Journal Home > Volume 11 , Issue 3

Tea polyphenols (TPPs) have attracted significant research interest due to their health benefits. However, TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low. Delivery systems made of food-grade materials have been reported to improve the shelf-life, bioavailability and bioefficacy of TPPs. This review discusses the chemistry of TPPs; the setbacks of TPPs for application; and the strategies to counteract application limitations by rationally designing delivery systems. An overview of different formulations used to encapsulate TPPs is provided in this study, such as emulsion-based systems (liposome, nanoemulsion, double emulsion, and Pickering emulsion) and nano/microparticles-based systems (protein-based, carbohydrate-based, and bi-polymer based). In addition, the stability, bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models. The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs, which can be of great value to TPPs-fortified food products. Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.


menu
Abstract
Full text
Outline
About this article

Improving the stability and bioavailability of tea polyphenols by encapsulations: a review

Show Author's information Zhiya Yina,bTing ZhengaChi-Tang HoaQingrong HuangaQingli Wua,b,c,dMan Zhanga( )
Department of Food Science, Rutgers University, NJ 08901, USA
New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, NJ 08901, USA
Department of Medicinal Chemistry, Rutgers University, NJ 08854, USA
Center for Agricultural Food Ecosystems, The New Jersey Institute for Food, Nutrition and Health, Rutgers University, NJ 08901, USA

Abstract

Tea polyphenols (TPPs) have attracted significant research interest due to their health benefits. However, TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low. Delivery systems made of food-grade materials have been reported to improve the shelf-life, bioavailability and bioefficacy of TPPs. This review discusses the chemistry of TPPs; the setbacks of TPPs for application; and the strategies to counteract application limitations by rationally designing delivery systems. An overview of different formulations used to encapsulate TPPs is provided in this study, such as emulsion-based systems (liposome, nanoemulsion, double emulsion, and Pickering emulsion) and nano/microparticles-based systems (protein-based, carbohydrate-based, and bi-polymer based). In addition, the stability, bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models. The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs, which can be of great value to TPPs-fortified food products. Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.

Keywords: Stability, Encapsulation, Tea polyphenols, Bioavailability, Bioefficacy

References(178)

[1]
A. Macfarlane, I. Macfarlane, The empire of tea, first ed., Abrams Press, New York, 2009
[2]

Z. Yan, Y. Zhong, Y. Duan, et al., Antioxidant mechanism of tea polyphenols and its impact on health benefits, Anim. Nutr. 6 (2020) 115-123. http://doi.org/10.1016/j.aninu.2020.01.001

[3]

L. Xing, H. Zhang, R. Qi, et al., Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols, J. Agric. Food Chem. 67 (2019) 1029-1043. http://doi.org/10.1021/acs.jafc.8b06146

[4]

H. Mukhtar, N. Ahmad, Tea polyphenols: prevention of cancer and optimizing health, The Am. J. Clin. Nutr. 71 (2000) 1698S-1702S. http://doi.org/10.1093/ajcn/71.6.1698S

[5]

Q.V. Vuong, J.B. Golding, C.E. Stathopoulos, et al., Optimizing conditions for the extraction of catechins from green tea using hot water, J. Sep. Sci. 34 (2011) 3099-3106. http://doi.org/10.1002/jssc.201000863

[6]

Y.L. Su, L.K. Leung, Y. Huang, et al., Stability of tea theaflavins and catechins, Food Chem. 83 (2003) 189-195. http://doi.org/10.1016/S0308-8146(03)00062-1

[7]

S. Sang, J.D. Lambert, C.S. Yang, Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols, J. Sci. Food Agric. 86 (2006) 2256-2265. http://doi.org/10.1002/jsfa.2660

[8]

M. Lazzeroni, A. Guerrieri-Gonzaga, S. Gandini, et al., A presurgical study of lecithin formulation of green tea extract in women with early breast cancer, Cancer Prev. Res. 10 (2017) 363-370. http://doi.org/10.1158/1940-6207.CAPR-16-0298

[9]

Y. Peng, Q. Meng, J. Zhou, et al., Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats, Food Chem. 242 (2018) 527-532. http://doi.org/10.1016/j.foodchem.2017.09.094

[10]

S. Khokhar, S. Magnusdottir, Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom, J. Agric. Food Chem. 50 (2002) 565-570. http://doi.org/10.1021/jf010153l

[11]

T.M. Rains, S. Agarwal, K.C. Maki, Antiobesity effects of green tea catechins: a mechanistic review, J. Nutr. Biochem. 22 (2011) 1-7. http://doi.org/10.1016/j.jnutbio.2010.06.006

[12]

B. Narotzki, A.Z. Reznick, D. Aizenbud, et al., Green tea: a promising natural product in oral health, Arch. Oral. Biol. 57 (2012) 429-435. http://doi.org/10.1016/j.archoralbio.2011.11.017

[13]

J.W. Drynan, M.N. Clifford, J. Obuchowicz, et al., The chemistry of low molecular weight black tea polyphenols, Nat. Prod. Rep. 27 (2010) 417-462, http://doi.org/10.1039/b912523j

[14]

Y. Matsuo, T. Tanaka, I. Kouno, Production mechanism of proepitheaflagallin, a precursor of benzotropolone-type black tea pigment, derived from epigallocatechin via a bicyclo [3.2.1] octane-type intermediate, Tetrahedron Lett. 50 (2009) 1348-1351. http://doi.org/10.1016/j.tetlet.2009.01.030

[15]

S. Li, C.Y. Lo, M.H. Pan, et al., Black tea: chemical analysis and stability, Food Funct. 4 (2013) 10-18. http://doi.org/10.1039/c2fo30093a

