AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (890.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota

Ruonan YanaChi-Tang Hob( )Xin Zhanga( )
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
Department of Food Science, Rutgers, The State University of New Jersey, NJ 08901, USA

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Tea is a widespread functional plant resource. Phytochemicals such as tea polyphenols (TP) can interact with the intestinal flora and participate in regulating the expression and rhythm of biological clock genes. Circadian rhythm controls a variety of behaviors and physiological processes, and circadian misalignment has been found to be closely related to multiple metabolic diseases. Interestingly, the gut microbiota also has diurnal fluctuations, which can be affected by diet composition and feeding rhythm, and play a role in maintaining the host's circadian rhythm. The two-way relationship between the host's circadian rhythm and intestinal microbiota confirms the possibility that prebiotics or probiotic can be used to adjust the intestinal environment and microbiome composition to improve the host health. This article reviews the relationship between the host's circadian rhythm and microbiota and its influence on metabolic diseases. The beneficial effects of the interaction between TP and gut microbiota on diseases related to rhythm disorders are emphasized to improve the theories of disease prevention and treatment.

References

[1]

Q.V. Vuong, Epidemiological evidence linking tea consumption to human health: a review, Crit. Rev. Food Sci. Nutr. 54 (2014) 523-536. http://dx.doi.org/10.1080/10408398.2011.594184.

[2]

J. Bryan, M. Tuckey, S.J. Einöther, et al., Relationships between tea and other beverage consumption to work performance and mood, Appetite 58 (2012) 339-346. http://dx.doi.org/10.1016/j.appet.2011.11.009.

[3]

N. Khan, H. Mukhtar, Tea and health: studies in humans, Curr. Pharm. Des. 19 (2013) 6141-6147. http://dx.doi.org/10.2174/1381612811319340008.

[4]

R.N. Yan, C.T. Ho, X. Zhang, Interaction between tea polyphenols and intestinal microbiota in host metabolic diseases from the perspective of the gut-brain axis, Mol. Nutr. Food Res. 64 (2020) e20001872020. http://dx.doi.org/10.1002/mnfr.202000187.

[5]

C.A. Thaiss, M. Levy, T. Korem, et al., Microbiota diurnal rhythmicity programs host transcriptome oscillations, Cell 167 (2016) 1495-1510. http://dx.doi.org/10.1016/j.cell.2016.11.003.

[6]

O. Froy, N. Chapnik, R. Miskin, The suprachiasmatic nuclei are involved in determining circadian rhythms during restricted feeding, Neuroscience 155 (2008) 1152-1159. http://dx.doi.org/10.1016/j.neuroscience.2008.06.060.

[7]

I. Yoshida, M. Kumagai, M. Ide, et al., Polymethoxyflavones in black ginger (Kaempferia parviflora) regulate the expression of circadian clock genes, J. Funct. Foods 68 (2020) 103900. https://dx.doi.org/10.1016/j.jff.2020.103900.

[8]

C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature 489 (2012) 220-230. https://dx.doi.org/10.1038/nature11550.

[9]

D. Song, C.S. Yang, X. Zhang, et al, The relationship between host circadian rhythms and intestinal microbiota: a new cue to improve health by tea polyphenols, Crit. Rev. Food Sci. Nutr. 61(1) (2020) 1-10. https://dx.doi.org/10.1080/10408398.2020.1719473.

[10]

P. Nie, Z. Li, Y. Wang, et al, Gut microbiome interventions in human health and diseases, Med. Res. Rev. 39 (2019) 2286-2313. https://dx.doi.org/10.1002/med.21584.

[11]

S. Sirisinha, The potential impact of gut microbiota on your health: current status and future challenges. Asian. Pac. J. Allergy Immunol. 34 (2016) 249-264. https://dx.doi.org/10.12932/AP0803.

[12]

A.L. Kau, P.P. Ahern, N.W. Griffin, et al., Human nutrition, the gut microbiome and the immune system, Nature 474 (2011) 327-336. https://dx.doi.org/10.1038/nature10213.

