Journal Home > Volume 11 , Issue 3

Black tea is a healthy and popular tea beverage. However, its main bioactive compounds (theaflavins and thearubigins) are not easily absorbed. The aim of this study was to investigate the modulation of intestinal microbiota by the nonabsorptive components of Keemun black tea (KBT) and Dianhong black tea (DBT), and fructooligosaccharide (FOS) was selected for use in the control group. KBT, DBT, and FOS significantly increased total short-chain acid production. Specifically, FOS treatment predominantly increased the production of acetic acids and black tea treatments increased the production of acetic, propionic, and butyric acids at similar rates. Moreover, FOS exerted a strong bifidogenic effect after 24 h of fermentation; KBT and DBT increased the abundance of the beneficial genus Bacteroides and Roseburia. In summary, the nonabsorptive components of KBT and DBT could serve as novel prebiotics, the underlying mechanisms of which are quite different from those of FOS.


menu
Abstract
Full text
Outline
About this article

Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study

Show Author's information Wenjing LiaoWenjiao LiSuyu LiuDong TangYunxi ChenYijun WangZhongwen XieJinbao Huang( )
State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China

Abstract

Black tea is a healthy and popular tea beverage. However, its main bioactive compounds (theaflavins and thearubigins) are not easily absorbed. The aim of this study was to investigate the modulation of intestinal microbiota by the nonabsorptive components of Keemun black tea (KBT) and Dianhong black tea (DBT), and fructooligosaccharide (FOS) was selected for use in the control group. KBT, DBT, and FOS significantly increased total short-chain acid production. Specifically, FOS treatment predominantly increased the production of acetic acids and black tea treatments increased the production of acetic, propionic, and butyric acids at similar rates. Moreover, FOS exerted a strong bifidogenic effect after 24 h of fermentation; KBT and DBT increased the abundance of the beneficial genus Bacteroides and Roseburia. In summary, the nonabsorptive components of KBT and DBT could serve as novel prebiotics, the underlying mechanisms of which are quite different from those of FOS.

Keywords: Intestinal microbiota, Black tea, Anaerobic fermentation, Short-chain fatty acid

References(68)

[1]

P.D. Cani, Human gut microbiome: hopes, threats and promises, Gut 67(9) (2018) 1716-1725. http://doi.org/10.1136/gutjnl-2018-316723

[2]

E. Viennois, B. Chassaing, First victim, later aggressor: how the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes. 9(3) (2018) 288-291. http://doi.org/10.1080/19490976.2017.1421885

[3]

D. Ercolini, V. Fogliano, Food design to feed the human gut microbiota, J. Agric. Food Chem. 66(15) (2018) 3754-3758. http://doi.org/10.1021/acs.jafc.8b00456

[4]

S. Carding, K. Verbeke, D.T. Vipond, et al., Dysbiosis of the gut microbiota in disease, Microb. Ecol. Health Dis. 26 (2015) 26191. http://doi.org/10.3402/mehd.v26.26191

[5]

K. Andersen, M.S. Kesper, J.A. Marschner, et al., Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation, J. Am. Soc. Nephrol. 28(1) (2017) 76-83. http://doi.org/10.1681/Asn.2015111285

[6]
J. Li, F.Q. Zhao, Y.D. Wang, et al., Gut microbiota dysbiosis contributes to the development of hypertension, Microbiome 5 (2017) 14. http://doi.org/ARTN1410.1186/s40168-016-0222-x
[7]

T.R. Sampson, J.W. Debelius, T. Thron, et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease, Cell 167(6) (2016) 1469. http://doi.org/10.1016/j.cell.2016.11.018

[8]

J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut 65(2) (2016) 330-339. http://doi.org/10.1136/gutjnl-2015-309990

[9]

H. Sahin, A. Sari, N. Ozsoy, et al., Two new phenolic compounds and some biological activities of Scorzonera pygmaea Sibth. & Sm. subaerial parts, Nat. Prod. Res. 34(5) (2020) 621-628. http://doi.org/10.1080/14786419.2018.1493585

[10]

J. van Duynhoven, E.E. Vaughan, D.M. Jacobs, et al., Metabolic fate of polyphenols in the human superorganism, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 4531-4538. http://doi.org/10.1073/pnas.1000098107

[11]

X. Zhang, Y. Yang, Z.F. Wu, et al., The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro, J. Agric. Food Chem. 64(12) (2016) 2582-2590. http://doi.org/10.1021/acs.jafc.6b00586

[12]