[16]

V. Stangl, H. Dreger, K. Stangl, et al., Molecular targets of tea polyphenols in the cardiovascular system, Cardiovasc. Res. 73 (2007) 348-358. http://doi.org/10.1016/j.cardiores.2006.08.022

[17]

K. Nakagawa, T. Miyazawa, Absorption and distribution of tea catechin, (–)-epigallocatechin-3-gallate, in the rat, J. Nutr. Sci. Vita. 43 (1997) 679-684. http://doi.org/https://doi.org/10.3177/jnsv.43.679

[18]

Z.Y. Cai, X.M. Li, J.P. Liang, et al., Bioavailability of tea catechins and its improvement, Molecules 23 (2018) 2346. https://doi.org/10.3390/molecules23092346

[19]

N. Ramesh, A.K.A. Mandal, Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model, Drug Dev. Ind. Pharm. 45 (2019) 1506-1514. http://doi.org/10.1080/03639045.2019.1634091

[20]

M. Suganuma, S. Okabe, M. Oniyama, et al., Wide distribution of [3H](–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue, Carcinogenesis 19 (1998) 1771-1776. http://doi.org/10.1093/carcin/19.10.1771

[21]

S. Kim, M.J. Lee, J. Hong, et al., Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols, Nutr. Cancer 37 (2000) 41-48. http://doi.org/10.1207/S15327914NC3701_5

[22]

L. Chen, M.J. Lee, H. Li, et al., Absorption, distribution, and elimination of tea polyphenols in rats, Drug Metab. Dispos. 25 (1997) 1045-1050

[23]

S. Shah, A. Gani, M. Ahmad, et al., In vitro antioxidant and antiproliferative activity of microwave-extracted green tea and black tea (Camellia sinensis): a comparative study, NutraFoods 14 (2015) 207-215. http://doi.org/10.1007/s13749-015-0050-9

[24]

J.Y. Fang, W.R. Lee, S.C. Shen, et al., Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas, J. Dermatol. Sci. 42 (2006) 101-109. http://doi.org/10.1016/j.jdermsci.2005.12.010

[25]

G.J. Du, Z. Zhang, X.D. Wen, et al., Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea, Nutrients 4 (2012) 1679-1691. http://doi.org/10.3390/nu4111679

[26]

M. Zhang, X. Zhang, C.T. Ho, et al., Chemistry and health effect of tea polyphenol (–)-epigallocatechin 3-O-(3-O-methyl) gallate, J. Agric. Food Chem. 67 (2018) 5374-5378. https://doi.org/10.1021/acs.jafc.8b04837

[27]

M. Cheng, X. Zhang, J. Zhu, et al., A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols, Food Funct. 9 (2018) 1079-1087. http://doi.org/10.1039/c7fo01570d

[28]

K.J. Wu, M.T. Hsieh, C.R. Wu, et al., Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation, Evid-Based Compl. Alt. 2012 (2012) 163106. http://doi.org/10.1155/2012/163106

[29]

F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Biochem. 24 (2013) 1415-1422. http://doi.org/10.1016/j.jnutbio.2013.05.001

[30]

C. Cueva, M.V. Moreno-Arribas, P.J. Martín-Álvarez, et al., Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria, Res. Microbiol. 161 (2010) 372-382. http://doi.org/10.1016/j.resmic.2010.04.006

[31]

X. Zhang, X. Zhu, Y. Sun, et al., Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota, Food Res. Int. 54 (2013) 1589-1595. http://doi.org/10.1016/j.foodres.2013.10.005

[32]

I.A. Siddiqui, V.M. Adhami, N. Ahmad, et al., Nanochemoprevention: sustained release of bioactive food components for cancer prevention, Nutr. Cancer 62 (2010) 883-890. http://doi.org/10.1080/01635581.2010.509537

[33]

A. Shpigelman, G. Israeli, Y.D. Livney, Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG, Food Hydrocoll. 24 (2010) 735-743. http://doi.org/10.1016/j.foodhyd.2010.03.015

[34]

L. Zeng, M. Ma, C. Li, et al., Stability of tea polyphenols solution with different pH at different temperatures, Int. J. Food Prop. 20 (2017) 1-18. http://doi.org/10.1080/10942912.2014.983605

[35]

A. Shpigelman, Y. Cohen, Y.D. Livney, Thermally-induced β-lactoglobulin–EGCG nanovehicles: loading, stability, sensory and digestive-release study, Food Hydrocoll. 29 (2012) 57-67. http://doi.org/10.1016/j.foodhyd.2012.01.016

[36]

J.Y. Liang, J.Y. Wu, M.Y. Yang, et al., Photo-catalytic polymerization of catechin molecules in alkaline aqueous, J. Photochem. Photobiol. B: Biol. 165 (2016) 115-120. http://doi.org/10.1016/j.jphotobiol.2016.10.020

[37]

T. Hatano, R. Edamatsu, M. Hiramatsu, et al., Effects of the interaction of tannins with co-existing substances. Ⅵ.: effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical, Chem. Pharma. Bull. 37 (1989) 2016-2021. http://doi.org/10.1248/cpb.37.2016

[38]

G. Sichel, C. Corsaro, M. Scalia, et al., In vitro scavenger activity of some flavonoids and melanins against O2−dot, Free Radic. Biol. Med. 11 (1991) 1-8. http://doi.org/10.1016/0891-5849(91)90181-2

[39]

Q. Guo, B. Zhao, M. Li, et al., Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes, Biochim. Biophys. Acta. (BBA)-Lipids Lipid Metab. 1304 (1996) 210-222. http://doi.org/10.1016/s0005-2760(96)00122-1

