AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide

Junmiao ZhangaHengjun DubNing MaaLei ZhongcGaoxing MaaFei PeiaHui Chena,dQiuhui Hua( )
Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture and Rural Affairs, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
Department of Food Science, University of Massachusetts, Amherst MA 01003, USA
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Soy protein isolate (SPI) is a commercial protein with balanced amino acids, while the poor solubility impedes its use in traditional foods. To overcome the problem, the complex coacervation of SPI/Flammulina velutipes polysaccharide (FVP) were investigated. Initial results revealed that the suitable amounts of FVP contributed to reducing the turbidity of SPI solution. Under electrostatic interaction, the formation of SPI/FVP coacervates were spontaneous and went through a nucleation and growth process. Low salt concentration (CNaCl = 10, 50 mmol/L) led to an increase in the critical pH values (pHc, pHφ1) while the critical pH values decreased when CNaCl ≥ 100 mmol/L. The concentration of NaCl ions increased the content of α-helix. With the increase of FVP, the critical pH values decreased and the content of β-sheet increased through electrostatic interaction. At SPI/FVP ratio of 10:1 and 15:1, the complex coacervation of SPI/FVP were saturated, and the coacervates had the same storage modulus value. SPI/FVP coacervates exhibited solid-like properties and presented the strongest storage modulus at CNaCl = 50 mmol/L. The optimal pH, SPI/FVP ratio and NaCl concentration of complex coacervation were collected, and the coacervates demonstrated a valuable application potential to protect and deliver bioactives and food ingredients.

References

[1]

Y. Yuan, Z. Kong, Y. Sun, et al., Complex coacervation of soy protein with chitosan: constructing antioxidant microcapsule for algal oil delivery, LWT-Food Sci. Technol. 75 (2017) 171-179. http://doi.org/10.1016/j.lwt.2016.08.045.

[2]

J. Rios-Mera, E. Saldana, Y. Ramírez, et al., Encapsulation optimization and pH-and temperature-stability of the complex coacervation between soy protein isolate and inulin entrapping fish oil, LWT-Food Sci. Technol. 116 (2019) 108555 http://doi.org/10.1016/j.lwt.2019.108555.

[3]

C. Paglarini, S. Martini, M. Pollonio, Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters, LWT-Food Sci. Technol. 99 (2019) 453-459. http://doi.org/10.1016/j.lwt.2018.10.005.

[4]

N. Eghbal, R. Choudhary, Complex coacervation: encapsulation and controlled release of active agents in food systems, LWT-Food Sci. Technol. 90 (2018) 254-264. http://doi.org/10.1016/j.lwt.2017.12.036.

[5]

Q. Li, Z.G. Wang, C.X. Dai, et al., Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH, Food Hydrocoll. 88 (2019) 50-57. http://doi.org/10.1016/j.foodhyd.2018.09.020.

[6]

Y. Lv, X.M. Zhang, H.Y. Zhang, et al., The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition, Food Hydrocoll. 30(1) (2013) 323-332. http://doi.org/10.1016/j.foodhyd.2012.06.007.

[7]

H. Chen, J. Gan, A.G. Ji, et al., Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis, Food Chem. 292 (2019) 188-196. http://doi.org/10.1016/j.foodchem.2019.04.059.

[8]

F.G. Niu, Y.J. Su, Y.T. Liu, et al., Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration, Colloids Surf B. Biointerfaces 113 (2014) 477-482. http://doi.org/10.1016/j.colsurfb.2013.08.012.

[9]

J.S. Zhang, G.J. Wang, Q. Liang, et al., Rheological and microstructural properties of gelatin B/tara gum hydrogels: effect of protein/polysaccharide ratio, pH and salt addition, LWT-Food Sci. Technol. 103 (2019) 108-115. http://doi.org/10.1016/j.lwt.2018.12.080.

[10]

D. Dong, X.F. Li, Y.F. Hua, et al., Mutual titration of soy proteins and gum arabic and the complexing behavior studied by isothermal titration calorimetry, turbidity and ternary phase boundaries, Food Hydrocoll. 46 (2015) 28-36. http://doi.org/10.1016/j.foodhyd.2014.11.019.

[11]

Q.M. Ru, Y.W. Wang, J. Lee, et al., Turbidity and rheological properties of bovine serum albumin/pectin coacervates: effect of salt concentration and initial protein/polysaccharide ratio, Carbohyd. Polym. 88(3) (2012) 838-846. http://doi.org/10.1016/j.carbpol.2012.01.019.

[12]

G.Q. Huang, Y.T. Sun, J.X. Xiao, et al., Complex coacervation of soybean protein isolate and chitosan, Food Chem. 135(2) (2012) 534-539. http://doi.org/10.1016/j.foodchem.2012.04.140.

[13]

J.X. Xiao, H.Y. Yu, J.A. Yang, Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic, Food Chem. 125(4) (2011) 1267-1272. http://doi.org/10.1016/j.foodchem.2010.10.063.

