Journal Home > Volume 11 , Issue 3

Camellia sinensis (tea), one of the most popular commercial crops, is commonly applied in all parts of the world. The main active ingredients of tea include polyphenols, alkaloids, polysaccharides, amino acids, aroma and volatile constitutes, all of which are potentially responsible for the activities of tea. Stem cells (SCs) are the immature and undifferentiated cells by a varying capacity for proliferation, self-renewal and the capability to differentiate into one or more different derivatives with specialized function or maintain their stem cell phenotype. Herein, a thorough review is conducted of the functional mechanism on SCs by tea bioactive compounds.


menu
Abstract
Full text
Outline
About this article

Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds

Show Author's information Yao Chenga,1Jiachen Suna,1( )Hui Zhaoa( )Hongxing GuobJianying Lia
School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
The Third Central Clinical College, Tianjin Medical University, Tianjin 300170, China

1 These authors contributed equally to this article.

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Camellia sinensis (tea), one of the most popular commercial crops, is commonly applied in all parts of the world. The main active ingredients of tea include polyphenols, alkaloids, polysaccharides, amino acids, aroma and volatile constitutes, all of which are potentially responsible for the activities of tea. Stem cells (SCs) are the immature and undifferentiated cells by a varying capacity for proliferation, self-renewal and the capability to differentiate into one or more different derivatives with specialized function or maintain their stem cell phenotype. Herein, a thorough review is conducted of the functional mechanism on SCs by tea bioactive compounds.

Keywords: Functional mechanism, Stem cell, Camellia sinensis, Bioactive compounds

References(70)

[1]

U.H. Engelhardt, Tea chemistry-what do and what don't we know? - A micro review, Food Res. Int. 132 (2020) 109120. http://doi.org/10.1016/j.foodres.2020.109120.

[2]

J.P. Liu, J.M. Xing, Y.T. Fei, Green tea (Camellia sinensis) and cancer prevention: a systematic review of randomized trials and epidemiological studies, Chin. Med. 3 (2008) 12. http://doi.org/10.1186/1749-8546-3-12.

[3]

N. Oku, M. Matsukawa, S. Yamakawa, et al., Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP, Biol. Pharm. Bull. 26 (2003) 1235-1238. http://doi.org/10.1248/bpb.26.1235.

[4]

L.A. Mitscher, M. Jung, D. Shankel, et al., Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents, Med. Res. Rev. 17 (1997) 327-365. http://doi.org/10.1002/(sici)1098-1128(199707)17: 4.

[5]

A. Gosslau, E. Zachariah, S.M. Li, et al., Anti-diabetic effects of a theaflavin-enriched black tea extract in the obese ZDF rat model, J. Food Bioact. 3 (2018) 151-160. http://doi.org/10.31665/JFB.2018.3158.

[6]

L. Zhang, C.T. Ho, J. Zhou, et al., Chemistry and biological activities of processed Camellia sinensis teas: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1474-1495. http://doi.org/10.1111/1541-4337.12479.

[7]

Y. Imai, H. Yamagishi, Y. Ono, et al., Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells, Clin. Transl. Med. 1 (2012) 24. http://doi.org/10.1186/2001-1326-1-24.

[8]

B.D. Zeitlin, Banking on teeth-stem cells and the dental office, Biomed. J. 43 (2020) 124-133. http://doi.org/10.1016/j.bj.2020.02.003.

[9]

C.N. Chen, C.M. Liang, J.R. Lai, et al., Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration, J. Agric. Food Chem. 51 (2003) 7495-7503. http://doi.org/10.1021/jf034634b.

[10]

A. Abbasi, N.R. Kukia, S.M.A. Froushani, et al., Nicotine and caffeine alter the effects of the LPS-primed mesenchymal stem cells on the co-cultured neutrophils, Life Sci. 199 (2018) 41-47. http://doi.org/10.1016/j.lfs.2018.03.009.

[11]

M. Konno, A. Hamabe, S. Hasegawa, et al., Adipose-derived mesenchymal stem cells and regenerative medicine, Dev. Growth Differ. 55 (2013) 309-318. http://doi.org/10.1111/dgd.12049.

[12]

X.C. Cao, H. Zou, J.G. Cao, et al., A candidate Chinese medicine preparation-Fructus viticis total flavonoids inhibits stem-like characteristics of lung cancer stem-like cells, BMC Complement Altern. Med. 16 (2016) 364. http://doi.org/10.1186/s12906-016-1341-4.

[13]

K. Kandhari, H. Agraval, A. Sharma, et al., Flavonoids and cancer stem cells maintenance and growth, Funct. Food Human Health (2018) 587-622. http://doi.org/10.1007/978-981-13-1123-9_26.

