, A. Chandra, V. Sharma, et al., Fast dissolving oral films: an innovative drug delivery system and dosage form, Int. J. Chem. Tech. Res. 2 (2010) 576-583.

[55]

R.P. Dixit, S.P. Puthli, Oral strip technology: overview and future potential, J. Control. Release 139 (2009) 94-107. https://doi.org/10.1016/j.jconrel.2009.06.014.

[56]

Y. Takeuchi, K. Umemura, K. Tahara, Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms, J. Drug Deliv. Sci. Technol. 46 (2018) 93-100. https://doi.org/10.1016/j.jddst.2018.05.002.

Food Science and Human Wellness
Pages 371-377
Cite this article:
Kweon D-K, Han J-A. Development of hyaluronic acid-based edible film for alleviating dry mouth. Food Science and Human Wellness, 2023, 12(2): 371-377. https://doi.org/10.1016/j.fshw.2022.07.039

862

Views

118

Downloads

20

Crossref

21

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 15 June 2021
Revised: 09 July 2021
Accepted: 17 August 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return