[13]

J. Wagner-Skacel, N. Dalkner, S. Moerkl, et al., Bengesser, sleep and microbiome in psychiatric diseases, Nutrients 12 (2020) 2198. https://dx.doi.org/10.3390/nu12082198.

[14]

G. Ianiro, S. Bibbo, A. Gasbarrini, et al., Therapeutic modulation of gut microbiota: current clinical applications and future perspectives, Curr. Drug Targets 15 (2014) 762-770. https://dx.doi.org/10.2174/1389450115666140606111402.

[15]

D.A. Golombek, R.E. Rosenstein, Physiology of circadian entrainment, Physiol. Rev. 90 (2010) 1063-1102. https://dx.doi.org/10.1152/physrev.00009.2009.

[16]

F. Rijo-Ferreira, J.S. Takahashi, Genomics of circadian rhythms in health and disease, Genome Med. 11 (2019) 1-16. https://dx.doi.org/10.1186/s13073-019-0704-0.

[17]

A. Sancar, L.A. Lindsey-Boltz, T.H. Kang, et al., Circadian clock control of the cellular response to DNA damage, FEBS Lett. 584 (2010) 2618-2625. https://dx.doi.org/10.1016/j.febslet.2010.03.017.

[18]

S.M. James, K.A. Honn, S. Gaddameedhi, et al., Shift work: disrupted circadian rhythms and sleep-implications for health and well-being, Curr. Sleep Med. Rep. 3 (2017) 104-112. https://dx.doi.org/10.1007/s40675-017-0071-6.

[19]

S. Kojima, D.L. Shingle, C.B. Green, Post-transcriptional control of circadian rhythms, J. Cell Sci. 124 (2011) 311-320. https://dx.doi.org/10.1242/jcs.065771.

[20]

K.A. Lamia, S.J. Papp, T.Y. Ruth, et al., Cryptochromes mediate rhythmic repression of the glucocorticoid receptor, Nature 480 (2011) 552-556. https://dx.doi.org/10.1038/nature10700.

[21]

C.A. Thaiss, D. Zeevi, M. Levy, et al., Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis, Cell 159 (2014) 514-529. https://dx.doi.org/10.1016/j.cell.2014.09.048.

[22]

Z. Kuang, Y. Wang, Y. Li, et al., The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3, Science 365 (2019) 1428-1434. https://dx.doi.org/10.1126/science.aaw3134.

[23]

J.F. Cryan, K.J. O'Riordan, C.S. Cowan, et al., The microbiota-gut-brain axis, Physiol. Rev. 99 (2019) 1877-2013. https://dx.doi.org/10.1152/physrev.00018.2018.

[24]

J.A. Bravo, P. Forsythe, M.V. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 16050-16055. https://dx.doi.org/10.1073/pnas.1102999108.

[25]

S. Dogra, O. Sakwinska, S.E. Soh, et al., Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity, mBio. 6 (2015) e02419-14. https://dx.doi.org/10.1128/mBio.02419-14.

[26]

A. Santacruz, M.C. Collado, L. Garcia-Valdes, et al., Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women, Br. J. Nutr. 104 (2010) 83-92. https://dx.doi.org/10.1017/S0007114510000176.

[27]

W.W. Tang, T. Kitai, S.L. Hazen, Gut microbiota in cardiovascular health and disease, Circ. Res. 120 (2017) 1183-1196. https://dx.doi.org/10.1161/CIRCRESAHA.117.309715.

[28]

S. Ghaisas, J. Maher, A. Kanthasamy, Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases, Pharmacol. Ther. 158 (2016) 52-62. https://dx.doi.org/10.1016/j.pharmthera.2015.11.012.

[29]

J. Aron-Wisnewsky, K. Clément, The gut microbiome, diet, and links to cardiometabolic and chronic disorders, Nat. Rev. Nephrol. 12 (2016) 169. https://dx.doi.org/10.1038/nrneph.2015.191.

[30]

A.W. Walker, T.D. Lawley, Therapeutic modulation of intestinal dysbiosis, Pharmacol. Res. 69 (2013) 75-86. https://dx.doi.org/10.1016/j.phrs.2012.09.008.