[14]

G. Bonuccelli, F. Sotgia, M.P. Lisanti, Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signaling pathways, Aging 10 (2018) 1867-1883. http://dx.doi.org/10.18632/aging.101483.

[15]

E.S. Scarpa, P. Ninfali, Phytochemicals as innovative therapeutic tools against cancer stem cells, Int. J. Mol. Sci. 16 (2015) 15727-15742. http://doi.org/10.3390/ijms160715727.

[16]

Y. Miyata, Y. Shida, T. Hakariya, et al., Anti-cancer effects of green tea polyphenols against prostate cancer, Molecules 24 (2019) 193. http://doi.org/10.3390/molecules24010193.

[17]

G. Kumar, M. Farooqui, C.V. Rao, Role of dietary cancer-preventive phytochemicals in pancreatic cancer stem cells, Curr. Pharmacol. Rep. 4 (2018) 326-335. http://doi.org/10.1007/s40495-018-0145-2.

[18]

S.N. Tang, J.S. Fu, D. Nall, et al., Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics, Int. J. Cancer 131 (2012) 30-40. http://doi.org/10.1002/ijc.26323.

[19]

H. Fujiki, E. Sueoka, A. Rawangkan, et al., Human cancer stem cells are a target for cancer prevention using (–)-epigallocatechin gallate, J. Cancer Res. Clin. Oncol. 143 (2017) 2401-2412. http://doi.org/10.1007/s00432-017-2515-2.

[20]

X.H. Pan, B. Zhao, Z. Song, et al., Estrogen receptor-alpha36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells, J. Pharmacol. Sci. 130 (2016) 85-93. http://doi.org/10.1016/j.jphs.2015.12.003.

[21]

S.S. Chung, J.V. Vadgama, Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling, Anticancer Res. 35 (2015) 39-46. http://doi.org/10.0000/PMID25550533.

[22]

D. Chen, S. Pamu, Q.Z. Cui, et al., Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells, Bioorg. Med. Chem. 20 (2012) 3031-3037. https://doi.org/10.1016/j.bmc.2012.03.002.

[23]

H. Fujiki, E. Sueoka, T. Watanabe, et al., Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds, J. Cancer Res. Clin. Oncol. 141 (2014) 1511-1522. http://doi.org/10.1007/s00432-014-1899-5.

[24]

H. Fujiki, E. Sueoka, T. Watanabe, et al., Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds, J. Cancer Prev. 20 (2015) 1-4. http://doi.org/10.15430/JCP.2015.20.1.1.

[25]

S.N. Tang, C. Singh, D. Nall, et al., The dietary bioflavonoid quercetin synergizes with epigallocatechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition, J. Mol. Signal. 5 (2010). http://doi.org/10.1186/1750-2187-5-14.

[26]

A. Rawangkan, P. Wongsirisin, K. Namiki, et al., Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth, Molecules 23 (2018) 2071. http://doi.org/10.3390/molecules23082071.

[27]

J.Y. Zhu, Y. Jiang, X. Yang, et al., Wnt/β-catenin pathway mediates (−)-epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells, Biochem. Biophys. Res. Commun. 482 (2017) 15-21. http://doi.org/10.1016/j.bbrc.2016.11.038.

[28]

P. Jiang, C.Y. Xu, L.J. Chen, et al., Epigallocatechin-3-gallate inhibited cancer stem cell-like properties by targeting hsa-mir-485-5p/RXRalpha in lung cancer, J. Cell Biochem. 119 (2018) 8623-8635. https://doi.org/10.1002/jcb.27117.

[29]

G.Y. Wubetu, M. Shimada, Y. Morine, et al., Epigallocatechin gallate hinders human hepatoma and colon cancer sphere formation, J. Gastroenterol. Hepatol. 31 (2016) 256-264. http://doi.org/10.1111/jgh.13069.

[30]

Y. Chen, X.Q. Wang, Q. Zhang, et al., (–)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway, Nutrients 9 (2017) 572. https://doi.org/10.3390/nu9060572.

[31]

S.H. Lee, H.J. Nam, H.J. Kang, et al., Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway, Eur. J. Cancer 49 (2013) 3210-3218. https://doi.org/10.1016/j.ejca.2013.06.025.

[32]

Y.J. Li, S.L. Wu, S.M. Lu, et al., (–)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial-mesenchymal transition via NF-κB p65 inactivation, Tumour. Biol. 36 (2015) 2747-2761. https://doi.org/10.1007/s13277-014-2899-4.

[33]

Y.S. Kim, W. Farrar, N.H. Colburn, et al., Cancer stem cells: potential target for bioactive food components, J. Nutr. Biochem. 23 (2012) 691-698. https://doi.org/10.1016/j.jnutbio.2012.03.002.

