AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (837 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Biological factors controlling starch digestibility in human digestive system

Cheng Lia,b( )Yiming HucSongnan LibXueer YiaShuaibo ShaoaWenwen YudEnpeng Lie
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, China
Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China
Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China
Show Author Information

Abstract

Starch digestion rate and location in the gastrointestinal tract (GIT) are critical for human health. This review aims to present a comprehensive summary on our current understanding of physiological, biochemical, anatomical and geometrical factors of human digestive system that are related to in vivo starch digestibility. It is shown that all digestive compartments including mouth, stomach, small intestine, and large intestine play critical roles in regulating the overall starch digestion process. A proper investigation of starch digestion pattern should thus be based on the consideration of all these compartments. Main biological factors are summarized as oral mastication and salivation, gastric emptying and motility, small intestinal enzymes and motility, large intestinal resistant starch (RS)-microbiota interactions and gut-brain feedback control, as well as glucose adsorption and hormonal feedback control. However, connections among these biological factors in determining starch digestive behaviors remain elusive. This is due to the inherent complexity of human GIT anatomy, motility and biochemical conditions, as well as ethical, financial and technical issues in conducting clinical studies. Much technological and scientific efforts from both clinical studies and in vitro simulation models are required for a better understanding of in vivo starch digestion behaviors.

References

[1]

C. Li, W. Yu, P. Wu, et al., Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract, Trends Food Sci. Technol. 96 (2020) 114-126, http://dx.doi.org/10.1016/j.tifs.2019.12.015.

[2]

C.H. Edwards, M.M. Grundy, T. Grassby, et al., Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants, Am. J. Clin. Nutr. 102 (2015) 791- 800, http://dx.doi.org/10.3945/ajcn.114.106203.

[3]

M.A. Conlon, C.A. Kerr, C.S. McSweeney, et al., Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet, J. Nutr. 142 (2012) 832-840, http://dx.doi.org/10.3945/jn.111.147660.

[4]

G. Zhang, B.R. Hamaker, Slowly digestible starch: concept, mechanism, and proposed extended glycemic index, Crit. Rev. Food Sci. Nutr. 49 (2009) 852-867, http://dx.doi.org/10.1080/10408390903372466.

[5]

M. Miao, B. Jiang, S.W. Cui, et al., Slowly digestible starch-a review, Crit. Rev. Food Sci. Nutr. 55 (2015) 1642-1657, http://dx.doi.org/10.1080/10408398.2012.704434.

[6]

B. Gong, L. Cheng, R.G. Gilbert, et al., Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch, Food Hydrocoll. 96 (2019) 634-643, http://dx.doi.org/10.1016/j.foodhyd.2019.06.003.

[7]

C. Li, Y. Hu, F. Gu, et al., Causal relations among starch fine molecular structure, lamellar/crystalline structure and in vitro digestion kinetics of native rice starch, Food Funct. 12 (2021) 682-695, http://dx.doi.org/10.1039/d0fo02934c.

[8]

C. Li, B. Gong, T. Huang, et al., in vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains, Carbohydr. Polym. 254 (2021) 117275, http://dx.doi.org/10.1016/j.carbpol.2020.117275.

[9]

C. Li, Y. Hu, Combination of parallel and sequential digestion kinetics reveals the nature of digestive characteristics of short-term retrograded rice starches, Food Hydrocoll. 108 (2020) 106071, http://dx.doi.org/10.1016/j.foodhyd.2020.106071.

[10]

C. Li, A. Wu, W. Yu, et al., Parameterizing starch chain-length distributions for structure-property relations, Carbohydr. Polym. 241 (2020) 116390, http://dx.doi.org/10.1016/j.carbpol.2020.116390.

[11]

C. Li, B. Gong, Y. Hu, et al., Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches, Food Hydrocoll. 105 (2020) 105823, http://dx.doi.org/10.1016/j.foodhyd.2020.105823.