[31]

G. Sharon, T.R. Sampson, D.H. Geschwind, et al., The central nervous system and the gut microbiome, Cell 167 (2016) 915-932. https://dx.doi.org/10.1016/j.cell.2016.10.027.

[32]

C. Fülling, T.G. Dinan, J.F. Cryan, Gut microbe to brain signaling: what happens in vagus…, Neuron 101(6) (2019) 998-1002. https://dx.doi.org/10.1016/j.neuron.2019.02.008.

[33]

T.F. Bastiaanssen, C.S. Cowan, M.J. Claesson, et al., Making sense of the microbiome in psychiatry, Int. J. Neuropsychopharmacol. 22 (2019) 37-52. https://dx.doi.org/10.1093/ijnp/pyy067.

[34]

F. Branca, A. Lartey, S. Oenema, et al., Transforming the food system to fight non-communicable diseases, BMJ 364 (2019) l296. https://dx.doi.org/10.1136/bmj.l296.

[35]

J. Godos, W. Currenti, D. Angelino, et al., Diet and mental health: review of the recent updates on molecular mechanisms, Antioxidants 9 (2020) 346. https://dx.doi.org/10.3390/antiox9040346.

[36]

D.J. Bartlett, S.N. Biggs, S.M. Armstrong, Circadian rhythm disorders among adolescents: assessment and treatment options, Med. J. Aust. 199 (2013) S16-S20. https://dx.doi.org/10.5694/mja13.10912.

[37]

J.Z. Li, B.G. Bunney, F. Meng, et al., Circadian patterns of gene expression in the human brain and disruption in major depressive disorder, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9950-9955. https://dx.doi.org/10.1073/pnas.1305814110.

[38]

H. Song, M. Moon, H.K. Choe, et al., Aβ-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease, Mol. Neurodegener. 10 (2015) 13. https://dx.doi.org/10.1186/s13024-015-0007-x.

[39]

K.N. Kunze, E.C. Hanlon, V.N. Prachand, et al., Peripheral circadian misalignment: contributor to systemic insulin resistance and potential intervention to improve bariatric surgical outcomes, Am. J. Physiol. Regul. Integr. Comp. Physiol. 311 (2016) R558-R563. https://dx.doi.org/10.1152/ajpregu.00175.2016.

[40]

X. Liang, F.D. Bushman, G.A. FitzGerald, Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 10479-10484. https://dx.doi.org/10.1073/pnas.1501305112.

[41]

G. Wu, W. Tang, Y. He, et al., Light exposure influences the diurnal oscillation of gut microbiota in mice, Biochem. Biophys. Res. Commun. 501 (2018) 16-23. https://dx.doi.org/10.1016/j.bbrc.2018.04.095.

[42]

S. Crnko, B.C. Du Pré, J.P. Sluijter, et al., Circadian rhythms and the molecular clock in cardiovascular biology and disease, Nat. Rev. Cardio. 16 (2019) 437-447. https://dx.doi.org/10.1038/s41569-019-0167-4.

[43]

M. Wilking, M. Ndiaye, H. Mukhtar, et al., Circadian rhythm connections to oxidative stress: implications for human health, Antioxid. Redox Signal. 19 (2013) 192-208. https://dx.doi.org/10.1089/ars.2012.4889.

[44]

D. Slats, J.A. Claassen, M.M. Verbeek, et al., Reciprocal interactions between sleep, circadian rhythms and Alzheimer's disease: focus on the role of hypocretin and melatonin, Ageing Res. Rev. 12 (2013) 188-200. https://dx.doi.org/10.1016/j.arr.2012.04.003.

[45]

F. Scheperjans, V. Aho, P.A. Pereira, et al., Gut microbiota are related to Parkinson's disease and clinical phenotype, Moy. Disord. 30 (2015) 350-358. https://dx.doi.org/10.1016/j.arr.2012.04.003.

[46]

E.Y. Hsiao, S.W. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders, Cell 155 (2013) 1451-1463. https://dx.doi.org/10.1016/j.cell.2013.11.024.

