Journal Home > Volume 11 , Issue 4

Two immunomodulatory polysaccharides (Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) mRNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ (100–800 µg/mL) and Vp3 (400 µg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and mRNA expression of TNF-α and IL-6 in a concentration-dependent manner through affecting mitogen-activated protein kinase (MAPK) activity and nuclear factor κB (NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.


menu
Abstract
Full text
Outline
About this article

Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells

Show Author's information Honglin Wanga,b,1Changyang Maa,1Dongxiao Sun-Waterhousea,cJinmei Wanga( )Geoffrey Ivan Neil Waterhousec( )Wenyi Kanga,d( )
National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Functional Food Engineering Technology Research Center, Kaifeng 475004, China
School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China

1 The authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Abstract

Two immunomodulatory polysaccharides (Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) mRNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ (100–800 µg/mL) and Vp3 (400 µg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and mRNA expression of TNF-α and IL-6 in a concentration-dependent manner through affecting mitogen-activated protein kinase (MAPK) activity and nuclear factor κB (NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.

Keywords: Apocynum venetum L. flowers, Immunomodulatory polysaccharide, RAW264.7 cells, NF-κB signaling pathway, MAPK signaling pathway

References(53)

[1]

T.L.C. Wolters, M.G. Netea, N.P. Riksen, et al., Acromegaly, inflammation and cardiovascular disease: a review, J. Rev Endocr Metab Disord. 21 (2020) 547-568. https://doi.org/10.1007/s11154-020-09560-x.

[2]

S.I. Grivennikov, F.R. Greten, M. Karin, Immunity, inflammation, and cancer, J. Cell. 140(6) (2010) 833-899. https://doi.org/10.1016/j.cell.2010.01.025.

[3]

L.C. Davies, S.J. Jenkins, J.E. Allen, et al., Tissue-resident macrophages, J. Nat Immunol. 14 (10) (2013) 986-995. https://doi.org/10.1038/ni.2705.

[4]

A. Sica, M. Erreni, P. Allavena, et al., Macrophage polarization in pathology, J. Cell Mol. Life Sci. 72 (2015) 4111-4126. https://doi.org/10.1007/s00018-015-1995-y.

[5]

Y. Nonnenmacher, K. Hiller, Biochemistry of proinflammatory macrophage activation, J. Cell Mol. Life Sci. 75(12) (2018) 2093-2109. https://doi.org/10.1007/s00018-018-2784-1

[6]
H.X. Sun, J. Zhang, F.Y. Chen, et al., Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms, J. Carbohydrate Polymers 121 (2015) 388-402. https://doi.org/10.1016/j.carbpol.2014.12.023 Get rights and content.
DOI
[7]

M.S. Shin, J.H. Song, P. Choi, et al., Stimulation of innate immune function by panax ginseng after heat processing, J. Agric. Food Chem. 66(18) (2018) 4652-4659. https://doi.org/10.1021/acs.jafc.8b00152.

[8]

K. Kouakou, I.A. Schepetkin, A. Yapi, et al., Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia, J. Ethnopharmacol. 146 (2013) 232-242. https://doi.org/10.1016/j.jep.2012.12.037.

[9]

C.Y Hou, L.L. Chen, L.Zi Yang, et al., An insight into anti-inflammatory effects of natural polysaccharides, Int. J. Biol. Macromol. 153 (2020) 248-255. https://doi.org/10.1016/j.ijbiomac.2020.02.315.

[10]

Y. Sun, X.Y. Zhou, Purification, initial characterization and immune activities of polysaccharides from the fungus, Polyporus umbellatus, Food Sci. Human Well. 3(2) (2014) 73-78. https://doi.org/10.1016/j.fshw.2014.06.002.

[11]

J.Y. Wang, H.L. Wang, H.L. Zhang, et al., Immunomodulation of ADPs-1a and ADPs-3a on RAW264.7 cells through NF-κB/MAPK signaling pathway, Int. J. Biol. Macromol. 132 (2019) 1024-1030. https://doi.org/10.1016/j.ijbiomac.2019.04.031.

[12]

Q.M. Ru, L.J. Wang, W.M. Li, et al., In vitro antioxidant properties of flavonoids and polysaccharides extract from tobacco (Nicotiana tabacum L.) leaves, J. Molecules 17(12) (2012) 11281-11291. https://doi.org/10.3390/molecules170911281.

[13]

H.C. Liu, H.X. Fan, J. Zhang, et al., Isolation, purification, structural characteristic and antioxidative property of polysaccharides from A. cepa L. var. agrogatum Don, Food Sci. Human Well. 9(1) (2020)71-79. https://doi.org/10.1016/j.fshw.2019.12.006.