[12]

M. Obadi, C. Li, Q. Li, et al., Relationship between starch fine molecular structures and cooked wheat starch digestibility, J. Cereal Sci. 95 (2020) 103047, http://dx.doi.org/ARTN10304710.1016/j.jcs.2020.103047.

[13]

J. Chen, Food oral processing-A review, Food Hydrocoll. 23 (2009) 1-25, http://dx.doi.org/10.1016/j.foodhyd.2007.11.013.

[14]

G.M. Bornhorst, R.P. Singh, Bolus formation and disintegration during digestion of food carbohydrates, Compr. Rev. Food Sci. Food Saf. 11 (2012) 101-118, http://dx.doi.org/10.1111/j.1541-4337.2011.00172.x.

[15]

S. Marze, Bioavailability of nutrients and micronutrients: advances in modeling and in vitro approaches, Annu. Rev. Food Sci. Technol. 8 (2017) 35-55, http://dx.doi.org/10.1146/annurev-food-030216-030055.

[16]

A. van der Bilt, F.A. Fontijn-Tekamp, Comparison of single and multiple sieve methods for the determination of masticatory performance, Arch. Oral Biol. 49 (2004) 193-198, http://dx.doi.org/10.1016/j.archoralbio.2003.08.007.

[17]

S. Dhital, F.J. Warren, P.J. Butterworth, et al., Mechanisms of starch digestion by alpha-amylase-structural basis for kinetic properties, Crit. Rev. Food Sci. Nutr. 57 (2017) 875-892, http://dx.doi.org/10.1080/10408398.2014.922043.

[18]

M.A. Peyron, V. Sante-Lhoutellier, O. Francois, et al., Oral declines and mastication deficiencies cause alteration of food bolus properties, Food Funct. 9 (2018) 1112-1122, http://dx.doi.org/10.1039/c7fo01628j.

[19]

V. Ranawana, J.A. Monro, S. Mishra, et al., Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability, Nutr. Res. 30 (2010) 246-254, http://dx.doi.org/10.1016/j.nutres.2010.02.004.

[20]

V. Ranawana, M.K.S. Leow, C.J.K. Henry, Mastication effects on the glycaemic index: impact on variability and practical implications, Eur. J. Clin. Nutr. 68 (2014) 137-139, http://dx.doi.org/10.1038/ejcn.2013.231.

[21]

A.L. Ferry, J. Hort, J.R. Mitchell, et al., Effect of amylase activity on starch paste viscosity and its implications for flavor perception, J. Texture Stud. 35 (2004) 511-524, http://dx.doi.org/10.1111/j.1745-4603.2004.35503.x.

[22]

F. Cisse, D.P. Erickson, A.M.R. Hayes, et al., Traditional malian solid foods made from sorghum and millet have markedly slower gastric emptying than rice, potato, or pasta, Nutrients 10 (2018) 124, http://dx.doi.org/10.3390/nu10020124.

[23]

Q. Guo, A. Ye, H. Singh, et al., Destructuring and restructuring of foods during gastric digestion, Compr. Rev. Food Sci. Food Saf. 2020 (2020) 1-22, http://dx.doi.org/10.1111/1541-4337.12558.

[24]

W. Zou, M. Sissons, M.J. Gidley, et al., Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate, Food Chem. 188 (2015) 559-568, http://dx.doi.org/10.1016/j.foodchem.2015.05.032.

[25]

A. Brodkorb, L. Egger, M. Alminger, et al., INFOGEST static in vitro simulation of gastrointestinal food digestion, Nat. Protoc. 14 (2019) 991- 1014, http://dx.doi.org/10.1038/s41596-018-0119-1.

[26]

E.J. Vernon-Carter, J. Alvarez-Ramirez, M. Meraz, et al., Gaining insights into alpha-amylase inhibition by glucose through mathematical modeling and analysis of the hydrolysis kinetics of gelatinized corn starch dispersions, Int. J. Biol. Macromol. 132 (2019) 766-771, http://dx.doi.org/10.1016/j.ijbiomac.2019.03.226.