L. Zhou, W. Wang, J. Huang, et al., In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota, Food Funct. 7(4) (2016) 1959-1967. http://doi.org/10.1039/c6fo00032k

[13]

M.I. Queipo-Ortuno, M. Boto-Ordonez, M. Murri, et al., Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers, Am. J. Clin. Nutr. 95(6) (2012) 1323-1334. http://doi.org/10.3945/ajcn.111.027847

[14]

Y. Zhu, J.Y. Zhang, Y.L. Wei, et al., The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats, Nutr. Metab. (Lond). 17(1) (2020) 54. http://doi.org/10.1186/S12986-020-00473-9

[15]

C. Wei, H. Yang, S. Wang, et al., Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality, Proc. Natl. Acad. Sci. U.S.A. 115(18) (2018) E4151-E4158. http://doi.org/10.1073/pnas.1719622115

[16]

T. Suzuki, M. Pervin, S. Goto, et al., Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity, Molecules 21(10) (2016) 1305. http://doi.org/10.3390/molecules21101305

[17]

T. Bond, E. Derbyshire, Tea compounds and the gut microbiome: findings from trials and mechanistic studies, Nutrients 11(10) (2019) 2364. http://doi.org/10.3390/nu11102364

[18]

L. Zhang, C.T. Ho, J. Zhou, et al., Chemistry and biological activities of processed Camellia sinensis teas: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 18(5) (2019) 1474-1495. http://doi.org/10.1111/1541-4337.12479

[19]

V.A. Fernandez, L.A. Toledano, N.P. Lozano, et al., Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers, Antioxidants 9(5) (2020) 440. http://doi.org/10.3390/Antiox9050440

[20]

S.M. Henning, J. Yang, M. Hsu, et al., Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice, Eur. J. Nutr. 57(8) (2018) 2759-2769. http://doi.org/10.1007/s00394-017-1542-8

[21]

X.M. Guo, P.P. Long, Q.L. Meng, et al., An emerging strategy for evaluating the grades of keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on alpha-glucosidase and alpha-amylase, Food Chem. 246 (2018) 74-81. http://doi.org/10.1016/j.foodchem.2017.10.148

[22]

J. Zhu, F.Y. Zhu, L.Q. Li, et al., Highly discriminant rate of dianhong black tea grades based on fluorescent probes combined with chemometric methods, Food Chem. 298 (2019) 125046. https://doi.org/10.1016/j.foodchem.2019.125046

[23]

X.L. Pang, Z.H. Qin, L. Zhao, et al., Development of regression model to differentiate quality of black tea (Dianhong): correlate aroma properties with instrumental data using multiple linear regression analysis, Int. J. Food Sci. Technol. 47(11) (2012) 2372-2379. http://doi.org/10.1111/j.1365-2621.2012.03112.x

[24]

D. Hinojosa-Nogueira, J. Muros, J.A. Rufian-Henares, et al., New method to estimate total polyphenol excretion: comparison of fast blue BB versus Folin-Ciocalteu performance in urine, J. Agric. Food Chem. 65(20) (2017) 4216-4222. http://doi.org/10.1021/acs.jafc.7b01000

[25]

J. Zhou, Y. Wu, P. Long, et al., LC-MS-based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of large-leaf yellow tea, J. Agric. Food Chem. 67(19) (2019) 5405-5412. http://doi.org/10.1021/acs.jafc.8b05062

[26]

L. Zhang, Y. Tai, Y. Wang, et al., The proposed biosynthesis of procyanidins by the comparative chemical analysis of five camellia species using LC-MS, Sci. Rep. 7 (2017) 46131. http://doi.org/10.1038/srep46131

[27]

J.L. Hu, S.P. Nie, F.F. Min, et al., Artificial simulated saliva, gastric and intestinal digestion of polysaccharide from the seeds of Plantago asiatica L., Carbohydr. Polym. 92(2) (2013) 1143-1150. http://doi.org/10.1016/j.carbpol.2012.10.072

[28]

F. Smith, X. Pan, V. Bellido, et al., Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion, Mol. Nutr. Food Res. 59(10) (2015) 2034-1043. http://doi.org/10.1002/mnfr.201500262

[29]

C. Chen, B. Zhang, X. Fu, et al., The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions, Food Hydrocoll. 58 (2016) 171-178. http://doi.org/10.1016/j.foodhyd.2016.02.033

[30]

G.J. Chen, M.H. Xie, P. Wan, et al., Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea, Food Chem. 244 (2018) 331-339. http://doi.org/10.1016/j.foodchem.2017.10.074