[40]

S. Sang, S. Tian, H. Wang, et al., Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals, Biorg. Med. Chem. 11 (2003) 3371-3378. http://doi.org/10.1016/s0968-0896(03)00367-5

[41]

J.M.P. Yuann, S.Y. Lee, M.J. Yang, et al., A study of catechin photostability using photolytic processing, Processes 9 (2021) 293. http://doi.org/10.3390/pr9020293

[42]

V.S. Srinivasan, Bioavailability of nutrients: a practical approach to in vitro demonstration of the availability of nutrients in multivitamin-mineral combination products, J. Nutr. 131 (2001) 1349S-1350S. http://doi.org/10.1093/jn/131.4.1349S

[43]

O. Krupkova, S.J. Ferguson, K. Wuertz-Kozak, Stability of (–)-epigallocatechin gallate and its activity in liquid formulations and delivery systems, J. Nutr. Biochem. 37 (2016) 1-12. http://doi.org/10.1016/j.jnutbio.2016.01.002

[44]

M.J. Rein, M. Renouf, C. Cruz-Hernandez, et al., Bioavailability of bioactive food compounds: a challenging journey to bioefficacy, Br. J. Clin. Pharmacol. 75 (2013) 588-602. http://doi.org/10.1111/j.1365-2125.2012.04425.x

[45]

M. Sun, X. Su, B. Ding, et al., Advances in nanotechnology-based delivery systems for curcumin, Nanomedicine 7 (2012) 1085-1100. http://doi.org/10.2217/nnm.12.80

[46]

S.M. Shim, S.H. Yoo, C.S. Ra, et al., Digestive stability and absorption of green tea polyphenols: influence of acid and xylitol addition, Food Res. Int. 45 (2012) 204-210. http://doi.org/10.1016/j.foodres.2011.10.016

[47]

R.J. Green, A.S. Murphy, B. Schulz, et al., Common tea formulations modulate in vitro digestive recovery of green tea catechins, Mol. Nutr. Food Res. 51 (2007) 1152-1162. http://doi.org/10.1002/mnfr.200700086

[48]

M.J. Lee, Z.Y. Wang, H. Li, et al., Analysis of plasma and urinary tea polyphenols in human subjects, Cancer Epidemiol. Biomarkers Prev. 4 (1995) 393-399

[49]

H. Lu, X. Meng, C. Li, et al., Glucuronides of tea catechins: enzymology of biosynthesis and biological activities, Drug Metab. Dispos. 31 (2003) 452-461. http://doi.org/10.1124/dmd.31.4.452

[50]

K. Okushio, M. Suzuki, N. Matsumoto, et al., Identification of (–)-epicatechin metabolites and their metabolic fate in the rat, Drug Metab. Dispos. 27 (1999) 309-316. http://doi.org/10.1021/jf034450x

[51]

J.B. Vaidyanathan, T. Walle, Cellular uptake and efflux of the tea flavonoid (–)epicatechin-3-gallate in the human intestinal cell line Caco-2, J. Pharmacol. Exp. Ther. 307 (2003) 745-752. http://doi.org/10.1124/jpet.103.054296

[52]

J.B. Vaidyanathan, T. Walle, Transport and metabolism of the tea flavonoid (–)-epicatechin by the human intestinal cell line Caco-2, Pharm. Res. 18 (2001) 1420-1425. http://doi.org/10.1023/a:1012200805593

[53]

Q. Song, D. Li, Y. Zhou, et al., Enhanced uptake and transport of (+)-catechin and (–)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells, Int. J. Nanomedicine 9 (2014) 2157. http://doi.org/10.2147/IJN.S59331

[54]

L. Zhang, M.S. Chow, Z. Zuo, Effect of the co‐occurring components from green tea on the intestinal absorption and disposition of green tea polyphenols in Caco-2 monolayer model, J. Pharm. Pharmacol. 58 (2006) 37-44. http://doi.org/10.1211/jpp.58.1.0005

[55]

L. Zhang, Y. Zheng, M.S. Chow, et al., Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model, Int. J. Pharm. 287 (2004) 1-12. http://doi.org/10.1016/j.ijpharm.2004.08.020

[56]

C.A. Lipinski, F. Lombardo, B.W. Dominy, et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Del. Rev. 23 (1997) 3-25. http://doi.org/10.1016/S0169-409X(96)00423-1

[57]

J.D. Lambert, C.S. Yang, Cancer chemopreventive activity and bioavailability of tea and tea polyphenols, Mutat. Res-Fund Mol. M. 523 (2003) 201-208. http://doi.org/10.1016/s0027-5107(02)00336-6

[58]

H. Chen, S. Sang, Biotransformation of tea polyphenols by gut microbiota, J. Funct. Foods 7 (2014) 26-42. http://doi.org/10.1016/j.jff.2014.01.013

[59]

J.H. Ye, M.A. Augustin, Nano-and micro-particles for delivery of catechins: physical and biological performance, Crit. Rev. Food Sci. Nutr. 59 (2019) 1563-1579. http://doi.org/10.1080/10408398.2017.1422110

[60]

A.F.M. Bora, S. Ma, X. Li, et al., Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: review and recent advances, Food Res. Int. 105 (2018) 241-249. http://doi.org/10.1016/j.foodres.2017.11.047

[61]

R.C.C. De Pace, X. Liu, M. Sun, et al., Anticancer activities of (–)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells, J. Liposome Res. 23 (2013) 187-196. http://doi.org/10.3109/08982104.2013.788023

[62]

S. Mallick, J.S. Choi, Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery, J. Nanosci. Nanotechnol. 14 (2014) 755-765. http://doi.org/10.1166/jnn.2014.9080

