Journal Home > Volume 11 , Issue 3

The findings of various epidemiological studies, interventions using randomized controlled trials and mechanistic experiments have suggested a protective role of tea and its bioactive components in cardiovascular health. The potential of tea in the prevention of cardiovascular diseases (CVDs) has therefore attracted increasing research interest. Polyphenols, in particular flavonoids, found in both green and black tea, have been suggested to play a primary role in the reduction of CVD risk. While promising results regarding the effects of tea on blood pressure and other CVD-related biomarkers have been found in preclinical experiments, the effects demonstrated in human studies are modest and less satisfactory. This discrepancy may be explained, at least in part, by different research strategies used in human and animal research. However, since tea is globally one of the most commonly consumed beverages, even small beneficial effects in humans may shift the population distribution of CVD risk, with major implications for public health. However, research conducted to date does not yield sufficiently robust evidence to allow a recommendation as to an optimal level of tea consumption as an element of health policies seeking to prevent hypertension and improve cardiovascular health.


menu
Abstract
Full text
Outline
About this article

Tea in cardiovascular health and disease: a critical appraisal of the evidence

Show Author's information Klaus W. Lange( )
Department of Experimental Psychology, University of Regensburg, Regensburg, 93040 Germany

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

The findings of various epidemiological studies, interventions using randomized controlled trials and mechanistic experiments have suggested a protective role of tea and its bioactive components in cardiovascular health. The potential of tea in the prevention of cardiovascular diseases (CVDs) has therefore attracted increasing research interest. Polyphenols, in particular flavonoids, found in both green and black tea, have been suggested to play a primary role in the reduction of CVD risk. While promising results regarding the effects of tea on blood pressure and other CVD-related biomarkers have been found in preclinical experiments, the effects demonstrated in human studies are modest and less satisfactory. This discrepancy may be explained, at least in part, by different research strategies used in human and animal research. However, since tea is globally one of the most commonly consumed beverages, even small beneficial effects in humans may shift the population distribution of CVD risk, with major implications for public health. However, research conducted to date does not yield sufficiently robust evidence to allow a recommendation as to an optimal level of tea consumption as an element of health policies seeking to prevent hypertension and improve cardiovascular health.

Keywords: Prevention, Treatment, Health, Cardiovascular diseases, Tea

References(125)

[1]

D.L. McKay, J.B. Blumberg, The role of tea in human health: an update, J. Am. Coll. Nutr. 21 (2002) 1-13. https://doi.org/10.1080/07315724.2002.10719187.

[2]

J. Needham, G.D. Lu, Hygiene and preventive medicine in ancient China, J. Hist. Med. Allied Sci. 17 (1962) 429-478.

[3]

C.S. Yang, J. Hong, Prevention of chronic diseases by tea: possible mechanisms and human relevance, Annu. Rev. Nutr. 33 (2013) 161-181. https://doi.org/10.1146/annurev-nutr-071811-150717.

[4]

M. Yi, X. Wu, W. Zhuang, et al., Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans, Mol. Nutr. Food Res. 63 (2019) e1900389. https://doi.org/10.1002/mnfr.201900389.

[5]

C. Zhang, Y.Y. Qin, X. Wei, et al., Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies, Eur. J. Epidemiol. 30 (2015) 103-113. https://doi.org/10.1007/s10654-014-9960-x.

[6]

J. Tang, J.S. Zheng, L. Fang, et al., Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies, Br. J. Nutr. 114 (2015) 673-683. https://doi.org/10.1017/S0007114515002329.

[7]

T. Filippini, M. Malavolti, F. Borrelli, et al., Green tea (Camellia sinensis) for the prevention of cancer, Cochrane Database Syst. Rev. 3 (2020) CD005004. https://doi.org/10.1002/14651858.CD005004.pub3.

