AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fecal metabolomics reveals the positive effect of ethanol extract of propolis on T2DM mice

Chunmei WangaHuiting ZhaobKai XucYali DudJinjia LiuaJinfei WangaYusuo Jianga( )
College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
Jilin Province Institute of Apicultural Science, Jilin 132108, China
College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus (T2DM). However, there are have only been a few reports that are based on an ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) analysis of the fecal metabolomics of ethanol extract of propolis (EEP) in the treatment of T2DM. The present investigation was designed to screen potential biomarkers of T2DM by the metabonomic method and to explain the possible anti-diabetes mechanism of EEP according to the changes in the biomarkers. The results showed that EEP improved the body weight (BW) of T2DM mice, lowered blood sugar levels, and significantly restored blood biochemical indicators related to T2DM, such as fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), aspartate transaminase (AST), and alanine aminotransferase (ALT). Liver pathology showed that EEP reversed liver damage caused by T2DM. Metabolomics data identified 27 potential biomarkers in fecal samples. EEP effectively regulated the dysfunction in the metabolic pathways of glycerophospholipids, sphingolipids, riboflavins, and sterol lipids caused by T2DM. In summary, our research results revealed positive effects of EEP in the treatment of T2DM and provided potential candidate markers for further research and in the clinical treatment of T2DM.

References

[1]

K. Srinivasan, B. Viswanad, L. Asrat, et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening, Pharmacol. Res. 52 (2005) 313-320. http://dx.doi.org/10.1016/j.phrs.2005.05.004.

[2]
International diabetes federation diabetes Atlas 9th edition, 2019, IDF, Brussels. available at: https://diabetesatlas.org/.
[3]

M. Karahashi, Y. Hirata-Hanta, K. Kawabata, et al., Abnormalities in the metabolism of fatty acids and triacylglycerols in the liver of the goto-kakizaki rat: a model for non-obese type 2 diabetes, Lipids 51 (8) (2016) 955-971. http://dx.doi.org/10.1007/s11745-016-4171-8.

[4]

C. Van Olden, A.K. Groen, M. Nieuwdorp, Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus, Clin. Ther. 37 (2015) 1172-1177. http://dx.doi.org/10.1016/j.clinthera.2015.03.008.

[5]

R. Farese, R. Zechner, C. Newgard, et al., The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance, Cell Metab. 15 (2012) 570-573. http://dx.doi.org/10.1016/j.cmet.2012.03.004.

[6]

H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature 535 (2016) 376-381. http://dx.doi.org/10.1038/nature18646.

[7]

C. Baker, C. Retzik-Stahr, V. Singh, et al., Should metformin remain the first-line therapy for treatment of type 2 diabetes?, Ther. Adv. Endocrinol. 12 (2021) 204201882098022. http://dx.doi.org/10.1177/2042018820980225.

[8]

P. Kamal, R. Bhabhra. SUN-185 glipizide induced hepatotoxicity, J. Endocr. Soc. 3(Suppl 1) (2019) SUN-185. http://dx.doi.org/10.1210/js.2019-SUN-185.

[9]

H.E. Lebovitz, Differentiating members of the thiazolidinedione class: a focus on safety, Diabetes Metab. Res. Rev. 18 (2010) 23-29. http://dx.doi.org/10.1002/dmrr.252.

[10]

C.S. Fox, S.H. Golden, C. Anderson, et al., Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the american heart association and the american diabetes association, Diabetes Care 38 (2015) 1777-1803. http://dx.doi.org/10.2337/dci15-0012.

[11]

Y.Y. Lu, “Propolis Research” academic monograph published, J. Bee. 8 (2019) 54.

[12]

H.C. Zhang, New progress has been made in the extraction and identification of polyphenols in propolis, Apiculture of China. 66 (2015) 16. http://dx.doi.org/CNKI:SUN:ZGYF.0.2015-11-007.

[13]

P. Temesio, N. Ross, R. Alvarez, Topical treatment with propolis dressings of poor healing foot ulcers in diabetic patients, J. Anal. At. Spectrom. 19 (2012) 788-795.

[14]

M. Xue, Y. Liu, H. Xu, et al., Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats, Biomed. Pharmacother. 118 (2019) 109393. http://dx.doi.org/10.1016/j.biopha.2019.109393.

[15]

T.A. Clayton, J.C. Lindon, O. Cloarec, et al., Pharmaco-metabonomic phenotyping and personalized drug treatment, Nature 440 (2006) 1073-1077. http://dx.doi.org/10.1038/nature04648.

[16]

P. Gao, C. Yang, C.L. Nesvick, et al., Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling, Oncotarget. 7 (2016) 15200-15214. http://dx.doi.org/10.18632/oncotarget.7710.