[47]

X. Ming, T.P. Stein, V. Barnes, et al., Metabolic perturbance in autism spectrum disorders: a metabolomics study, J. Proteome. Res. 11 (2012) 5856-5862. https://dx.doi.org/10.1021/pr300910n.

[48]

S.M. Finegold, J. Downes, P.H. Summanen, Microbiology of regressive autism, Anaerobe 18 (2012) 260-262. https://dx.doi.org/10.1016/j.anaerobe.2011.12.018.

[49]

K.S. Park, J.Y. Han, D.C. Moon, et al., (–)-Epigallocatechin-3-O-gallate augments pentobarbital-induced sleeping behaviors through Cl-channel activation, J. Med. Food 14 (2011) 1456-1462. https://dx.doi.org/10.1089/jmf.2010.1529.

[50]

J.D. Edinger, A.I. Fins, D.M. Glenn, et al., Insomnia and the eye of the beholder: are there clinical markers of objective sleep disturbances among adults with and without insomnia complaints? J. Consult. Clin. Psychol. 68 (2000) 586. https://dx.doi.org/10.1089/jmf.2010.1529.

[51]

L.M. Lyall, C.A. Wyse, N. Graham, et al., Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a cross-sectional study of 91105 participants from the UK Biobank, Lancet Psychiatry 5 (2018) 507-514. https://dx.doi.org/10.1016/S2215-0366(18)30139-1.

[52]

T. Bond, E. Derbyshire, Tea compounds and the gut microbiome: findings from trials and mechanistic studies, Nutrients 11 (2019) 2364. https://dx.doi.org/10.3390/nu11102364.

[53]

K.S. Park, J.S. Eun, H.C. Kim, et al., (–)-Epigallocatethin-3-O-gallate counteracts caffeine-induced hyperactivity: evidence of dopaminergic blockade, Behav. Pharmacol. 21 (2010) 572-575. https://dx.doi.org/10.1097/FBP.0b013e32833beffb.

[54]

K. Unno, K. Iguchi, N. Tanida, et al., Ingestion of theanine, an amino acid in tea, suppresses psychosocial stress in mice, Exp. Physiol. 98 (2013) 290-303. https://dx.doi.org/10.1113/expphysiol.2012.065532.

[55]

A. Duda-Chodak, T. Tarko, P. Satora, et al., Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review, Eur. J. Nutr. 54 (2015) 325-341. https://dx.doi.org/10.1007/s00394-015-0852-y.

[56]

S.J. Einöther, V.E. Martens, Acute effects of tea consumption on attention and mood, Am. J. Clin. Nutr. 98 (2013) 1700S-1708S. https://dx.doi.org/10.3945/ajcn.113.058248.

[57]

D.O.N. Rothenberg, L. Zhang, Mechanisms underlying the anti-depressive effects of regular tea consumption, Nutrients 11 (2019) 1361. https://dx.doi.org/10.3390/nu11061361.

[58]

T.T. Guo, D. Song, L. Cheng, et al., Interactions of tea catechins with intestinal microbiota and their implication for human health, Food Sci. Biotechnol. 28 (2019) 1617-1625. https://dx.doi.org/10.1007/s10068-019-00656-y.

[59]

B.O. Schroeder, F. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease, Nat. Med. 22 (2016) 1079. https://dx.doi.org/10.1038/nm.4185.

[60]

C. Huttenhower, D. Gevers, R. Knight, et al., Structure, function and diversity of the healthy human microbiome, Nature 486 (2012) 207. https://dx.doi.org/10.1038/nature11234.

[61]

W. Gary, M.N. Clifford, Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols, Biochem. Pharmacol. 139 (2017) 24-39. https://dx.doi.org/10.1016/j.bcp.2017.03.012.

[62]

H.D. Chen, S.M. Sang, Biotransformation of tea polyphenols by gut microbiota, J. Funct. Foods 7 (2014) 26-42. https://dx.doi.org/10.1016/j.jff.2014.01.013.

[63]

O. Goulet, Potential role of the intestinal microbiota in programming health and disease, Nutr. Rev. 73 (2015) 32-40. https://dx.doi.org/10.1093/nutrit/nuv039.