[8]

A. Kim, A. Chiu, M.K. Barone, et al., Green tea catechins decrease total and low-density lipoprotein cholesterol: a systematic review and meta-analysis, J. Am. Diet. Assoc. 111 (2011) 1720-1729. https://doi.org/10.1016/j.jada.2011.08.009.

[9]

R.T. Ras, P.L. Zock, R. Draijer, Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis, PLoS One 6 (2011) e16974. https://doi.org/10.1371/journal.pone.0016974.

[10]

X.X. Zheng, Y.L. Xu, S.H. Li, et al., Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials, Am. J. Clin. Nutr. 94 (2011) 601-610. https://doi.org/10.3945/ajcn.110.010926.

[11]

R. Huxley, C.M.Y. Lee, F. Barzi, et al., Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis, Arch. Intern. Med. 169 (2009) 2053-2063. https://doi.org/10.1001/archinternmed.2009.439.

[12]

Y. Jing, G. Han, Y. Hu, et al., Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies, J. Gen. Intern. Med. 24 (2009) 557-562. https://doi.org/10.1007/s11606-009-0929-5.

[13]

J. Song, H. Xu, F. Liu, et al., Tea and cognitive health in late life: current evidence and future directions, J. Nutr. Health Aging 16 (2012) 31-34. https://doi.org/10.1007/s12603-011-0139-9.

[14]
L. Feng, T.P. Ng, E.H. Kua, et al., Tea and the cognitive function of elderly people: evidence from neurobiology and epidemiology, in: V.R. Preedy (Ed.), Tea in health and disease prevention, Elsevier/Academic Press, London, Waltham MA, 2013, pp. 1325-1336.
DOI
[15]

D.A. Camfield, C. Stough, J. Farrimond, et al., Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis, Nutr. Rev. 72 (2014) 507-522. https://doi.org/10.1111/nure.12120.

[16]

K. Niu, A. Hozawa, S. Kuriyama, et al., Green tea consumption is associated with depressive symptoms in the elderly, Am. J. Clin. Nutr. 90 (2009) 1615-1622. https://doi.org/10.3945/ajcn.2009.28216.

[17]

X. Dong, C. Yang, S. Cao, et al., Tea consumption and the risk of depression: a meta-analysis of observational studies, Aust. N. Z. J. Psychiatry 49 (2015) 334-345. https://doi.org/10.1177/0004867414567759.

[18]

K.W. Lange, Y. Nakamura, K.M. Lange, et al., Tea and depression, Food Sci. Human Wellness 11 (2022) 476-482.

[19]

G.W. Reed, J.E. Rossi, C.P. Cannon, Acute myocardial infarction, Lancet 389 (2017) 197-210. https://doi.org/10.1016/S0140-6736(16)30677-8.

[20]

B.C.V. Campbell, P. Khatri, Stroke, Lancet 396 (2020) 129-142. https://doi.org/10.1016/S0140-6736(20)31179-X.

[21]

V.L. Roger, A.S. Go, D.M. Lloyd-Jones, et al., Heart disease and stroke statistics-2011 update: a report from the American Heart Association, Circulation 123 (2011) e18-e209. https://doi.org/10.1161/CIR.0b013e3182009701.

[22]

P. Libby, J.E. Buring, L. Badimon, et al., Atherosclerosis, Nat. Rev. Dis. Primers 5 (2019) 56. https://doi.org/10.1038/s41572-019-0106-z.

[23]

S. Lewington, R. Clarke, N. Qizilbash, et al., Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies, Lancet 360 (2002) 1903-1913. https://doi.org/10.1016/s0140-6736(02)11911-8.

[24]

K. Miura, M.L. Daviglus, A.R. Dyer, et al., Relationship of blood pressure to 25-year mortality due to coronary heart disease, cardiovascular diseases, and all causes in young adult men: the Chicago heart association detection project in industry, Arch. Intern. Med. 161 (2001) 1501-1508. https://doi.org/10.1001/archinte.161.12.1501.