[14]

Y.L. Wang, L. Lai, L.P. Teng, et al., Mechanism of the anti-inflammatory activity by a polysaccharide from Dictyophora indusiata in lipopolysaccharide-stimulated macrophages, Int. J. Biol. Macromol. 126 (2019) 1158-1166. https://doi.org/10.1016/j.ijbiomac.2019.01.022.

[15]

G. Franz, S. Alban. Structure-activity relationship of antithrombotic polysaccharide derivatives, Int. J. Biol. Macromol. 17(6) (1995) 311-314. https://doi.org/10.1016/0141-8130(96)81837-X.

[16]

L. Shi. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review, Int. J. Biol. Macromol. 92 (2016) 37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100.

[17]

I.A. Schepetkin, M.T. Quinn, Botanical polysaccharides: macrophage immunomodulation and therapeutic potential, Int. Immunopharmacol. 6 (3) (2006) 317-333. https://doi.org/10.1016/j.intimp.2005.10.005.

[18]

H.B. Tong, D. Mao, M.Y. Zhai, et al., Macrophage activation induced by the polysaccharides isolated from the roots of Sanguisorba officinalis, J. Pharm Biol. 53(10) (2015) 1511-1515. https://doi.org/10.3109/13880209.2014.991834.

[19]

O. Grundmann, J.I. Nakajima, K. Kamata, et al., Kaempferol from the leaves of Apocynum venetum possesses anxiolytic activities in the elevated plus maze test in mice, J. Phytomedicine 16(4) (2009) 295-302. https://doi.org/10.1016/j.phymed.2008.12.020.

[20]

M. Kobayashi, H. Saitoh, S. Seo, et al., Apocynum venetum extract does not induce CYP3A and P-glycoprotein in rats, J. Biol. Pharm. Bull. 27(10) (2004) 1649-1652. https://doi.org/10.1248/bpb.27.1649.

[21]

C.Y. Kwan, W.B. Zhang, S. Nishibe, et al., A novel in vitro endothelium-dependent vascular relaxant effect of Apocynum venetum leaf extrac, Clinical & Experimental Pharmacology & Physiology, 32(9) (2005) 789-795. https://doi.org/10.1111/j.1440-1681.2005.04255.x.

[22]

K. Irie, T. Sato, I. Tanaka, et al., Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium, J. Nat. Med. 63(2) (2009) 111-116. https://doi.org/10.1007/s11418-008-0296-2.

[23]

T. Liang, W. Yue, Q. Li, Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species, Int. Mol. Sci. 11(11) (2010) 4452-4464. https://doi.org/10.3390/ijms11114452.

[24]

M.Z. Zheng, C. Liu, F.G. Pan, et al., Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms, Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 19(2) (2012) 145-149. https://doi.org/10.1016/j.phymed.2011.06.029.

[25]

O. Grundmann, J. Nakajima, S. Seo, et al., Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test, J. Ethnopharm. 110(3) (2007) 406-411. https://doi.org/10.1016/j.jep.2006.09.035

[26]
Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, 10th ed. China Medical Science and Technology Press, Beijing, 196 (2015).
[27]

W.Y. Xie, X.Y. Zhang, T. Wang, et al., Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): a review, J. Ethnopharm. 141(1) (2012) 1-8.https://doi.org/10.1016/j.jep.2012.02.003.

[28]

Q. Xiong, W. Fan, Y. Tezuka, et al., Hepatoprotective effect of Apocynum venetum and its active constituents, J. Planta Med. 66(2) (2000) 127-133. https://doi.org/10.1055/s-2000-11135.

[29]

L.L. Wang, X.F. Zhang, Y.Y. Niu, et al., Anticoagulant activity of two novel polysaccharides from flowers of Apocynum venetum L, Int. J. B. Macromol. 124 (2019) 1230-1237. https://doi.org/10.1016/j.ijbiomac.2018.12.015.

[30]

X. Xu, X. Wu, Q. Wang, et al., Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships, J. Agric. Food Chem. 62 (14) (2014) 3168-3176. https://doi.org/10.1021/jf405633n.

[31]

L. Xi, C. Xiao, R.H.J. Bandsma, et al., C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases, Hepatology 53(1) (2011) 127-135, https://doi.org/10.1002/hep.24011.

[32]
J.A. Owen, J. Punt, S.A. Stranford, Kuby Immunology; W. H Freeman: New York (2013) https://book.douban.com/subject/17253123/.
[33]

N. Kunworarath, N. Rangkadilok, T. Suriyo, et al., Longan (Dimocarpus longan Lour.) inhibits lipopolysaccharide-stimulated nitric oxide production in macrophages by suppressing NF-κB and AP-1 signaling pathways, J. Ethnopharmacol. 179 (2016) 156-161. https://doi.org/10.1016/j.jep.2015.12.044.

[34]

Q. Yu, K.W. Zeng, X.L. Ma, et al., Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways, J. Int. Immunopharmacol. 38 (2016) 104-114. https://doi.org/10.1016/j.intimp.2016.05.010.