[34]

S.S. Chung, J.V. Vadgama, Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFĸB signaling, Anticancer Res. 35 (2015) 39.46.

[35]

S.Z. Li, Q. Zhao, B. Wang, et al., Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation, Phytother. Res. 32 (2018) 1530-1536. http://doi.org/10.1002/ptr.6081.

[36]

X.L. Li, N. Zhou, J. Wang, et al., Quercetin suppresses breast cancer stem cells (CD44+/CD24-) by inhibiting the PI3K/Akt/mTOR-signaling pathway, Life Sci. 196 (2018) 56-62. http://doi.org/10.1016/j.lfs.2018.01.014.

[37]

W. Zhou, G. Kallifatidis, B. Baumann, Dietary polyphenol quercetin targets pancreatic cancer stem cells, Int. J. Oncol. 37 (2010) 551-561. http://doi.org/10.3892/ijo_00000704.

[38]

E. Angst, J.L. Park, A. Moro, et al., The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo, Pancreas 42 (2013) 223-229. http://doi.org/10.1097/MPA.0b013e318264ccae.

[39]

R. Adikrisna, S. Tanaka, S. Muramatsu, et al., Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents, Gastroenterology 143 (2012) 234-245. http://doi.org/10.1053/j.gastro.2012.03.054.

[40]

R.K. Srivastava, S.N. Tang, W.Y. Zhu, et al., Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells, Front. Bio. 3 (2011) 515-528. http://doi.org/10.2741/e266.

[41]

X.S. Shen, Y.Q. Si, Z. Wang, et al., Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling, Int. J. Mol. Med. 38 (2016) 619-626. http://doi.org/10.3892/ijmm.2016.2625.

[42]
H.N. Dong, Study on the protective effect of tea polyphenols on neural stem cells, (2011).
[43]

Y.B. Zhang, Q. He, J.H. Dong, et al., Effects of epigallocatechin-3-gallate on proliferation and differentiation of mouse cochlear neural stem cells: Involvement of PI3K/Akt signaling pathway, Eur. J. Pharm. Sci. 88 (2016) 267-273. http://doi.org/10.1016/j.ejps.2016.03.017.

[44]

J.C. Zhang, H. Xu, Y. Yuan, et al., Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice, Mol. Neurobiol. 54 (2017) 3652-3664. http://doi.org/10.1007/s12035-016-9924-0.

[45]

T. Itoh, M. Imano, S. Nishida, et al., (–)-Epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury, J. Neural. Transm. 119 (2012) 877-890. https://doi.org/10.1007/s00702-011-0764-9.

[46]

T. Takarada, M. Ogura, N. Nakamichi, et al., Upregulation of Slc38a1 gene along with promotion of neurosphere growth and subsequent neuronal specification in undifferentiated neural progenitor cells exposed to theanine, Neurochem. Res. 41 (2016) 5-15. https://doi.org/10.1007/s11064-015-1591-4.

[47]

A. Liu, Z.H. Gong, L. Lin, et al., Effects of l-theanine on glutamine metabolism in enterotoxigenic Escherichia coli (E44813)-stressed and non-stressed rats, J. Funct. Foods 64 (2020) 103670. https://doi.org/10.1016/j.jff.2019.103670.

[48]

Y. Chen, F. Lian, Q. Lu, et al., L-theanine attenuates isoflurane-induced injury in neural stem cells and cognitive impairment in neonatal mice, Biol. Pharm. Bull. 43 (2020) 938-945. https://doi.org/10.1248/bpb.b19-00790.

[49]

C.H. Ko, W.S. Siu, H.L. Wong, et al., Pro-bone and antifat effects of green tea and its polyphenol, epigallocatechin, in rat mesenchymal stem cells in vitro, J. Agric. Food Chem. 59 (2011) 9870-9876. http://doi.org/10.1021/jf202015t.

[50]

H. Xie, X.C. Li, Z.X. Ren, et al., Antioxidant and cytoprotective effects of Tibetan tea and its phenolic components, Molecules 23 (2018) 179. http://doi.org/10.3390/molecules23020179.

[51]

H. Liu, W.J. Xue, Y.F. Xie, et al., Tea polyphenol-induced neuron-like differentiation of mouse mesenchymal stem cells, Chin. J. Physiol. 54 (2011) 111-117. http://doi.org/10.4077/CJP.2011.AMM003.

[52]

D.W. Shin, S.N. Kim, S.M. Lee, et al., (–)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation, Biochem. Pharmacol. 77 (2009) 125-133. http://doi.org/10.1016/j.bcp.2008.09.033.

[53]

Y.J. Wei, K.S. Tsai, L.C. Lin, et al., Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells, Osteoporos. Int. 22 (2011) 1469-1479. http://doi.org/10.1007/s00198-010-1352-9.