[25]

D.W. Jones, J.E. Hall, Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure and evidence from new hypertension trials, Hypertension 43 (2004) 1-3. https://doi.org/10.1161/01.HYP.0000110061.06674.ca.

[26]

A.S. Go, D. Mozaffarian, V.L. Roger, et al., Heart disease and stroke statistics–2014 update: a report from the American Heart Association, Circulation 129 (2014) e28-e292. https://doi.org/10.1161/01.cir.0000441139.02102.80.

[27]

ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial., Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT), JAMA 288 (2002) 2981-2997. https://doi.org/10.1001/jama.288.23.2981.

[28]

P.L. Valenzuela, P. Carrera-Bastos, B.G. Gálvez, et al., Lifestyle interventions for the prevention and treatment of hypertension, Nat. Rev. Cardiol. (2020). https://doi.org/10.1038/s41569-020-00437-9.

[29]

J.J.P. Kastelein, Dyslipidaemia in perspective, Lancet 384 (2014) 566-568. https://doi.org/10.1016/S0140-6736(14)61332-5.

[30]

P.M. Ridker, LDL cholesterol: controversies and future therapeutic directions, Lancet 384 (2014) 607-617. https://doi.org/10.1016/S0140-6736(14)61009-6.

[31]

D.J. Rader, G.K. Hovingh, HDL and cardiovascular disease, Lancet 384 (2014) 618-625. https://doi.org/10.1016/S0140-6736(14)61217-4.

[32]

B.G. Nordestgaard, A. Varbo, Triglycerides and cardiovascular disease, Lancet 384 (2014) 626-635. https://doi.org/10.1016/S0140-6736(14)61177-6.

[33]

K.W. Lange, Trans fats or the tale of the struggle to translate scientific evidence into political action, Movement and Nutrition in Health and Disease 1 (2017) 26-30. https://doi.org/10.5283/mnhd.6.

[34]

P. Kokkinos, D.B. Panagiotakos, E. Polychronopoulos, Dietary influences on blood pressure: the effect of the Mediterranean diet on the prevalence of hypertension, J. Clin. Hypertens. (Greenwich) 7 (2005) 165-170. https://doi.org/10.1111/j.1524-6175.2005.04079.x.

[35]

K. Nakachi, S. Matsuyama, S. Miyake, et al., Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention, Biofactors 13 (2000) 49-54. https://doi.org/10.1002/biof.5520130109.

[36]

J. Sano, S. Inami, K. Seimiya, et al., Effects of green tea intake on the development of coronary artery disease, Circ. J. 68 (2004) 665-670. https://doi.org/10.1253/circj.68.665.

[37]

M. Chung, N. Zhao, D. Wang, et al., Dose-response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies, Adv. Nutr. 11 (2020) 790-814. https://doi.org/10.1093/advances/nmaa010.

[38]

M.A. Potenza, F.L. Marasciulo, M. Tarquinio, et al., EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR, Am. J. Physiol. Endocrinol. Metab. 292 (2007) E1378-E1387. https://doi.org/10.1152/ajpendo.00698.2006.

[39]

P.J. Mink, C.G. Scrafford, L.M. Barraj, et al., Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women, Am. J. Clin. Nutr. 85 (2007) 895-909. https://doi.org/10.1093/ajcn/85.3.895.

[40]

X. Wang, Y.Y. Ouyang, J. Liu, et al., Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies, Br. J. Nutr. 111 (2014) 1-11. https://doi.org/10.1017/S000711451300278X.

[41]

M. Woodward, H. Tunstall-Pedoe, Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality, J. Epidemiol. Community Health 53 (1999) 481-487. https://doi.org/10.1136/jech.53.8.481.

[42]

J.M. Geleijnse, L.J. Launer, D.A.M. van der Kuip, et al., Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam study, Am. J. Clin. Nutr. 75 (2002) 880-886. https://doi.org/10.1093/ajcn/75.5.880.