[63]

L.Q. Zou, S.F. Peng, W. Liu, et al., Improved in vitro digestion stability of (–)-epigallocatechin gallate through nanoliposome encapsulation, Food Res. Int. 64 (2014) 492-499. http://doi.org/10.1016/j.foodres.2014.07.042

[64]

Q. Lu, D.C. Li, J.G. Jiang, Preparation of a tea polyphenol nanoliposome system and its physicochemical properties, J. Agric. Food Chem. 59 (2011) 13004-13011. http://doi.org/10.1021/jf203194w

[65]

D. Dag, M.H. Oztop, Formation and characterization of green tea extract loaded liposomes, J. Food Sci. 82 (2017) 463-470. http://doi.org/10.1111/1750-3841.13615

[66]

C. Minnelli, P. Moretti, G. Fulgenzi, et al., A poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: characterization and protective effect against oxidative damage, Int. J. Pharm. 552 (2018) 225-234. http://doi.org/10.1016/j.ijpharm.2018.10.004

[67]

E. Laudadio, C. Minnelli, A. Amici, et al., Liposomal formulations for an efficient encapsulation of epigallocatechin-3-gallate: an in-silico/experimental approach, Molecules 23 (2018) 441. http://doi.org/10.3390/molecules23020441

[68]

E. Laudadio, G. Mobbili, C. Minnelli, et al., Salts influence cathechins and flavonoids encapsulation in liposomes: a molecular dynamics investigation, Mol. Inform. 36 (2017) 1700059. http://doi.org/10.1002/minf.201700059

[69]

L. Zou, S. Peng, W. Liu, et al., A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: capacity to improve in vitro digestion stability of (–)-epigallocatechin gallate, Food Res. Int. 69 (2015) 114-120. http://doi.org/10.1016/j.foodres.2014.12.015

[70]

D. Dag, S. Guner, M.H. Oztop, Physicochemical mechanisms of different biopolymers'(lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes, Int. J. Biol. Macromol. 138 (2019) 473-482. http://doi.org/10.1016/j.ijbiomac.2019.07.106

[71]

A. Rashidinejad, E.J. Birch, D. Sun-Waterhouse, et al., Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese, Food Chem. 156 (2014) 176-183. http://doi.org/10.1016/j.foodchem.2014.01.115

[72]

Q. Ma, Y. Kuang, X. Hao, et al., Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposome, J. Nanosci. Nanotechnol. 9 (2009) 1379-1383. http://doi.org/10.1166/jnn.2009.c161

[73]

R. Aboofazeli, Nanometric-scaled emulsions (nanoemulsions), Iran. J. Pharm. Res. 9 (2010) 325

[74]

Y. Singh, J.G. Meher, K. Raval, et al., Nanoemulsion: concepts, development and applications in drug delivery, J. Control Release 252 (2017) 28-49. http://doi.org/10.1016/j.jconrel.2017.03.008

[75]

H. Tian, D. Xiang, B. Wang, et al., Using hydrogels in dispersed phase of water-in-oil emulsion for encapsulating tea polyphenols to sustain their release, Colloids Surf. Physicochem. Eng. Asp. 612 (2021) 125999. http://doi.org/10.1016/j.colsurfa.2020.125999

[76]
P.H. Todd Jr. Lipid-soluble green tea catechin antioxidant solutions. Google Patents, 1996.
[77]

J.A. Bhushani, P. Karthik, C. Anandharamakrishnan, Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins, Food Hydrocoll. 56 (2016) 372-382. http://doi.org/10.1016/j.foodhyd.2015.12.035

[78]

P.V. Gadkari, M. Balaraman, Extraction of catechins from decaffeinated green tea for development of nanoemulsion using palm oil and sunflower oil based lipid carrier systems, J. Food Eng. 147 (2015) 14-23. http://doi.org/10.1016/j.jfoodeng.2014.09.027

[79]

P.V. Gadkari, M. Shashidhar, M. Balaraman, Delivery of green tea catechins through oil-in-Water (O/W) nanoemulsion and assessment of storage stability, J. Food Eng. 199 (2017) 65-76. http://doi.org/10.1016/j.jfoodeng.2016.12.009

[80]

S. Zhang, W. Jiang, Z. Zhang, et al., A nanoparticle/oil double epigallocatechin gallate-loaded Pickering emulsion: stable and delivery characteristics, LWT-Food Sci. Technol. 130 (2020) 109369. http://doi.org/10.1016/j.lwt.2020.109369

[81]

D.G. Ortiz, C. Pochat-Bohatier, J. Cambedouzou, et al., Current trends in Pickering emulsions: particle morphology and applications, Engineering 6 (2020) 468-482. http://doi.org/10.1016/j.eng.2019.08.017

[82]

P. Shao, H. Zhang, B. Niu, et al., Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols, Int. J Biol. Macromol. 118 (2018) 2032-2039. http://doi.org/10.1016/j.ijbiomac.2018.07.076

[83]

Q. Ye, T. Li, J. Li, et al., Development and evaluation of tea polyphenols loaded water in oil emulsion with zein as stabilizer, J. Drug Deliv. Sci. Technol. 56 (2020) 101528. http://doi.org/10.1016/j.jddst.2020.101528

[84]

H. Tian, D. Xiang, C. Li, Tea polyphenols encapsulated in W/O/W emulsions with xanthan gum–locust bean gum mixture: evaluation of their stability and protection, Int. J. Biol. Macromol. 175 (2021) 40-48. http://doi.org/10.1016/j.ijbiomac.2021.01.161

[85]