[35]

T. Di, G. Chen, Y. Sun, et al., Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra, J. Funct. Foods 28 (2017) 64-75. https://doi.org/10.1016/j.jff.2016.11.005.

[36]

A. Aderem, Phagocytosis and the inflammatory response, J. Infect. Dis. 187 (2003) 340-345. https://doi.org/10.1086/374747.

[37]

W.K. Han, M.S. Shin, S.J. Lee, et al., Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley, Int. J. Biol. Macromol. 131 (2019) 1084-1091. https://doi.org/10.1016/j.ijbiomac.2019.03.159.

[38]

J.H. Park, H.E. Jin, D.D. Kim, et al., Shim chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation, Int. J. Pharm. 441(1/2) (2013) 562-569. https://doi.org/10.1016/j.ijpharm.2012.10.044.

[39]

K.S.P. Devi, T.K. Maiti, Immunomodulatory and anti-cancer properties of pharmacologically relevant mushroom glycans, J. Recent Pat. Biotechnol. 10(1) (2016) 72-78. https://doi.org/10.2174/1872208310666160725195026.

[40]

M.W. Xue, L. Han, W.K. Qian, et al., Nitric oxide stimulates acute pancreatitis pain via activating the NF-κB signaling pathway and inhibiting the kappa opioid receptor, Oxid. Med. Cell Longev. 2020 (2020) 13. https://doi.org/10.1155/2020/9230958.

[41]

M. Yin, Y. Zhang, H. Li, Advances in research on immunoregulation of macrophages by plant polysaccharides, Front. Immunol. 10 (2019) 145. https://doi.org/10.3389/fimmu.2019.00145.

[42]

S. Valentina, G. Veronica, T. Laura, et al., Cytokine Targeting by miRNAs in Autoimmune Diseases, Front. Immunol. 10 (2019) 15. https://doi.org/10.3389/fimmu.2019.00015.

[43]

X.Q. Cheng, H. Li, X.L. Yue, et al., Macrophage immunomodulatory activity of the polysaccharides from the roots of Bupleurum smithii var. Parvifolium. Ethnopharmacol. 130 (2010) 363-368. https://doi.org/10.1016/j.jep.2010.05.019.

[44]

M.F. Neurath, Cytokines in inflammatory bowel disease, J. Immunol. 14(5) (2014) 329-342. https://doi.org/10.1038/nri3661.

[45]

T. Chanmee, P. Ontong, K. Konno, et al., Tumor-associated macrophages as major players in the tumor microenvironment, J. Cancers. 6 (2014) 1670-1690. https://doi.org/10.3390/cancers6031670.

[46]

J.Z. Zhang, N. liu, C. Sun, et al., Polysaccharides from Polygonatum sibiricum Delar. ex Redoute induce an immune response in the RAW264.7 cell line via an NF-κB/MAPK pathway, RSC Advances (2019) 17988-17994. https://doi.org/10.1039/C9RA03023A.

[47]

E. O'Dea, A. Hoffmann, The regulatory logic of the NF-κB signaling system, Cold Spring Harb. Perspect. Biol. 2(1) (2010) a000216. https://doi.org/10.1101/cshperspect.a000216.

[48]

D.E. Shifflett, S.L. Jones, A.J. Moeser, et al., Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum, Am. J. Physiol. Gastrointest Liver Physiol. 286(6) (2004) G906-G913. https://doi.org/10.1152/ajpgi.00478.2003.

[49]

Y.H. Xie, L.X. Wang, H. Sun, et al., Polysaccharide from alfalfa activated RAW 264.7 macrophages through MAPK and NF-κB signaling pathways, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.12.227.

[50]

H. Sakurai, H. Chiba, H. Miyoshi, et al. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain, J. Biol. Chem. 274(43) (1999) 30353-30356. https://doi.org/10.1074/jbc.274.43.30353.

[51]

G. Natoli, S. Chiocca, Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation, J. Sci Signal. 1(1) (2008). https://doi.org/10.1126/stke.11pe1.

[52]

M.Z. Xia, Y.L. Liang, H. Wang, et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF- dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells, J. Pineal. Res. 53(4) (2012) 325-334. https://doi.org/10.1111/j.1600-079X.2012.01002.x.

[53]

W. Wei, H.T. Xiao, W.R. Bao, et al., TLR-4 may mediate signaling pathways of Astragalus polysaccharide RAP induced cytokine expression of RAW264.7 cells, J. Ethnopharmacol. 179 (2016) 243-252. https://doi.org/10.1016/j.jep.2015.12.060i.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 September 2020
Revised: 21 September 2020
Accepted: 18 October 2021
Published: 28 April 2022
Issue date: July 2022

Copyright

© 2022 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

This work was supported by Research on Precision Nutrition and Health Food, Department of Science and Technology of Henan Province (CXJD2021006).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return