[43]

K.J. Mukamal, M. Maclure, J.E. Muller, et al., Tea consumption and mortality after acute myocardial infarction, Circulation 105 (2002) 2476-2481. https://doi.org/10.1161/01.cir.0000017201.88994.f7.

[44]

E. Suzuki, T. Yorifuji, S. Takao, et al., Green tea consumption and mortality among Japanese elderly people: the prospective Shizuoka elderly cohort, Ann. Epidemiol. 19 (2009) 732-739. https://doi.org/10.1016/j.annepidem.2009.06.003.

[45]

J.M. de Koning Gans, C.S.P.M. Uiterwaal, Y.T. van der Schouw, et al., Tea and coffee consumption and cardiovascular morbidity and mortality, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 1665-1671. https://doi.org/10.1161/ATVBAHA.109.201939.

[46]

B. Djulbegovic, G.H. Guyatt, Progress in evidence-based medicine: a quarter century on, Lancet 390 (2017) 415-423. https://doi.org/10.1016/S0140-6736(16)31592-6.

[47]

S. Kuriyama, T. Shimazu, K. Ohmori, et al., Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study, JAMA 296 (2006) 1255-1265. https://doi.org/10.1001/jama.296.10.1255.

[48]

Y. Mineharu, A. Koizumi, Y. Wada, et al., Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women, J. Epidemiol. Community Health 65 (2011) 230-240. https://doi.org/10.1136/jech.2009.097311.

[49]

A. Deka, J.A. Vita, Tea and cardiovascular disease, Pharmacol. Res. 64 (2011) 136-145. https://doi.org/10.1016/j.phrs.2011.03.009.

[50]

S.K. Bøhn, N.C. Ward, J.M. Hodgson, et al., Effects of tea and coffee on cardiovascular disease risk, Food Funct. 3 (2012) 575-591. https://doi.org/10.1039/c2fo10288a.

[51]

J. Pang, Z. Zhang, T. Zheng, et al., Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis, Int. J. Cardiol. 202 (2016) 967-974. https://doi.org/10.1016/j.ijcard.2014.12.176.

[52]

Y.C. Yang, F.H. Lu, J.S. Wu, et al., The protective effect of habitual tea consumption on hypertension, Arch. Intern. Med. 164 (2004) 1534-1540. https://doi.org/10.1001/archinte.164.14.1534.

[53]

L. Hartley, N. Flowers, J. Holmes, et al., Green and black tea for the primary prevention of cardiovascular disease, Cochrane Database Syst. Rev. (2013) CD009934. https://doi.org/10.1002/14651858.CD009934.pub2.

[54]

G. Liu, X.N. Mi, X.X. Zheng, et al., Effects of tea intake on blood pressure: a meta-analysis of randomised controlled trials, Br. J. Nutr. 112 (2014) 1043-1054. https://doi.org/10.1017/S0007114514001731.

[55]

C. Ma, X. Zheng, Y. Yang, et al., The effect of black tea supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized controlled trials, Food Funct. 12 (2021) 41-56. https://doi.org/10.1039/d0fo02122a.

[56]

A. Greyling, R.T. Ras, P.L. Zock, et al., The effect of black tea on blood pressure: a systematic review with meta-analysis of randomized controlled trials, PLoS One 9 (2014) e103247. https://doi.org/10.1371/journal.pone.0103247.

[57]

S. Khalesi, J. Sun, N. Buys, et al., Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials, Eur. J. Nutr. 53 (2014) 1299-1311. https://doi.org/10.1007/s00394-014-0720-1.

[58]

I. Onakpoya, E. Spencer, C. Heneghan, et al., The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials, Nutr. Metab. Cardiovasc. Dis. 24 (2014) 823-836. https://doi.org/10.1016/j.numecd.2014.01.016.

[59]

X. Peng, R. Zhou, B. Wang, et al., Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials, Sci. Rep. 4 (2014) 6251. https://doi.org/10.1038/srep06251.