[14]

F.F. Yuan, Z. Gao, W.B. Liu, et al., Characterization, Antioxidant, anti-aging and organ protective effects of sulfated polysaccharides from Flammulina velutipes, Molecules 24(19) (2019). http://doi.org/10.3390/molecules24193517.

[15]

X. Chen, D.L. Fang, R.Q. Zhao, et al., Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide, Int. J. Biol. Macromol. 140 (2019) 505-514. https://doi.org/10.1016/j.ijbiomac.2019.08.163.

[16]

H.J. Du, Q.H. Hu, W.J. Yang, et al., Development, physiochemical characterization and forming mechanism of Flammulina velutipes polysaccharide-based edible films, Carbohydr. Polym. 152 (2016) 214-221. http://doi.org/10.1016/j.carbpol.2016.07.035.

[17]

J.M. Zhang, N. Ma, G.X. Ma, et al., Characterization of soy protein isolate/Flammulina velutipes polysaccharide hydrogel and its immunostimulatory effects on RAW264.7 cells, Food Chem. Toxicol. 151 (2021) 112126. http://doi.org/10.1016/j.fct.2021.112126.

[18]

W.J. Yang, Y. Fang, J. Liang, et al., Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity, Food Res. Int. 44(5) (2011) 1269-1275. http://doi.org/10.1016/j.foodres.2010.11.027.

[19]

O.F. Vázquez-Vuelvas, F.A. Chávez-Camacho, J.A. Meza-Velázquez, et al., A comparative FT-IR study for supplemented agavin as functional food, Food Hydrocoll. 103 (2020) 105642. http://doi.org/10.1016/j.foodhyd.2020.105642.

[20]

W.F. Xiong, C. Ren, W.P. Jin, et al., Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties, Food Hydrocoll. 61 (2016) 895-902. http://doi.org/10.1016/j.foodhyd.2016.07.018.

[21]

E. Kizilay, A.B. Kayitmazer, P.L. Dubin, Complexation and coacervation of polyelectrolytes with oppositely charged colloids, Adv. Colloid. Interface. Sci. 167(1/2) (2011) 24-37. http://doi.org/10.1016/j.cis.2011.06.006.

[22]

W.F. Xiong, C. Ren, M. Tian, et al., Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: effect of ionic strength and charge density of polysaccharide, Food Hydrocoll. 73 (2017) 41-50. http://doi.org/10.1016/j.foodhyd.2017.06.031.

[23]

Y. Yuan, Z.L. Wan, S.W. Yin, et al., Formation and dynamic interfacial adsorption of glycinin/chitosan soluble complex at acidic pH: Relationship to mixed emulsion stability, Food Hydrocoll. 31(1) (2013) 85-93. http://doi.org/10.1016/j.foodhyd.2012.10.003.

[24]

L.L. Zhou, H.H. Shi, Z.B. Li, et al., Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications, Macromol. Rapid. Commun. (2020) e2000149. http://doi.org/10.1002/marc.202000149.

[25]

D. Klassen, C. Elmer,, M. Nickerson, Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides, Food Chem. 126(3) (2011) 1094-1101. http://doi.org/10.1016/j.foodchem.2010.11.138.

[26]

C. Souza, E. Garcia-Rojas, Interpolymeric complexing between egg white proteins and xanthan gum: effect of salt and protein/polysaccharide ratio, Food Hydrocoll. 66 (2017) 268-275. http://doi.org/10.1016/j.foodhyd.2016.11.032.

[27]

S. Zhang, F. Hsieh, B. Vardhanabhuti, Acid-induced gelation properties of heated whey protein–pectin soluble complex (Part Ⅰ): effect of initial pH, Food Hydrocoll, 36 (2014) 76-84. http://doi.org/10.1016/j.foodhyd.2013.07.029.

[28]

S. Singh,, V. Aswal, H. Bohidar, Structural studies of agar–gelatin complex coacervates by small angle neutron scattering, rheology and differential scanning calorimetry Int. J. Biol. Macromol. 41(3) (2007) 301-307. http://doi.org/10.1016/j.ijbiomac.2007.03.009.

[29]

J. Jiang, J. Chen, and Y.L. Xiong, Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes, J. Agric. Food Chem. 57(16) (2009) 7576-7583. http://doi.org/10.1021/jf901585n.

[30]

M. Otálora, J. Castaño, A. Wilches-Torres, Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica, LWT-Food Sci. Technol. 112 (2019) 108234. http://doi.org/10.1016/j.lwt.2019.06.001.

[31]

H. Espinosa-Andrews, O. Sandoval-Castilla, H. Vázquez-Torres, et al., Determination of the gum arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates, Carbohydr. polym. 79(3) (2010) 541-546. http://doi.org/10.1016/j.carbpol.2009.08.040.

[32]

Y.X. Yang, Q.M. Wang, L. Lei, et al., Molecular interaction of soybean glycinin and β-conglycinin with (−)-epigallocatechin gallate induced by pH changes, Food Hydrocoll. 108 (2020) 106010. http://doi.org/10.1016/j.foodhyd.2020.106010.