D.A. Guzmán-Díaz, M.Z. Treviño-Garza, B.A. Rodríguez-Romero, et al., Development and characterization of gelled double emulsions based on Chia (Salvia hispanica L.) mucilage mixed with different biopolymers and loaded with green tea extract (Camellia sinensis), Foods 8 (2019) 677. http://doi.org/10.3390/foods8120677

[86]

N.P. Aditya, S. Aditya, H. Yang, et al., Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion, Food Chem. 173 (2015) 7-13. http://doi.org/10.1016/j.foodchem.2014.09.131

[87]

V. Evageliou, E. Panagopoulou, I. Mandala, Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing whey protein isolate, bacterial cellulose and salt, Food Chem. 281 (2019) 171-177. http://doi.org/10.1016/j.foodchem.2018.12.105

[88]

Z. Jia, M.J. Dumont, V. Orsat, Encapsulation of phenolic compounds present in plants using protein matrices, Food Biosci. 15 (2016) 87-104. http://doi.org/10.1016/j.fbio.2016.05.007

[89]

D. Williams, The relationship between biomaterials and nanotechnology, Biomaterials 29 (2008) 1737-1738. http://doi.org/10.1016/j.biomaterials.2008.01.003

[90]

P. Puligundla, C. Mok, S. Ko, et al., Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols, J. Funct. Foods 34 (2017) 139-151. http://doi.org/10.1016/j.jff.2017.04.023

[91]

K. Kulandaivelu, A.K.A. Mandal, Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles, IET nanobiotechnol. 11 (2016) 469-476. http://doi.org/10.1049/iet-nbt.2016.0147

[92]

T.G. Shutava, S.S. Balkundi, Y.M. Lvov, (–)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules, J. Colloid Interface Sci. 330 (2009) 276-283. http://doi.org/10.1016/j.jcis.2008.10.082

[93]

T.G. Shutava, S.S. Balkundi, P. Vangala, et al., Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols, ACS Nano 3 (2009) 1877-1885. http://doi.org/10.1021/nn900451a

[94]

L.G. Gómez-Mascaraque, J.M. Lagarón, A. López-Rubio, Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods, Food Hydrocoll. 49 (2015) 42-52. http://doi.org/10.1016/j.foodhyd.2015.03.006

[95]

L.G. Gómez-Mascaraque, C. Soler, A. Lopez-Rubio, Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study, Food Hydrocoll. 61 (2016) 128-138. http://doi.org/10.1016/j.foodhyd.2016.05.009

[96]

P. Chanphai, P. Bourassa, C. Kanakis, et al., Review on the loading efficacy of dietary tea polyphenols with milk proteins, Food Hydrocoll. 77 (2018) 322-328. http://doi.org/10.1016/j.foodhyd.2017.10.008

[97]

P. Lestringant, A. Guri, I.B. Gülseren, et al., Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes, J. Agric. Food Chem. 62 (2014) 8357-8364. http://doi.org/10.1021/jf5029834

[98]

B. Li, W. Du, J. Jin, et al., Preservation of (–)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles, J. Agric. Food Chem. 60 (2012) 3477-3484. http://doi.org/10.1021/jf300307t

[99]

J. Xue, C. Tan, X. Zhang, et al., Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism, J. Agric. Food Chem. 62 (2014) 4677-4684. http://doi.org/10.1021/jf405157x

[100]

S. Haratifar, K.A. Meckling, M. Corredig, Bioefficacy of tea catechins encapsulated in casein micelles tested on a normal mouse cell line (4D/WT) and its cancerous counterpart (D/v-src) before and after in vitro digestion, Food Funct. 5 (2014) 1160-1166. http://doi.org/10.1039/C3FO60343A

[101]

S. Haratifar, M. Corredig, Interactions between tea catechins and casein micelles and their impact on renneting functionality, Food Chem. 143 (2014) 27-32. http://doi.org/10.1016/j.foodchem.2013.07.092

[102]

R. Yang, Y. Liu, D. Meng, et al., Urea-driven epigallocatechin gallate (EGCG) permeation into the ferritin cage, an innovative method for fabrication of protein-polyphenol co-assemblies, J. Agric. Food Chem. 65 (2017) 1410-1419. http://doi.org/10.1021/acs.jafc.6b04671

[103]

Y. Li, L.T. Lim, Y. Kakuda, Electrospun zein fibers as carriers to stabilize (–)‐epigallocatechin gallate, J. Food Sci. 74 (2009) C233-C240. http://doi.org/10.1111/j.1750-3841.2009.01093.x

[104]

M. Shi, L.Y. Huang, N. Nie, et al., Binding of tea catechins to rice bran protein isolate: Interaction and protective effect during in vitro digestion, Food Res. Int. 93 (2017) 1-7. http://doi.org/10.1016/j.foodres.2017.01.006

[105]

V. Goncalves, J. Poejo, A. Matias, et al., Using different natural origin carriers for development of epigallocatechin gallate (EGCG) solid formulations with improved antioxidant activity by PGSS-drying, RSC Adv. 6 (2016) 67599-67609. http://doi.org/10.1039/C6RA13499H

[106]

S. Ho, Y.Y. Thoo, D.J. Young, et al., Stability and recovery of cyclodextrin encapsulated catechin in various food matrices, Food Chem. 275 (2019) 594-599. http://doi.org/10.1016/j.foodchem.2018.09.117

[107]

S. Ho, Y.Y. Thoo, D.J. Young, et al., Cyclodextrin encapsulated catechin: effect of pH, relative humidity and various food models on antioxidant stability, LWT-Food Sci. Technol. 85 (2017) 232-239. http://doi.org/10.1016/j.lwt.2017.07.028

[108]