[60]

J. Yarmolinsky, G. Gon, P. Edwards, Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials, Nutr. Rev. 73 (2015) 236-246. https://doi.org/10.1093/nutrit/nuv001.

[61]

R. Xu, K. Yang, J. Ding, et al., Effect of green tea supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore) 99 (2020) e19047. https://doi.org/10.1097/MD.0000000000019047.

[62]

D. Grassi, G. Desideri, P. Di Giosia, et al., Tea, flavonoids, and cardiovascular health: endothelial protection, Am. J. Clin. Nutr. 98 (2013) 1660S-1666S. https://doi.org/10.3945/ajcn.113.058313.

[63]

V. Stangl, M. Lorenz, K. Stangl, The role of tea and tea flavonoids in cardiovascular health, Mol. Nutr. Food Res. 50 (2006) 218-228. https://doi.org/10.1002/mnfr.200500118.

[64]

R. Cooper, D.J. Morré, D.M. Morré, Medicinal benefits of green tea: Part I. review of noncancer health benefits, J. Altern. Complement. Med. 11 (2005) 521-528. https://doi.org/10.1089/acm.2005.11.521.

[65]

V. Knaze, R. Zamora-Ros, L. Luján-Barroso, et al., Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, Br. J. Nutr. 108 (2012) 1095-1108. https://doi.org/10.1017/S0007114511006386.

[66]

J.M. Hodgson, K.D. Croft, Tea flavonoids and cardiovascular health, Mol. Aspects Med. 31 (2010) 495-502. https://doi.org/10.1016/j.mam.2010.09.004.

[67]

X.Q. Chen, T. Hu, Y. Han, et al., Preventive effects of catechins on cardiovascular disease, Molecules 21 (2016) 1759. https://doi.org/10.3390/molecules21121759.

[68]

D. Li, R. Wang, J. Huang, et al., Effects and mechanisms of tea regulating blood pressure: evidences and promises, Nutrients 11 (2019) 1115. https://doi.org/10.3390/nu11051115.

[69]

K.K. Griendling, R.W. Alexander, Oxidative stress and cardiovascular disease, Circulation 96 (1997) 3264-3265.

[70]

S. Rajagopalan, S. Kurz, T. Münzel, et al., Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone, J. Clin. Invest. 97 (1996) 1916-1923. https://doi.org/10.1172/JCI118623.

[71]

P.J. Pagano, J.K. Clark, M.E. Cifuentes-Pagano, et al., Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 14483-14488. https://doi.org/10.1073/pnas.94.26.14483.

[72]

W.C. Aird, Phenotypic heterogeneity of the endothelium: I. structure, function, and mechanisms, Circ. Res. 100 (2007) 158-173. https://doi.org/10.1161/01.RES.0000255691.76142.4a.

[73]

M. Antonello, D. Montemurro, M. Bolognesi, et al., Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts, Am. J. Hypertens. 20 (2007) 1321-1328. https://doi.org/10.1016/j.amjhyper.2007.08.006.

[74]

H. Negishi, J.W. Xu, K. Ikeda, et al., Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats, J. Nutr. 134 (2004) 38-42. https://doi.org/10.1093/jn/134.1.38.

[75]

S.H. Ihm, S.W. Jang, O.R. Kim, et al., Decaffeinated green tea extract improves hypertension and insulin resistance in a rat model of metabolic syndrome, Atherosclerosis 224 (2012) 377-383. https://doi.org/10.1016/j.atherosclerosis.2012.07.006.

[76]

W.S. Cheang, C.Y. Ngai, Y.Y. Tam, et al., Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress, Sci. Rep. 5 (2015) 10340. https://doi.org/10.1038/srep10340.

[77]

F.P. Leung, L.M. Yung, C.Y. Ngai, et al., Chronic black tea extract consumption improves endothelial function in ovariectomized rats, Eur. J. Nutr. 55 (2016) 1963-1972. https://doi.org/10.1007/s00394-015-1012-0.