[31]

L.M. Tian, J. Scholte, K. Borewicz, et al., Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats, Mol. Nutr. Food Res. 60(10) (2016) 2256-2266. http://doi.org/10.1002/mnfr.201600149

[32]

R.C. Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods 10(10) (2013) 996-998. http://doi.org/10.1038/nmeth.2604

[33]

N. Segata, J. Izard, L. Waldron, et al., Metagenomic biomarker discovery and explanation, Genome. Biol. 12(6) (2011) R60. http://doi.org/10.1186/gb-2011-12-6-r60

[34]

D.T. Li, P. Wang, P.P. Wang, et al., The gut microbiota: a treasure for human health, Biotechnol. Adv. 34(7) (2016) 1210-1224. http://doi.org/10.1016/j.biotechadv.2016.08.003

[35]

C.J. Chang, C.S. Lin, C.C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015) 7489. http://doi.org/10.1038/ncomms8489

[36]

H.J. Ko, C.Y. Lo, B.J. Wang, et al., Theaflavin-3,3'-digallate, a black tea polyphenol, attenuates adipocyte-activated inflammatory response of macrophage associated with the switch of M1/M2-like phenotype, J. Funct. Foods 11 (2014) 36-48. http://doi.org/10.1016/j.jff.2014.09.003

[37]

A. Koh, F. De Vadder, P. Kovatcheva-Datchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165(6) (2016) 1332-1345. http://doi.org/10.1016/j.cell.2016.05.041

[38]

J.M. Wong, R. de Souza, C.W. Kendall, et al., Colonic health: fermentation and short chain fatty acids, J. Clin. Gastroenterol. 40(3) (2006) 235-243. http://doi.org/10.1097/00004836-200603000-00015

[39]

K.N. Han, D.Y. Luo, Y. Zou, et al., Modulation of gut microbiota by soybean 7S globulin peptide that involved lipopolysaccharide-peptide interaction, J. Agric. Food Chem. 67(8) (2019) 2201-2211. http://doi.org/10.1021/acs.jafc.8b07109

[40]

E. Hosseini, C. Grootaert, W. Verstraete, et al., Propionate as a health-promoting microbial metabolite in the human gut, Nutr. Rev. 69(5) (2011) 245-258. http://doi.org/10.1111/j.1753-4887.2011.00388.x

[41]

E.S. Chambers, A. Viardot, A. Psichas, et al., Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults, Gut 64(11) (2015) 1744-1754. http://doi.org/10.1136/gutjnl-2014-307913

[42]

G. Flores, M.L.R. del Castillo, A. Costabile, et al., In vitro fermentation of anthocyanins encapsulated with cyclodextrins: release, metabolism and influence on gut microbiota growth, J. Funct. Foods 16 (2015) 50-57. http://doi.org/10.1016/j.jff.2015.04.022

[43]

T. Pham, B.J. Savary, K. Teoh, et al., In vitro fermentation patterns of rice bran components by human gut microbiota, Nutrients 9(11) (2017) 1237. http://doi.org/10.3390/nu9111237

[44]

L.G. Chen, W. Xu, D. Chen, et al., Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro, Int. J. Biol. Macromol. 112 (2018) 1055-1061. http://doi.org/10.1016/j.ijbiomac.2018.01.183

[45]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444(7122) (2006) 1027-1031. http://doi.org/10.1038/nature05414

[46]

P.J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature 457(7228) (2009) 480-484. http://doi.org/10.1038/nature07540

[47]

S. Perez-Burillo, T. Mehta, A. Esteban-Munoz, et al., Effect of in vitro digestion-fermentation on green and roasted coffee bioactivity: the role of the gut microbiota, Food Chem. 279 (2019) 252-259. http://doi.org/10.1016/j.foodchem.2018.11.137

[48]

P. Blatchford, H. Stoklosinski, S. Eady, et al., Consumption of kiwifruit capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals: a randomised controlled human trial, J. Nutr. Sci. 6 (2017) e52. http://doi.org/10.1017/jns.2017.52

[49]

S.A. Abrams, I.J. Griffin, K.M. Hawthorne, et al., A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents, Am. J. Clin. Nutr. 82(2) (2005) 471-476. http://doi.org/10.1051/rnd:2005051

[50]

A. Barcenilla, S.E. Pryde, J.C. Martin, et al., Phylogenetic relationships of butyrate-producing bacteria from the human gut, Appl. Environ. Microbiol. 66(4) (2000) 1654-1661. http://doi.org/10.1128/AEM.66.4.1654-1661.2000