[17]

P. Luo, P.Y. Yin, R. Hua, et al., A large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma, Hepatology. 67 (2018) 662-675. http://dx.doi.org/10.1002/hep.29561.

[18]

K. Wang, X.L. Jin, Q.Q. Li, et al., Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp. populations in a model of DSS-induced colitis, Mol. Nutr. Food Res. 62 (2018) e1800080. http://dx.doi.org/10.1002/mnfr.201800080.

[19]

K. Wang, J. Zhang, S. Ping, et al., Anti-inflammatory effects of ethanol extracts of Chinese propolis and buds from poplar (Populus × canadensis), J. Ethnopharmacol. 155 (2014) 300-311. https://doi.org/10.1016/j.jep.2014.05.037.

[20]

J.R. Nie, Y.N. Chang, Y. Li, et al., Caffeic acid phenethyl ester (propolis extract) ameliorates insulin resistance by inhibiting jnk and NF-κb inflammatory pathways in diabetic mice and hepG2 cell models, J. Agr. Food Chem. 65 (2017) 9041-9053. http://dx.doi.org/10.1021/acs.jafc.7b02880.

[21]

J. Chen, L. Zheng, Z. Hu, et al., Metabolomics reveals effect of zishen jiangtang pill, a Chinese herbal product on high-fat diet-induced type 2 diabetes mellitus in mice, Front. Pharmacol. 10 (2019) 256. http://dx.doi.org/10.3389/fphar.2019.00256.

[22]

Z.X. Ni, S. Sun, Y.L. Bi, et al., Correlation of fecal metabolomics and gut microbiota in mice with endometriosis, J. Reprod. Immunol. 84 (6) (2020) e13307. http://dx.doi.org/10.1111/aji.13307.

[23]

N. Kamalakkannan, P.S.M. Prince, Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats, Basic Clin. Pharmacol. 98 (2006) 97-103. http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x.

[24]

A.K. Fenercioglu, T. Saler, E. Genc, et al., The effects of polyphenol-containing antioxidants on oxidative stress and lipidperoxidation in Type 2 diabetes mellitus without complications, J. Endocrinol. Invest. 33 (2009) 118-124. http://dx.doi.org/10.1007/BF03346565.

[25]

E.S.M. El-sayed, O.M. Abo-salem, H.A. Aly, et al., Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats, Pak. J. Pharm. Sci. 22 (2009) 168-174.

[26]

X.L. Lv, Y.S. Yang, K. Chen, et al., Effect of Xinjiangtang granules on activities of key enzymes in glucose metabolism and liver function in type 2 diabetic rats, World Science and Technology-Modernization of Traditional Chinese Medicine. 7 (2015) 1473-1478. http://dx.doi.org/10.11842/wst.2015.07.025.

[27]

S. Alexandra, U.M. Ceeneena, J.S. Franz, et al., Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1, Int. J. of Oral Sci. 11 (2019) 50-57. http://dx.doi.org/10.1038/s41368-018-0039-5.

[28]

S. Chaa, M.Y. Boufadi, S. Keddari, et al., Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats, Rev. Bras. Farmacogn. 29 (2019) 294-300. http://dx.doi.org/10.1016/j.bjp.2019.01.005.

[29]

D. Garcia-Compean, J.O. Jaquez-Quintana, J.A. Gonzalez-Gonzalez, et al., Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and management, World J. of Gastroentero. 15 (2009) 280-288. http://dx.doi.org/10.3748/wjg.15.280.

[30]
X.Q. Wu, Clinical study of Shengmai injection intervention on deficiency of Qi and Yin in type 2 diabetes mellitus based on metabonomics, Guangzhou University of Chinese Medicine 2013.
[31]

M.A. Zayed, F.F. Hsu, B.W. Patterson, et al., Diabetes adversely affects phospholipid profiles in human carotid artery endarterectomy plaques, J. Lipid Res. 59 (2018) 730-738. http://dx.doi.org/10.1194/jlr.M081026.

[32]
H. Wen, Study on the mechanism of propolis and grape seed active ingredients on diabetes mellitus based on metabolomics, Shaanxi University of Science and Technology 2017.
[33]

K.T. Tonks, A.C. Coster, M.J. Christopher, et al., Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans, Obesity 24 (2016) 908-916. http://dx.doi.org/10.1002/oby.21448.

[34]

P. Ravinder, K.S. Avtar, S. Inderjit, A novel role of lactosylceramide in the regulation of tumor necrosis factor alpha-mediated proliferation of rat primary astrocytes: implications for astrogliosis following neurotrauma, J. Biol. Chem. 280 (2005) 13742-13751. http://dx.doi.org/10.1074/jbc.M411959200.