[78]

Z. Yan, Y. Zhong, Y. Duan, et al., Antioxidant mechanism of tea polyphenols and its impact on health benefits, Anim. Nutr. 6 (2020) 115-123. https://doi.org/10.1016/j.aninu.2020.01.001.

[79]

N. Jochmann, M. Lorenz, A. von Krosigk, et al., The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea, Br. J. Nutr. 99 (2008) 863-868. https://doi.org/10.1017/S0007114507838992.

[80]

D. Grassi, T.P. Mulder, R. Draijer, et al., Black tea consumption dose-dependently improves flow-mediated dilation in healthy males, J. Hypertens. 27 (2009) 774-781. https://doi.org/10.1097/HJH.0b013e328326066c.

[81]

J.D. O'Reilly, A.I. Mallet, G.T. McAnlis, et al., Consumption of flavonoids in onions and black tea: lack of effect on F2-isoprostanes and autoantibodies to oxidized LDL in healthy humans, Am. J. Clin. Nutr. 73 (2001) 1040-1044. https://doi.org/10.1093/ajcn/73.6.1040.

[82]

M.E. Widlansky, S.J. Duffy, N.M. Hamburg, et al., Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease, Free Radic. Biol. Med. 38 (2005) 499-506. https://doi.org/10.1016/j.freeradbiomed.2004.11.013.

[83]

J.H. Siamwala, P.M. Dias, S. Majumder, et al., L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation, J. Nutr. Biochem. 24 (2013) 595-605. https://doi.org/10.1016/j.jnutbio.2012.02.016.

[84]

M.S. Lee, J.Y. Park, H. Freake, et al., Green tea catechin enhances cholesterol 7α-hydroxylase gene expression in HepG2 cells, Br. J. Nutr. 99 (2008) 1182-1185. https://doi.org/10.1017/s0007114507864816.

[85]

F. Annaba, P. Kumar, A.K. Dudeja, et al., Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT, Am. J. Physiol. Gastrointest. Liver Physiol. 298 (2010) G467-G473. https://doi.org/10.1152/ajpgi.00360.2009.

[86]

I. Ikeda, Y. Imasato, E. Sasaki, et al., Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats, Biochim. Biophys. Acta 1127 (1992) 141-146. https://doi.org/10.1016/0005-2760(92)90269-2.

[87]

C.A. Bursill, P.D. Roach, A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats, Lipids 42 (2007) 621-627. https://doi.org/10.1007/s11745-007-3077-x.

[88]

C.A. Bursill, M. Abbey, P.D. Roach, A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit, Atherosclerosis 193 (2007) 86-93. https://doi.org/10.1016/j.atherosclerosis.2006.08.033.

[89]

S.Y. Cao, C.N. Zhao, R.Y. Gan, et al., Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: an updated review, Antioxidants (Basel) 8 (2019) 166. https://doi.org/10.3390/antiox8060166.

[90]

D.L. Sackett, Bias in analytic research, J. Chronic Dis. 32 (1979) 51-63. https://doi.org/10.1016/0021-9681(79)90012-2.

[91]

J. Blumberg, R.P. Heaney, M. Huncharek, et al., Evidence-based criteria in the nutritional context, Nutr. Rev. 68 (2010) 478-484. https://doi.org/10.1111/j.1753-4887.2010.00307.x.

[92]

V.G. de Gruttola, P. Clax, D.L. DeMets, et al., Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop, Control. Clin. Trials 22 (2001) 485-502. https://doi.org/10.1016/s0197-2456(01)00153-2.

[93]

J.N. Cohn, Introduction to surrogate markers, Circulation 109 (2004) IV20-1. https://doi.org/10.1161/01.CIR.0000133441.05780.1d.

[94]

R.L. Prentice, Surrogate endpoints in clinical trials: definition and operational criteria, Stat. Med. 8 (1989) 431-440. https://doi.org/10.1002/sim.4780080407.