[51]

S. Fehlbaum, K. Prudence, J. Kieboom, et al., In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota, Int. J. Mol. Sci. 19(10) (2018) 3097. http://doi.org/10.3390/Ijms19103097

[52]

M.J. Gillespie, D. Stanley, H.L. Chen, et al., Functional similarities between pigeon 'milk' and mammalian milk: induction of immune gene expression and modification of the microbiota, PLoS One 7(10) (2012) e48363. https://doi.org/10.1371/journal.pone.0048363

[53]

X.C. Morgan, T.L. Tickle, H. Sokol, et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol. 13(9) (2012). http://doi.org/10.1186/Gb-2012-13-9-R79

[54]

P. Louis, H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine, FEMS Microbiol. Lett. 294(1) (2009) 1-8. http://doi.org/10.1111/j.1574-6968.2009.01514.x

[55]

T.N. Kelly, L.A. Bazzano, N.J. Ajami, et al., Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants, Circ. Res. 119(8) (2016) 956. http://doi.org/10.1161/Circresaha.116.309219

[56]

G.R. Gibson, R. Hutkins, M.E. Sanders, et al., The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol. 14(8) (2017) 491-502. http://doi.org/10.1038/nrgastro.2017.75

[57]

J.B. Jin, J.W. Cha, I.S. Shin, et al., Supplementation with Chlorella vulgaris, Chlorella protothecoides, and Schizochytrium sp. increases propionate-producing bacteria in in vitro human gut fermentation, J. Sci. Food Agric. 100(7) (2020) 2938-2945. http://doi.org/10.1002/jsfa.10321

[58]

Z. Mohebbi, A. Homayouni, M.H. Azizi, et al., Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties, J. Food Sci. Technol. 55(1) (2018) 101-110. http://doi.org/10.1007/s13197-017-2836-9

[59]

M. Cheng, X. Zhang, Y.J. Miao, et al., The modulatory effect of (–)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3"Me) on intestinal microbiota of high fat diet-induced obesity mice model, Food Res. Int. 92 (2017) 9-16. http://doi.org/10.1016/j.foodres.2016.12.008

[60]

C. De Filippo, D. Cavalieri, M. Di Paola, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc. Natl. Acad. Sci. U.S.A. 107(33) (2010) 14691-14696. http://doi.org/10.1073/pnas.1005963107

[61]

P. Louis, H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol. 19(1) (2017) 29-41. http://doi.org/10.1111/1462-2920.13589

[62]

Z.Q. Xie, S.K. Wang, Z.G. Wang, et al., In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota, Carbohydr. Polym. 223 (2019). http://doi.org/10.1016/j.carbpol.2019.115069

[63]

H.D. Holscher, A.M. Taylor, K.S. Swanson, et al., Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: a randomized controlled trial, Nutrients 10(2) (2018) 126. http://doi.org/10.3390/nu10020126

[64]

K. Atarashi, T. Tanoue, K. Oshima, et al., Treg induction by a rationally selected mixture of clostridia strains from the human microbiota, Nature 500(7461) (2013) 232. http://doi.org/10.1038/nature12331

[65]

B. Gullon, P. Gullon, F. Tavaria, et al., Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran, J. Funct. Foods 6 (2014) 438-449. http://doi.org/10.1016/j.jff.2013.11.010

[66]

A. Schwiertz, G.L. Hold, S.H. Duncan, et al., Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces, Syst. Appl. Microbiol. 25(1) (2002) 46-51. http://doi.org/10.1078/0723-2020-00096

[67]

M. van Hul, L. Geurts, H. Plovier, et al., Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier, Am. J. Physiol. Endocrinol. Metab. 314(4) (2018) E334-E352. http://doi.org/10.1152/ajpendo.00107.2017

[68]

A.G. Wexler, A.L. Goodman, An insider's perspective: bacteroides as a window into the microbiome, Nat. Microbiol. 2 (2017) 17026. http://doi.org/10.1038/nmicrobiol.2017.26

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 February 2021
Revised: 19 February 2021
Accepted: 25 February 2021
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This work was supported by the Key Research and Development Program of Anhui Province (201904b11020038, 1804b06020367), a Key Joint Grant for Regional Innovation and Development from National Sciences Foundation of China (U19A2034), the National Natural Science Foundation (31972459), and an Earmarked fund for China Agriculture Research System (CARS-19).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return