[35]

G. Dawson, Glycosphingolipid levels in an unusual neurovisceral storage disease characterized by lactosylceramide galactosyl hydrolase deficiency: lactosylceramidosis, J. Lipid Res. 13 (1972) 207-219. http://dx.doi.org/10.1007/BF01539064.

[36]

N.L. Gong, H.M. Wei, S.H. Chowdhury, et al., Lactosylceramide recruits PKCalpha/epsilon and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells, P. Natl. Acad. Sci. USA. 101 (2004) 6490-6495. http://dx.doi.org/10.1073/pnas.0308684101.

[37]

J.J. Qin, Y.R. Li, Z.M. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. http://dx.doi.org/10.1038/nature11450.

[38]

X. Wang, J. Wang, B. Rao, et al., Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals, Exp. Ther. Med. 13 (2017) 2848-2854. http://dx.doi.org/10.3892/etm.2017.4367.

[39]

H. Wolden-kirk, L. Overbergh, H.T. Christesen, et al., Vitamin D and diabetes: Its importance for beta cell and immune function, Mol. Cell Endocrinol. 347 (2011) 106-120. http://dx.doi.org/10.1016/j.mce.2011.08.016.

[40]

X. Palomer, J.M. Gonzalez-clemente, F. Blanco-vaca, et al., Role of vitamin D in the pathogenesis of type 2 diabetes mellitus, Diabetes. Obes. Metab. 10 (2008) 185-197. http://dx.doi.org/10.1111/j.1463-1326.2007.00710.x.

[41]

Y.Y. Yang, J.M. Liu, What can we learn from the Vitamin D and Type 2 Diabetes (D2d) Study?, J. Diabetes. 12 (2020) 259-261. http://dx.doi.org/10.1111/10.1111/1753-0407.12997.

[42]

A. Zittermann, Vitamin D in preventive medicine: are we ignoring the evidence?, Brit. J. Nutr. 89 (2003) 552-572. http://dx.doi.org/10.1079/BJN2003837.

[43]

S.R. Monique, R. Alec, B. Stafford, Increased urinary-free cortisol outputs in diabetic patients, J. Diabetes. Complicat. 12 (1998) 24-27. http://dx.doi.org/10.1016/S1056-8727(97)00006-8.

[44]

A.K. Pingili, S. Thirunavukkarasu, M. Kara, et al., 6β-Hydroxytestosterone, a cytochrome p450 1b1-testosterone-metabolite, mediates angiotensin ii-induced renal dysfunction in male mice, Hypertension 67 (2016) 916-926. http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06936.

[45]

M. Kotegawa, M. Sugiyama, N. Haramaki, Protective effects of riboflavin and its derivatives against ischemic reperfused damage of rat heart, Biochem. Mol. Biol. Int. 34 (1994) 685-691. http://dx.doi.org/10.1016/0305-1978(94)90063-9.

[46]

H.X. Han, F.R. Song, Z.B. Shu, et al., An untargeted urinary metabolomics strategy for investigation of therapeutical mechanism of Schisandra chinensis on complications of diabetes rats, Chinese J. of Anal. Chem. 45 (2017) 389-396. http://dx.doi.org/10.11895/j.issn.0253.3820.160753.

[47]

G.G. Wang, C. Zhang, X.H. Lu, et al., Protective effects of riboflavin on diabetic nephropathy in STZ-induced diabetic rats, Chinese Journal of Pathophysiology 026 (2010) 1395-1398. http://dx.doi.org/10.3969/j.issn.1000-4718.2010.07.030.

[48]

R. Kawazoe, H. Okuyama, W. Reichardt, et al., Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae stanier strain C21, J. Bacteriol. 173 (1991) 5470-5475. http://dx.doi.org/10.1128/jb.173.17.5470-5475.1991.

[49]

S.M. Huang, T. Bisogno, T.J. Petros, et al., Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain, J. Biol. Chem. 276 (2001) 42639-42644. http://dx.doi.org/10.1074/jbc.M107351200.

[50]

Y. Ikeda, H. Iguchi, M. Nakata, et al., Identification of N-arachidonylglycine, U18666A, and 4-androstene-3,17-dione as novel insulin secretagogues, Biochem. Bioph. Res. Co. 333 (2005) 778-786. http://dx.doi.org/10.1016/j.bbrc.2005.06.005.

Food Science and Human Wellness
Pages 161-172
Cite this article:
Wang C, Zhao H, Xu K, et al. Fecal metabolomics reveals the positive effect of ethanol extract of propolis on T2DM mice. Food Science and Human Wellness, 2023, 12(1): 161-172. https://doi.org/10.1016/j.fshw.2022.07.034

652

Views

56

Downloads

13

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 04 February 2021
Revised: 27 February 2021
Accepted: 02 May 2021
Published: 09 August 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return