[33]

F. Weinbreck, H. Nieuwenhuijse, G. Robijn, et al., Complexation of whey proteins with carrageenan, Journal of Agricultural and Food Chem. 52(11) (2004) 3550-3555. https://doi.org/10.1021/jf034969t.

[34]

Y. Yuan, Z.L. Wan, S.W. Yin, et al., Characterization of complexes of soy protein and chitosan heated at low pH, LWT-Food Sci. Technol. 50(2) (2013) 657-664. http://doi.org/10.1016/j.lwt.2012.07.034.

[35]

F.G. Niu, Y.J. Su, Y.T. Liu, et al., Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration, Colloids and Surfaces B: Biointerfaces 113 (2014) 477-482. http://doi.org/10.1016/j.colsurfb.2013.08.012.

[36]

R. Liu, S.M. Zhao, S. Xiong, et al., Role of secondary structures in the gelation of porcine myosin at different pH values, Meat Sci 80(3) (2008) 632-639. http://doi.org/10.1016/j.meatsci.2008.02.014.

[37]

I. Romo, L. Abugoch, C. Tapia, Soluble complexes between chenopodins and alginate/chitosan: Intermolecular interactions and structural-physicochemical properties, Carbohydr. Polym. 227 (2020) 115334. http://doi.org/10.1016/j.carbpol.2019.115334.

[38]

L. Miller, M. Bourassa, R. Smith, FT-IR spectroscopic imaging of protein aggregation in living cells, Biochimica et biophysica acta 1828(10) (2013) 2339-2346. http://doi.org/10.1016/j.bbamem.2013.01.014.

[39]

R. Liu, S.M. Zhao, S. Xiong, et al., Role of secondary structures in the gelation of porcine myosin at different pH values, Meat Sci. 80(3) (2008) 632-639. http://doi.org/10.1016/j.meatsci.2008.02.014.

[40]

Y. Yang, Y. Zhao, M.S. Xu, et al., Effects of strong alkali treatment on the physicochemical properties, microstructure, protein structures, and intermolecular forces in egg yolks, plasma, and granules, Food Chem. 311 (2020) 125998. http://doi.org/10.1016/j.foodchem.2019.125998.

[41]

Y.J. Su, Y.T. Dong, F.G. Niu, et al., Study on the gel properties and secondary structure of soybean protein isolate/egg white composite gels, European Food Res. Technol. 240(2) (2014) 367-378. http://doi.org/10.1007/s00217-014-2336-3.

[42]

K.F. Liu, D. Zheng, J.Y. Zhao, et al., pH-Sensitive nanogels based on the electrostatic self-assembly of radionuclide 131I labeled albumin and carboxymethyl cellulose for synergistic combined chemo-radioisotope therapy of cancer, J. Mater. Chem. B 6(29) (2018) 4738-4746. http://doi.org/10.1039/c8tb01295d.

[43]

G.T. Meng, C.Y. Ma, D.L. Phillips, Raman spectroscopic study of globulin from Phaseolus angularis (red bean), Food Chem. 81(3) (2003) 411-420. http://doi.org/10.1016/S0308-8146(02)00471-5.

[44]

C. Schmitt, C. Bovay, P. Frossard, kinetics of formation and functionalproperties of conjugates prepared by dry-state incubation of β-lactoglobulin/acacia gum electrostatic complexes, J. Agric. Food Chem. 53(23) (2005) 9089−9099. http://doi.org/10.1021/jf051630t.

[45]

C. Wu, W.C. Ma, Y.M. Chen, et al., The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size, LWT-Food Sci. Technol. 103 (2019) 125-130. http://doi.org/10.1016/j.lwt.2018.12.064.

[46]

F. Behrouzain, S. Razavi, Structure-rheology relationship of basil seed gum-whey protein isolate mixture: effect of thermal treatment and biopolymer ratio, Food Hydrocoll. 102 (2020) 105608. http://doi.org/10.1016/j.foodhyd.2019.105608.

[47]

X.P. Liang, C.C. Ma, X.J. Yan, et al., Structure, rheology and functionality of whey protein emulsion gels: effects of double cross-linking with transglutaminase and calcium ions, Food Hydrocoll. 102 (2020) 105569. http://doi.org/10.1016/j.foodhyd.2019.105569.

[48]

C. Chai, Q.R. Lee, Q. Huang, The effect of ionic strength on the rheology of pH-induced bovine serum albumin/κ-carrageenan coacervates, LWT-Food Sci. Technol. 59(1) (2014) 356-360. https://doi.org/10.1016/j.lwt.2014.05.024.

Food Science and Human Wellness
Pages 183-191
Cite this article:
Zhang J, Du H, Ma N, et al. Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide. Food Science and Human Wellness, 2023, 12(1): 183-191. https://doi.org/10.1016/j.fshw.2022.07.006

758

Views

57

Downloads

25

Crossref

24

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 09 February 2021
Revised: 29 March 2021
Accepted: 09 June 2021
Published: 09 August 2022
© 2023 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return