[95]

B.M. Psaty, N.S. Weiss, C.D. Furberg, et al., Surrogate end points, health outcomes, and the drug-approval process for the treatment of risk factors for cardiovascular disease, JAMA 282 (1999) 786-790. https://doi.org/10.1001/jama.282.8.786.

[96]

V.L. Roger, A.S. Go, D.M. Lloyd-Jones, et al., Heart disease and stroke statistics–2012 update: a report from the American Heart Association, Circulation 125 (2012) e2-e220. https://doi.org/10.1161/CIR.0b013e31823ac046.

[97]

M. Law, N. Wald, J. Morris, Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy, Int. J. Technol. Assess. Health Care 21 (2005) 145. https://doi.org/10.1017/s0266462305220196.

[98]

A.I. Qureshi, B.L. Sapkota, Blood pressure reduction in secondary stroke prevention, Continuum (Minneap Minn) 17 (2011) 1233-1241. https://doi.org/10.1212/01.CON.0000410032.34477.56.

[99]

L. Chen, M.J. Lee, H. Li, et al., Absorption, distribution, elimination of tea polyphenols in rats, Drug Metab. Dispos. 25 (1997) 1045-1050.

[100]

K. Nakagawa, T. Miyazawa, Absorption and distribution of tea catechin, (–)-epigallocatechin-3-gallate, in the rat, J. Nutr. Sci. Vitaminol. (Tokyo) 43 (1997) 679-684. https://doi.org/10.3177/jnsv.43.679.

[101]

S. Kim, M.J. Lee, J. Hong, et al., Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols, Nutr. Cancer 37 (2000) 41-48. https://doi.org/10.1207/S15327914NC3701_5.

[102]

M.J. Lee, P. Maliakal, L. Chen, et al., Pharmacokinetics of tea catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability, Cancer Epidemiol. Biomarkers Prev. 11 (2002) 1025-1032.

[103]

K.K.H.Y. Ho, T.C. Haufe, M.G. Ferruzzi, et al., Production and polyphenolic composition of tea, Nutr. Today 53 (2018) 268-278. https://doi.org/10.1097/NT.0000000000000304.

[104]

H.D. Sesso, J.M. Gaziano, S. Liu, et al., Flavonoid intake and the risk of cardiovascular disease in women, Am. J. Clin. Nutr. 77 (2003) 1400-1408. https://doi.org/10.1093/ajcn/77.6.1400.

[105]

F. Thielecke, M. Boschmann, The potential role of green tea catechins in the prevention of the metabolic syndrome - a review, Phytochemistry 70 (2009) 11-24. https://doi.org/10.1016/j.phytochem.2008.11.011.

[106]

T.A. Trikalinos, D. Moorthy, M. Chung, et al., Concordance of randomized and nonrandomized studies was unrelated to translational patterns of two nutrient-disease associations, J. Clin. Epidemiol. 65 (2012) 16-29. https://doi.org/10.1016/j.jclinepi.2011.07.006.

[107]

D.N. Sarma, M.L. Barrett, M.L. Chavez, et al., Safety of green tea extracts a systematic review by the US Pharmacopeia, Drug Saf. 31 (2008) 469-484. https://doi.org/10.2165/00002018-200831060-00003.

[108]

G. Mazzanti, F. Menniti-Ippolito, P.A. Moro, et al., Hepatotoxicity from green tea: a review of the literature and two unpublished cases, Eur. J. Clin. Pharmacol. 65 (2009) 331-341. https://doi.org/10.1007/s00228-008-0610-7.

[109]

A.H. Schönthal, Adverse effects of concentrated green tea extracts, Mol. Nutr. Food Res. 55 (2011) 874-885. https://doi.org/10.1002/mnfr.201000644.

[110]

G. Galati, A. Lin, A.M. Sultan, et al., Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins, Free Radic. Biol. Med. 40 (2006) 570-580. https://doi.org/10.1016/j.freeradbiomed.2005.09.014.