J.A. Zokti, B. Sham Baharin, A.S. Mohammed, et al., Green tea leaves extract: microencapsulation, physicochemical and storage stability study, Molecules 21 (2016) 940. http://doi.org/10.3390/molecules21080940

[109]

S. Rocha, R. Generalov, M.D.C. Pereira, et al., Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention, Nanomed. 6 (2011) 79-87. http://doi.org/10.2217/nnm.10.101

[110]

J. Liang, H. Yan, P. Puligundla, et al., Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review, Food Hydrocoll. 69 (2017) 286-292. http://doi.org/10.1016/j.foodhyd.2017.01.041

[111]

F. Liu, J. Antoniou, Y. Li, et al., Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocoll. 57 (2016) 291-300. http://doi.org/10.1016/j.foodhyd.2016.01.024

[112]

J. Liang, F. Li, Y. Fang, et al., Response surface methodology in the optimization of tea polyphenols-loaded chitosan nanoclusters formulations, Eur. Food Res. Technol. 231 (2010) 917-924. http://doi.org/10.1007/s00217-010-1341-4

[113]

J. Liang, F. Li, Y. Fang, et al., Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles, Colloids Surf. B Biointerfaces 82 (2011) 297-301. http://doi.org/10.1016/j.colsurfb.2010.08.045

[114]

B. Hu, C. Pan, Y. Sun, et al., Optimization of fabrication parameters to produce chitosan−tripolyphosphate nanoparticles for delivery of tea catechins, J. Agric. Food Chem. 56 (2008) 7451-7458. http://doi.org/10.1021/jf801111c

[115]

Z. Hong, Y. Xu, J.F. Yin, et al., Improving the effectiveness of (–)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid, J. Agric. Food Chem. 62 (2014) 12603-12609. http://doi.org/10.1021/jf504603n

[116]

E.S. Kim, J.S. Lee, H.G. Lee, Microencapsulation of catechin with high loading and encapsulation efficiencies using soaking methods, Food Sci. Biotechnol. 24 (2015) 1735-1739. http://doi.org/10.1007/s10068-015-0225-6

[117]

M. Palma, P. García, G. Márquez-Ruiz, et al., Release kinetics of flavonoids in methyl linoleate from microparticles designed with inulin and channelizing agent, Food Res. Int. 64 (2014) 99-105. http://doi.org/10.1016/j.foodres.2014.05.064

[118]

I. Peres, S. Rocha, J. Gomes, et al., Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles, Carbohydr. Polym. 86 (2011) 147-153. http://doi.org/10.1016/j.carbpol.2011.04.029

[119]

A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med. 63 (2012) 185-198. http://doi.org/10.1146/annurev-med-040210-162544

[120]

D.W. Tang, S.H. Yu, Y.C. Ho, et al., Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide, Food Hydrocoll. 30 (2013) 33-41. http://doi.org/10.1016/j.foodhyd.2012.04.014

[121]

A. Belščak-Cvitanović, V. Đorđević, S. Karlović, et al., Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract, Food Hydrocoll. 51 (2015) 361-374. http://doi.org/10.1016/j.foodhyd.2015.05.039

[122]

A. Oliveira, M. Pintado, In vitro evaluation of the effects of protein–polyphenol–polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility, Food Funct. 6 (2015) 3444-3453. http://doi.org/10.1039/c5fo00799b

[123]

S. Kumar, R. Meena, P. Rajamani, Fabrication of BSA–green tea polyphenols–chitosan nanoparticles and their role in radioprotection: a molecular and biochemical approach, J. Agric. Food Chem. 64 (2016) 6024-6034. http://doi.org/10.1021/acs.jafc.6b02068

[124]

S. Xia, Y. Li, Q. Xia, et al., Glycosylation of bovine serum albumin via Maillard reaction prevents epigallocatechin-3-gallate-induced protein aggregation, Food Hydrocoll. 43 (2015) 228-235. http://doi.org/10.1016/j.foodhyd.2014.05.022

[125]

B. Hu, M. Xie, C. Zhang, et al., Genipin-structured peptide-polysaccharide nanoparticles with significantly improved resistance to harsh gastrointestinal environments and their potential for oral delivery of polyphenols, J. Agric. Food Chem. 62 (2014) 12443-12452. http://doi.org/10.1021/jf5046766

[126]

R. Radhakrishnan, H. Kulhari, D. Pooja, et al., Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer, Chem. Phy. Lipids 198 (2016) 51-60. http://doi.org/10.1016/j.chemphyslip.2016.05.006

[127]

S. Weber, A. Zimmer, J. Pardeike, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art, Eur. J. Pharm. Biopharm. 86 (2014) 7-22. http://doi.org/10.1016/j.ejpb.2013.08.013

[128]

Y. Komatsu, S. Suematsu, Y. Hisanobu, et al., Effects of pH and temperature on reaction kinetics of catechins in green tea infusion, Biosci. Biotechnol. Biochem. 57 (1993) 907-910. http://doi.org/10.1271/bbb.57.907

[129]

V. Sanna, G. Lubinu, P. Madau, et al., Polymeric nanoparticles encapsulating white tea extract for nutraceutical application, J. Agric. Food Chem. 63 (2015) 2026-2032. http://doi.org/10.1021/jf505850q

[130]

I. Gülseren, M. Corredig, Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids, J. Agric. Food Chem. 61 (2013) 3242-3251. http://doi.org/10.1021/jf3045439

[131]

Q.Y. Zhu, A. Zhang, D. Tsang, et al., Stability of green tea catechins, J. Agric. Food Chem. 45 (1997) 4624-4628. http://doi.org/10.1021/jf9706080

[132]