[27]

J. Campbell, J. Berry, Y. Liang, Anatomy and physiology of the small intestine, Shackelford’s Surgery of the Alimentary Tract 1 (2019) 817-841.

[28]

M. Culen, A. Rezacova, J. Jampilek, et al., Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine, J. Pharm. Sci. 102 (2013) 2995-3017, http://dx.doi.org/10.1002/jps.23494.

[29]

J.E. Stevens, K.L. Jones, C.K. Rayner, et al., Pathophysiology and pharmacotherapy of gastroparesis: current and future perspectives, Expert Opin. Pharmacother. 14 (2013) 1171-1186, http://dx.doi.org/10.1517/14656566.2013.795948.

[30]

P. Raigond, R. Ezekiel, B. Raigond, Resistant starch in food: a review, J. Sci. Food Agric. 95 (2015) 1968-1978, http://dx.doi.org/10.1002/jsfa.6966.

[31]

G. Tolhurst, H. Heffron, Y.S. Lam, et al., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes 61 (2012) 364-371, http://dx.doi.org/10.2337/db11-1019.

[32]

M.L. Sleeth, E.L. Thompson, H.E. Ford, et al., Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation, Nutr. Res. Rev. 23 (2010) 135- 145, http://dx.doi.org/10.1017/S0954422410000089.

[33]

C. Salles, M.C. Chagnon, G. Feron, et al., In-mouth mechanisms leading to flavor release and perception, Crit. Rev. Food Sci. Nutr. 51 (2011) 67-90, http://dx.doi.org/10.1080/10408390903044693.

[34]

K. Muller, C. Figueroa, C. Martinez, et al., Measurement of saliva volume in the mouth of members of a trained sensory panel using a beetroot (Beta vulgaris) extract, Food Qual. Prefer. 21 (2010) 569-574, http://dx.doi.org/10.1016/j.foodqual.2010.03.005.

[35]

M.B.D. Gaviao, L. Engelen, A. van der Bilt, Chewing behavior and salivary secretion, Eur. J. Oral Sci. 112 (2004) 19-24, http://dx.doi.org/10.1111/j.0909-8836.2004.00105.x.

[36]

G.M. Bornhorst, R. Paul Singh, Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestion process, Annu. Rev. Food Sci. Technol. 5 (2014) 111-132, http://dx.doi.org/10.1146/annurevfood-030713-092346.

[37]

L. Marciani, P.A. Gowland, R.C. Spiller, et al., Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI, Am. J. Physiol. Gastrointest. Liver Physiol. 280 (2001) G1227-1233, http://dx.doi.org/10.1152/ajpgi.2001.280.6.G1227.

[38]

D. Freitas, S. Le Feunteun, Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: unveiling the contribution of human salivary alpha-amylase, Food Chem. 274 (2019) 566-573, http://dx.doi.org/10.1016/j.foodchem.2018.09.025.

[39]

S. Wang, L. Copeland, Effect of acid hydrolysis on starch structure and functionality: a review, Crit. Rev. Food Sci. Nutr. 55 (2015) 1081-1097, http://dx.doi.org/10.1080/10408398.2012.684551.

[40]

M. Fried, S. Abramson, J.H. Meyer, Passage of salivary amylase through the stomach in humans, Dig. Dis. Sci. 32 (1987) 1097-1103, http://dx.doi.org/10.1007/BF01300195.

[41]

L.K. Phillips, A.M. Deane, K.L. Jones, et al., Gastric emptying and glycaemia in health and diabetes mellitus, Nat. Rev. Endocrinol. 11 (2015) 112-128, http://dx.doi.org/10.1038/nrendo.2014.202.

[42]

J. Ma, A.N. Pilichiewicz, C. Feinle-Bisset, et al., Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes, Diabet. Med. 29 (2012) 604-608, http://dx.doi.org/10.1111/j.1464-5491.2011.03496.x.