[111]

J.D. Lambert, S. Sang, A.Y.H. Lu, et al., Metabolism of dietary polyphenols and possible interactions with drugs, Curr. Drug Metab. 8 (2007) 499-507. https://doi.org/10.2174/138920007780866870.

[112]

J.D. Lambert, M.J. Kennett, S. Sang, et al., Hepatotoxicity of high oral dose (–)-epigallocatechin-3-gallate in mice, Food Chem. Toxicol. 48 (2010) 409-416. https://doi.org/10.1016/j.fct.2009.10.030.

[113]

Z. Chen, Z. Lin, Tea and human health: biomedical functions of tea active components and current issues, J. Zhejiang Univ. Sci. B 16 (2015) 87-102. https://doi.org/10.1631/jzus.B1500001.

[114]

I.G. Saleh, Z. Ali, N. Abe, et al., Effect of green tea and its polyphenols on mouse liver, Fitoterapia 90 (2013) 151-159. https://doi.org/10.1016/j.fitote.2013.07.014.

[115]

R.A. Isbrucker, J.A. Edwards, E. Wolz, et al., Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies, Food Chem. Toxicol. 44 (2006) 636-650. https://doi.org/10.1016/j.fct.2005.11.003.

[116]

A. Gasińska, D. Gajewska, Tea and coffee as the main sources of oxalate in diets of patients with kidney oxalate stones, Rocz. Panstw. Zakl. Hig. 58 (2007) 61-67.

[117]

J.S. Zheng, J. Yang, Y.Q. Fu, et al., Effects of green tea, black tea, and coffee consumption on the risk of esophageal cancer: a systematic review and meta-analysis of observational studies, Nutr. Cancer 65 (2013) 1-16. https://doi.org/10.1080/01635581.2013.741762.

[118]

Y. Huang, H. Chen, L. Zhou, et al., Association between green tea intake and risk of gastric cancer: a systematic review and dose-response meta-analysis of observational studies, Public Health Nutr. 20 (2017) 3183-3192. https://doi.org/10.1017/S1368980017002208.

[119]

F. Islami, A. Pourshams, D. Nasrollahzadeh, et al., Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study, BMJ 338 (2009) b929. https://doi.org/10.1136/bmj.b929.

[120]

M. Sheikh, H. Poustchi, A. Pourshams, et al., Individual and combined effects of environmental risk factors for esophageal cancer based on results from the Golestan Cohort Study, Gastroenterology 156 (2019) 1416-1427. https://doi.org/10.1053/j.gastro.2018.12.024.

[121]

J.A. Sterne, D. Gavaghan, M. Egger, Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature, J. Clin. Epidemiol. 53 (2000) 1119-1129. https://doi.org/10.1016/s0895-4356(00)00242-0.

[122]

E. Nüesch, S. Trelle, S. Reichenbach, et al., Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study, BMJ 341 (2010) c3515. https://doi.org/10.1136/bmj.c3515.

[123]

A. Lundh, S. Sismondo, J. Lexchin, et al., Industry sponsorship and research outcome, Cochrane Database Syst. Rev. 12 (2012) MR000033. https://doi.org/10.1002/14651858.MR000033.pub2.

[124]

K.W. Lange, The International Movement and Nutrition Society and the prevention of disease, Movement and Nutrition in Health and Disease 1 (2017). https://doi.org/10.5283/mnhd.1.

[125]

A.M. Abd El-Aty, J.H. Choi, M.M. Rahman, The International Movement and Nutrition Society and the prevention of disease, residues and contaminants in tea and tea infusions: a review, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 31 (2014) 1794-1804. https://doi.org/10.1080/19440049.2014.958575.

Publication history
Copyright
Rights and permissions

Publication history

Received: 05 February 2021
Revised: 18 February 2021
Accepted: 19 February 2021
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return