N. Aditya, S. Aditya, H.J. Yang, et al., Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application, J. Funct. Foods 15 (2015) 35-43. http://doi.org/10.1016/j.jff.2015.03.013

[133]

J. Zokti, A. Badlishah, S. Baharin, et al., Microencapsulation of green tea extracts and its effects on the phys‐ico‐chemical and functional properties of mango drinks, Int. J. Basic Appl. Sci. 16 (2016) 16-32

[134]

T. Langerholc, P.A. Maragkoudakis, J. Wollgast, et al., Novel and established intestinal cell line models-an indispensable tool in food science and nutrition, Trends Food Sci. Technol. 22 (2011) S11-S20. http://doi.org/10.1016/j.tifs.2011.03.010

[135]

R.B. van Breemen, Y. Li, Caco-2 cell permeability assays to measure drug absorption, Expert. Opin. Drug Metab. Toxicol. 1 (2005) 175-185. http://doi.org/10.1517/17425255.1.2.175

[136]

S. Henning, Y. Niu, N. Lee, Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement, Am. J. Clin. Nutr. 10 (2005) 64-65. http://doi.org/10.1093/ajcn/80.6.1558

[137]

R. Yang, Y. Liu, Y. Gao, et al., Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: simulated digestion and absorption evaluation, Food Res. Int. 108 (2018) 1-7. http://doi.org/10.1016/j.foodres.2018.02.074

[138]

Y. Zagury, M. Kazir, Y.D. Livney, Improved antioxidant activity, bioaccessibility and bioavailability of EGCG by delivery in β-lactoglobulin particles, J. Funct. Foods 52 (2019) 121-130. http://doi.org/10.1016/j.jff.2018.10.025

[139]

N. Ortega, J. Reguant, M.P. Romero, et al., Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model, J. Agric. Food Chem. 57 (2009) 5743-5749. http://doi.org/10.1021/jf900591q

[140]

B. Hu, Y. Ting, X. Zeng, et al., Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate, Carbohydr. Polym. 89 (2012) 362-370. http://doi.org/10.1016/j.carbpol.2012.03.015

[141]

A. Dube, J.A. Nicolazzo, I. Larson, Chitosan nanoparticles enhance the plasma exposure of (–)-epigallocatechin gallate in mice through an enhancement in intestinal stability, Eur. J. Pharm. Sci. 44 (2011) 422-426. http://doi.org/10.1016/j.ejps.2011.09.004

[142]

N. Ramesh, A.K.A. Mandal, Encapsulation of epigallocatechin-3-gallate into albumin nanoparticles improves pharmacokinetic and bioavailability in rat model, 3 Biotech. 9 (2019) 1-14. http://doi.org/10.1007/s13205-019-1772-y

[143]

C. Hu, Q. Wang, G. Zhao, et al., Improved oral absorption of (–)-epigallocatechin-3-gallate via self-double-emulsifying solid formulation, Eur. J. Lipid. Sci. Technol. 118 (2016) 1115-1124. http://doi.org/10.1002/ejlt.201500316

[144]

R.N. Gursoy, S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs, Biomed. Pharmacother. 58 (2004) 173-182. http://doi.org/10.1016/j.biopha.2004.02.001

[145]

S.V.R. Rao, J. Shao, Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. formulation development, Int. J. Pharm. 362 (2008) 2-9. http://doi.org/10.1016/j.ijpharm.2008.05.018

[146]

X. Jia, X. Chen, Y. Xu, et al., Tracing transport of chitosan nanoparticles and molecules in Caco-2 cells by fluorescent labeling, Carbohydr. Polym. 78 (2009) 323-329. http://doi.org/10.1016/j.carbpol.2009.04.020

[147]

C. Jonker, J. Hamman, A. Kotze, Intestinal paracellular permeation enhancement with quaternised chitosan: in situ and in vitro evaluation, Int. J. Pharm. 238 (2002) 205-213. http://doi.org/10.1016/s0378-5173(02)00068-6

[148]

Z. Hou, S. Sang, H. You, et al., Mechanism of action of (–)-epigallocatechin-3-gallate: auto-oxidation–dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells, Cancer Res. 65 (2005) 8049-8056. http://doi.org/10.1158/0008-5472.CAN-05-0480

[149]

D. Zeyuan, T. Bingyin, L. Xiaolin, et al., Effect of green tea and black tea on the blood glucose, the blood triglycerides, and antioxidation in aged rats, J. Agric. Food Chem. 46 (1998) 3875-3878. http://doi.org/10.1021/jf980105+

[150]

X. Wang, M. del Mar Contreras, D. Xu, et al., Different distribution of free and bound phenolic compounds affects the oxidative stability of tea seed oil: a novel perspective on lipid antioxidation, LWT-Food Sci. Technol. 129 (2020) 109389. http://doi.org/10.1016/j.lwt.2020.109389

[151]

T. Fei, J. Fei, F. Huang, et al., The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans, Exp. Gerontol. 97 (2017) 89-96. http://doi.org/10.1016/j.exger.2017.07.015

[152]

D. Hou, R. Hui, X. Liu, et al., Comparison of the antioxidation effects of green tea, black tea and Wulong tea, Food Sci. 27(3) (2006) 90-93

[153]

N. Dejiang, C. Yuqiong, X. Bijun, et al., Studies on composition, antioxidation and hypoglycemic effects of polysaccharides from green tea, oolong tea and black tea, Acta Nutrimenta Sinica 26 (2004) 57-60

[154]

G.L. Tipoe, T.M. Leung, M.W. Hung, et al., Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection, Cardiovasc. Haematol. Disord. Drug Targets 7 (2007) 135-144. http://doi.org/10.2174/187152907780830905