[43]

T.J. Little, S. Doran, J.H. Meyer, et al., The release of GLP-1 and ghrelin, but not GIP and CCK, by glucose is dependent upon the length of small intestine exposed, Am. J. Physiol. Endocrinol. Metab. 291 (2006) E647-655, http://dx.doi.org/10.1152/ajpendo.00099.2006.

[44]

L.G. Trahair, M. Horowitz, C.K. Rayner, et al., Comparative effects of variations in duodenal glucose load on glycemic, insulinemic, and incretin responses in healthy young and older subjects, J. Clin. Endocrinol. Metab. 97 (2012) 844-851, http://dx.doi.org/10.1210/jc.2011-2583.

[45]

J.E. Norton, G.A. Wallis, F. Spyropoulos, et al., Designing food structures for nutrition and health benefits, Annu. Rev. Food Sci. Technol. 5 (2014) 177-195, http://dx.doi.org/10.1146/annurev-food-030713-092315.

[46]

W. Zou, B.L. Schulz, X. Tan, et al., The role of thermostable proteinaceous α-amylase inhibitors in slowing starch digestion in pasta, Food Hydrocoll. 90 (2018) 241-247, http://dx.doi.org/10.1016/j.foodhyd.2018.12.023.

[47]

B.M. Dunn, Structure and mechanism of the pepsin-like family of aspartic peptidases, Chem. Rev. 102 (2002) 4431-4458, http://dx.doi.org/10.1021/cr010167q.

[48]

G. Somaratne, F. Nau, M.J. Ferrua, et al., Characterization of egg white gel microstructure and its relationship with pepsin diffusivity, Food Hydrocoll. 98 (2020) 105258, http://dx.doi.org/ARTN10525810.1016/j.foodhyd.2019.105258.

[49]

J. Thevenot, C. Cauty, D. Legland, et al., Pepsin diffusion in dairy gels depends on casein concentration and microstructure, Food Chem. 223 (2017) 54-61, http://dx.doi.org/10.1016/j.foodchem.2016.12.014.

[50]

S. Wang, C. Chao, J. Cai, et al., Starch-lipid and starch-lipid-protein complexes: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 2020 (2020) 1-24, http://dx.doi.org/10.1111/1541-4337.12550.

[51]

G.A. Annor, M. Marcone, M. Corredig, et al., Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI), J. Cereal Sci. 64 (2015) 76-81, http://dx.doi.org/10.1016/j.jcs.2015.05.004.

[52]

M. Zheng, C. Chao, J. Yu, et al., Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes, J. Agric. Food Chem. 66 (2018) 1872-1880, http://dx.doi.org/10.1021/acs.jafc.7b04779.

[53]

R. Quezada-Calvillo, L. Sim, Z.H. Ao, et al., Luminal starch substrate “Brake” on maltase-glucoamylase activity is located within the glucoamylase subunit, J. Nutr. 138 (2008) 685-692, http://dx.doi.org/10.1093/jn/138.4.685.

[54]

B.H. Lee, L.A. Bello-Pérez, A.H.M. Lin, et al., Importance of location of digestion and colonic fermentation of starch related to its quality, Cereal Chem. 90 (2013) 335-343, http://dx.doi.org/10.1094/CCHEM-05-13-0095-FI.

[55]

B.L. Nichols, S. Avery, P. Sen, et al., The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities, PNAS100 (2003) 1432-1437, http://dx.doi.org/10.1073/pnas.0237170100.

[56]

D. Deng, N. Yan, GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters, Protein Sci. 25 (2016) 546-558, http://dx.doi.org/10.1002/pro.2858.

[57]

N. Yan, Structural biology of the major facilitator superfamily transporters, Annu. Rev. Biophys. 44 (2015) 257-283, http://dx.doi.org/10.1146/annurevbiophys-060414-033901.

[58]

J.H. Cummings, H.S. Wiggins, D.J. Jenkins, et al., Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion, J. Clin. Invest. 61 (1978) 953-963, http://dx.doi.org/10.1172/JCI109020.