[54]

C.H. Chen, M.L. Ho, J.K. Chang, et al., Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line, Osteoporos. Int. 16 (2005) 2039-2045. http://doi.org/10.1007/s00198-005-1995-0.

[55]

C.H. Ko, K.M. Lau, W.Y. Choy, et al., Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism, J. Agric. Food Chem. 57 (2009) 7293-7297. https://doi.org/10.1021/jf901545u.

[56]

S.Y. Lin, L. Kang, C.Z. Wang, et al., (–)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells, Molecules 23 (2018) 3221. https://doi.org/10.3390/molecules23123221.

[57]

S.Y. Lin, J.Y. Kan, C.C. Lu, et al., Green tea catechin (–)-epigallocatechin-3-gallate (EGCG) facilitates fracture healing, Biomolecules 10 (2020) 620. https://doi.org/10.3390/biom10040620.

[58]

Y.Y. Qiu, Y. Chen, T.H. Zeng, et al., EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210, Mol. Biol. Rep. 43 (2016) 183-193. https://doi.org/10.1007/s11033-015-3936-0.

[59]

A.M. Reis, M.O. Nde, J.N. Boeloni, et al., Inhibition of the osteogenic differentiation of mesenchymal stem cells derived from the offspring of rats treated with caffeine during pregnancy and lactation, Connect. Tissue Res. 57 (2016) 131-142. https://doi.org/10.3109/03008207.2015.1117075.

[60]

H.J. Kim, B.K. Yoon, H. Park, et al., Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes, BMB Rep. 49 (2016) 111-115. https://doi.org/10.5483/BMBRep.2016.49.2.128.

[61]

E. Moases Ghaffary, S.M. Abtahi Froushani, Immunomodulatory benefits of mesenchymal stem cells treated with caffeine in adjuvant-induced arthritis, Life. Sci. 246 (2020) 117420. https://doi.org/10.1016/j.lfs.2020.117420.

[62]

N. Shushtari, S.M. Abtahi Froushani, Caffeine augments the instruction of anti-inflammatory macrophages by the conditioned medium of mesenchymal stem cells, Cell J. 19 (2017) 415-424. https://doi.org/10.22074/cellj.2017.4364.

[63]

Y. Li, J.F. Wang, G.M. Chen, et al., Quercetin promotes the osteogenic differentiation of rat mesenchymal stem cells via mitogen-activated protein kinase signaling, Exp. Ther. Med. 9 (2015) 2072-2080. http://doi.org/10.3892/etm.2015.2388.

[64]

Z. Yuan, J. Min, Y.W. Zhao, et al., Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats, Am. J. Transl. Res. 10 (2018) 4313-4321.

[65]

X.C. Li, J.Y. Zeng, Y.P. Liu, et al, Inhibitory effect and mechanism of action of quercetin and quercetin diels-alder anti-dimer on erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells, Antioxidants (Basel) 9 (2012) 205. http://doi.org/10.3390/antiox9030205.

[66]

T.S. Chen, S.Y. Liou, H.H. Lin, et al., Oral administration of green tea epigallocatechin-3-gallate reduces oxidative stress and enhances restoration of cardiac function in diabetic rats receiving autologous transplantation of adipose-derived stem cells, Arch. Physiol. Biochem. 127 (2021) 82-89. https://doi.org/10.1080/13813455.2019.1614631.

[67]

J. Zhang, K. Wu, T. Xu, et al., Epigallocatechin-3-gallate enhances the osteoblastogenic differentiation of human adipose-derived stem cells, Drug Des. Devel. Ther. 13 (2019) 1311-1321. https://doi.org/10.2147/DDDT.S192683.

[68]

S.H. Su, H.W. Shyu, Y.T. Yeh, et al., Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells, Toxicol. in Vitro 27 (2013) 1830-1837. https://doi.org/10.1016/j.tiv.2013.05.011.

[69]

S.J. Su, K.L. Chang, S.H. Su, et al., Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line, Int. J. Food. Sci. Nutr. 64 (2013) 429-436. https://doi.org/10.3109/09637486.2012.759184.

[70]

W.G. Lao, Y. Tan, M. Johnson, et al., Combating osteoporosis and obesity with green tea polyphenols: molecular switching of osteogenesis versus adipogenesis during early differentiation of human adipose tissue-derived stem cells, Res. Sq. 5 (2020). https://doi.org/10.21203/rs.3.rs-53339/v1.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 September 2020
Revised: 23 October 2020
Accepted: 25 October 2020
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Acknowledgements

This study was supported by National College Students Innovation and Entrepreneurship Training Program (201910069007, 201910069102) and Tianjin Key R & D Plan-Key Projects Supported by Science and Technology (19YFZCSN00010).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return