[155]

T. Ohishi, S. Goto, P. Monira, et al., Anti-inflammatory action of green tea, Antiinflamm. Antiallergy Agents Med. Chem. 15 (2016) 74-90. http://doi.org/10.2174/1871523015666160915154443

[156]

P. Chatterjee, S. Chandra, P. Dey, et al., Evaluation of anti-inflammatory effects of green tea and black tea: a comparative in vitro study, J. Adv. Pharm. Technol. Res. 3 (2012) 136. http://doi.org/10.4103/2231-4040.97298

[157]

L. Han, T. Takaku, J. Li, et al., Anti-obesity action of oolong tea, Int. J. Obes. 23 (1999) 98-105. http://doi.org/10.1038/sj.ijo.0800766

[158]

S. Wolfram, Y. Wang, F. Thielecke, Anti-obesity effects of green tea: from bedside to bench, Mol. Nutr. Food. Res. 50 (2006) 176-187. http://doi.org/10.1002/mnfr.200500102

[159]

Q. Li, Z. Liu, J. Huang, et al., Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats, J. Sci. Food Agric. (2013) 1310-1316. http://doi.org/10.1002/jsfa.5887

[160]

Y. Zhao, X. Zhang, Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity, J. Sci. Food Agric. 100 (2020) 897-903. http://doi.org/10.1002/jsfa.10049

[161]

T. Kaewkod, S. Bovonsombut, Y. Tragoolpua, Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line, Microorganisms 7 (2019) 700. http://doi.org/10.3390/microorganisms7120700

[162]

R. Cooper, D.J. Morré, D.M. Morré, Medicinal benefits of green tea: part Ⅱ. Review of anticancer properties, J. Altern. Complement. Med. 11 (2005) 639-652. http://doi.org/10.1089/acm.2005.11.639

[163]

Y. Miyata, T. Matsuo, K. Araki, et al., Anticancer effects of green tea and the underlying molecular mechanisms in bladder cancer, Medicines 5 (2018) 87. http://doi.org/10.3390/medicines5030087

[164]

Z. Xue, J. Wang, Z. Chen, et al., Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste, J. Food Biochem. 42 (2018) e12690. http://doi.org/10.1111/jfbc.12690

[165]

L. Zhou, F. Wu, W. Jin, et al., Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism, Front. Pharmacol. 8 (2017) 75. http://doi.org/10.3389/fphar.2017.00075

[166]

Y.R. Wu, H.J. Choi, Y.G. Kang, et al., In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano-and microscale particles, Int. J. Nanomed. 12 (2017) 7007. http://doi.org/10.2147/IJN.S146296

[167]

T.H. Quan, S. Benjakul, Duck egg albumen hydrolysate-epigallocatechin gallate conjugates: Antioxidant, emulsifying properties and their use in fish oil emulsion, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019) 123711. http://doi.org/10.1016/j.colsurfa.2019.123711

[168]

Y.J. Tsai, B.H. Chen, Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3, Int. J. Nanomed. 11 (2016) 1907. http://doi.org/10.2147/IJN.S103759

[169]

I.A. Siddiqui, V.M. Adhami, D.J. Bharali, et al., Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate, Cancer Res. 69 (2009) 1712-1716. http://doi.org/10.1158/0008-5472.CAN-08-3978

[170]

J. Liang, F. Li, Y. Fang, et al., Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells, Mater. Sci. Eng. C. 36 (2014) 7-13. http://doi.org/10.1016/j.msec.2013.11.039

[171]

J. Zhang, S. Nie, S. Wang, Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages, J. Agric. Food Chem. 61 (2013) 9200-9209. http://doi.org/10.1021/jf4023004

[172]

C.Y. Cheng, Q.H. Pho, X.Y. Wu, et al., PLGA microspheres loaded with β-cyclodextrin complexes of epigallocatechin-3-gallate for the anti-inflammatory properties in activated microglial cells, Polymers 10 (2018) 519. http://doi.org/10.3390/polym10050519

[173]

F. Ke, M. Zhang, N. Qin, et al., Synergistic antioxidant activity and anticancer effect of green tea catechin stabilized on nanoscale cyclodextrin-based metal–organic frameworks, J. Mater. Sci. 54 (2019) 10420-10429. http://doi.org/10.1007/s10853-019-03604-7

[174]

N. Khan, D.J. Bharali, V.M. Adhami, et al., Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model, Carcinogenesis 35 (2014) 415-423. http://doi.org/10.1093/carcin/bgt321

[175]

Y. Zagury, S. Chen, R. Edelman, et al., β-Lactoglobulin delivery system for enhancing EGCG biological efficacy in HFD obesity mice model, J. Funct. Foods 59 (2019) 362-370. http://doi.org/10.1016/j.jff.2019.05.053

[176]

F. Di Pierro, A.B. Menghi, A. Barreca, et al., GreenSelect (R) phytosome as an adjunct to a low-calorie diet for treatment of obesity: a clinical trial, Altern. Med. Rev. 14 (2009) 154

[177]

C.S. Yang, J. Zhang, Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities, J. Agric. Food Chem. 67 (2018) 5446-5456. http://doi.org/10.1021/acs.jafc.8b05242

[178]

M. Zhang, S. Zhu, W. Yang, et al., The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems, Food Funct. 12 (2021) 3307-3323. http://doi.org/10.1039/d0fo03403g

Publication history
Copyright
Rights and permissions

Publication history

Received: 15 May 2021
Revised: 25 July 2021
Accepted: 19 August 2021
Published: 04 February 2022
Issue date: May 2022

Copyright

© 2022 Beijing Academy of Food Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return