[59]

A. Wichmann, A. Allahyar, T.U. Greiner, et al., Microbial modulation of energy availability in the colon regulates intestinal transit, Cell Host Microbe 14 (2013) 582-590, http://dx.doi.org/10.1016/j.chom.2013.09.012.

[60]

P. Edery, S. Lyonnet, L.M. Mulligan, et al., Mutations of the RET proto-oncogene in Hirschsprung’s disease, Nature 367 (1994) 378-380, http://dx.doi.org/10.1038/367378a0.

[61]

R.L. Levy, W.E. Whitehead, M.R. Von Korff, et al., Intergenerational transmission of gastrointestinal illness behavior, Am. J. Gastroenterol. 95 (2000) 451-456, http://dx.doi.org/10.1111/j.1572-0241.2000.01766.x.

[62]

E.M. Quigley, Microflora modulation of motility, J. Neurogastroenterol. Motil. 17 (2011) 140-147, http://dx.doi.org/10.5056/jnm.2011.17.2.140.

[63]

M. Pimentel, H.C. Lin, P. Enayati, et al., Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity, Am. J. Physiol. Gastrointest. Liver Physiol. 290 (2006) G1089- 1095, http://dx.doi.org/10.1152/ajpgi.00574.2004.

[64]

L.L. Baggio, D.J. Drucker, Biology of incretins: GLP-1 and GIP, Gastroenterology 132 (2007) 2131-2157, http://dx.doi.org/10.1053/j.gastro.2007.03.054.

[65]

C.S. Marathe, C.K. Rayner, K.L. Jones, et al., Relationships between gastric emptying, postprandial glycemia, and incretin hormones, Diabetes Care 36 (2013) 1396-1405, http://dx.doi.org/10.2337/dc12-1609.

[66]

T.Z. Wu, B.R. Zhao, M.J. Bound, et al., Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans, Am. J. Clin. Nutr. 95 (2012) 78-83, http://dx.doi.org/10.3945/ajcn.111.021543.

[67]

C.C. Booijink, S. El-Aidy, M. Rajilic-Stojanovic, et al., High temporal and inter-individual variation detected in the human ileal microbiota, Environ. Microbiol. 12 (2010) 3213-3227, http://dx.doi.org/10.1111/j.1462-2920.2010.02294.x.

[68]

E.G. Zoetendal, J. Raes, B. van den Bogert, et al., The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates, ISME J. 6 (2012) 1415-1426, http://dx.doi.org/10.1038/ismej.2011.212.

[69]

J.S. Lichtman, E. Alsentzer, M. Jaffe, et al., The effect of microbial colonization on the host proteome varies by gastrointestinal location, ISME J. 10 (2016) 1170-1181, http://dx.doi.org/10.1038/ismej.2015.187.

[70]

P.J. Turnbaugh, V.K. Ridaura, J.J. Faith, et al., The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice, Sci. Transl. Med. 1 (2009) 6ra14, http://dx.doi.org/10.1126/scitranslmed.3000322.

[71]

N.M. Koropatkin, E.A. Cameron, E.C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10 (2012) 323-335, http://dx.doi.org/10.1038/nrmicro2746.

[72]

V. Lombard, T. Bernard, C. Rancurel, et al., A hierarchical classification of polysaccharide lyases for glycogenomics, Biochem. J. 432 (2010) 437-444, http://dx.doi.org/10.1042/Bj20101185.

[73]

B. Drzikova, G. Dongowski, E. Gebhardt, Dietary fibre-rich oatbased products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats, Br. J. Nutr. 94 (2005) 1012-1025, http://dx.doi.org/10.1079/bjn20051577.

[74]

U. Lesmes, E.J. Beards, G.R. Gibson, et al., Effects of resistant starch type Ⅲ polymorphs on human colon microbiota and short chain fatty acids in human gut models, J. Agric. Food Chem. 56 (2008) 5415-5421, http://dx.doi.org/10.1021/jf800284d.

[75]

G.C.J. Abell, C.M. Cooke, C.N. Bennett, et al., Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch, Fems. Microbiol. Ecol. 66 (2008) 505-515, http://dx.doi.org/10.1111/j.1574-6941.2008.00527.x.

[76]

A.W. Walker, J. Ince, S.H. Duncan, et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota, ISME J. 5 (2011) 220-230, http://dx.doi.org/10.1038/ismej.2010.118.

[77]

P. Louis, K.P. Scott, S.H. Duncan, et al., Understanding the effects of diet on bacterial metabolism in the large intestine, J. Appl. Microbiol. 102 (2007) 1197-1208, http://dx.doi.org/10.1111/j.1365-2672.2007.03322.x.

[78]

F.Z. Marques, C.R. Mackay, D.M. Kaye, Beyond gut feelings: how the gut microbiota regulates blood pressure, Nat. Rev. Cardiol. 15 (2018) 20-32, http://dx.doi.org/10.1038/nrcardio.2017.120.

[79]

M.B. Roberfroid, Caloric value of inulin and oligofructose, J. Nutr. 129 (1999) 1436s-1437s, http://dx.doi.org/10.1038/sj.ijo.0800961.

[80]

J.C. Mathers, Energy value of resistant starch, Eur. J. Clin. Nutr. 46 (Suppl 2) (1992) S129-130, http://dx.doi.org/10.1111/j.1365-2621.1996.tb14215.x.

[81]

I. Martinez, J. Kim, P.R. Duffy, et al., Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects, PLoS One 5 (2010) e15046, http://dx.doi.org/ARTNe1504610.1371/journal.pone.0015046.

[82]

F. Gu, C. Li, B.R. Hamaker, et al., Fecal microbiota responses to rice RS3 are specific to amylose molecular structure, Carbohydr. Polym. 243 (2020) 116475, http://dx.doi.org/10.1016/j.carbpol.2020.116475.

[83]

E.W. Pomare, W.J. Branch, J.H. Cummings, Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood, J. Clin. Invest. 75 (1985) 1448-1454, http://dx.doi.org/10.1172/JCI111847.

[84]

H.M. Hamer, D. Jonkers, K. Venema, et al., Review article: the role of butyrate on colonic function, Aliment. Pharmacol. Ther. 27 (2008) 104-119, http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x.

[85]

S.J. Lewis, K.W. Heaton, Increasing butyrate concentration in the distal colon by accelerating intestinal transit, Gut 41 (1997) 245-251, http://dx.doi.org/10.1136/gut.41.2.245.

[86]

Z.G. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58 (2009) 1509-1517, http://dx.doi.org/10.2337/db08-1637.

[87]

L.M. Sullivan, J.J. Kehoe, L. Barry, et al., Gastric digestion of alpha-lactalbumin in adult human subjects using capsule endoscopy and nasogastric tube sampling, Br. J. Nutr. 112 (2014) 638-646, http://dx.doi.org/10.1017/S0007114514001196.

[88]

R. Boutrou, C. Gaudichon, D. Dupont, et al., Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans, Am. J. Clin. Nutr. 97 (2013) 1314-1323, http://dx.doi.org/10.3945/ajcn.112.055202.

[89]

A. Guerra, L. Etienne-Mesmin, V. Livrelli, et al., Relevance and challenges in modeling human gastric and small intestinal digestion, Trends Biotechnol. 30 (2012) 591-600, http://dx.doi.org/10.1016/j.tibtech.2012.08.001.

Food Science and Human Wellness
Pages 351-358
Cite this article:
Li C, Hu Y, Li S, et al. Biological factors controlling starch digestibility in human digestive system. Food Science and Human Wellness, 2023, 12(2): 351-358. https://doi.org/10.1016/j.fshw.2022.07.037

1092

Views

91

Downloads

44

Crossref

30

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 25 December 2020
Revised: 07 January 2021
Accepted: 02 February 2021
Published: 07 September 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return