[64]

A. Puddu, R. Sanguineti, F. Montecucco, et al., Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes, Mediators Inflamm. (2014) 162021. https://dx.doi.org/ 10.1155/2014/162021.

[65]

A. Hänninen, R. Toivonen, S. Pöysti, et al., Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice, Gut 67(8) (2018) 1445-1453. https://dx.doi.org/10.1136/gutjnl-2017-314508.

[66]

S.G. Parkar, T.M. Trower, D.E. Stevenson, Fecal microbial metabolism of polyphenols and its effects on human gut microbiota, Anaerobe 23 (2013) 12-19. https://dx.doi.org/10.1016/j.anaerobe.2013.07.009.

[67]

V. Leone, S.M. Gibbons, K. Martinez, et al., Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism, Cell Host Microbe 17 (2015) 681-689. https://dx.doi.org/10.1016/j.chom.2015.03.006.

[68]

S.S. Cho, L. Qi, G.C. Fahey, et al., Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease, Am. J. Clin. Nutr. 98 (2013) 594-619. https://dx.doi.org/10.3945/ajcn.113.067629.

[69]

H. Zeng, S. Umar, B. Rust, et al., Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer, Int. J. Mol. Sci. 20 (2019) 1214. https://dx.doi.org/10.3390/ijms20051214.

[70]

Z. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58 (2009) 1509-1517. https://dx.doi.org/10.2337/db08-1637.

[71]

F. De Vadder, P. Kovatcheva-Datchary, D. Goncalves, et al., Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell 156 (2014) 84-96. https://dx.doi.org/10.1016/j.cell.2013.12.016.

[72]

F.G. Liu, X. Zhang, B.T. Zhao, et al. Role of food phytochemicals in the modulation of circadian clocks, J. Agric. Food Chem. 67 (2019) 8735-8739. https://dx.doi.org/10.1021/acs.jafc.9b02263.

[73]

G. Qi, Y. Mi, Z. Liu, et al., Dietary tea polyphenols ameliorate metabolic syndrome and memory impairment via circadian clock related mechanisms, J. Funct. Foods 34 (2017) 168-180. https://dx.doi.org/10.1016/j.jff.2017.04.031.

[74]

Y. Mi, G. Qi, Y. Gao, et al. (–)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in hepG2 cells: involvement of Bmal1. Mol. Nutr. Food Res. 61 (2017) 1700440. https://dx.doi.org/10.1002/mnfr.201700440.

[75]

T.T. Guo, C.T. Ho, X. Zhang, et al., Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model, J. Agric. Food Chem. 67 (2019) 11969-11976. https://dx.doi.org/10.1021/acs.jafc.9b04869.

[76]

P. Bogdanski, J. Suliburska, M. Szulinska, et al., Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients, Nutr. Res. 32 (2012) 421-427. https://dx.doi.org/10.1016/j.nutres.2012.05.007.

[77]

M. Čitar, B. Hacin, G. Tompa, et al., Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells, Benef. Microbes 6 (2015) 325-336. https://dx.doi.org/10.3920/BM2014.0081.

[78]

M. Cheng, X. Zhang, Y. Miao, et al., The modulatory effect of (–)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3"Me) on intestinal microbiota of high fat diet-induced obesity mice model, Food Res. Int. 92 (2017) 9-16. https://dx.doi.org/10.1016/j.foodres.2016.12.008.

[79]

T.T. Guo, D. Song, C.T. Ho, et al., Omics analyses of gut microbiota in a circadian rhythm disorder mouse model fed with oolong tea polyphenols, J. Agric. Food Chem. 67 (2019) 8847-8854. https://dx.doi.org/10.1021/acs.jafc.9b03000.

[80]

K. Kawabata, Y. Yoshioka, J. Terao, Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols, Molecules 24 (2019) 370. https://dx.doi.org/10.3390/molecules24020370.

[81]

J. Terao, Dietary flavonoids as antioxidants. Forum. Nutr. 61 (2009) 87-94. https://dx.doi.org/10.1159/000212741.

[82]

A.H. Lee, D. Su, M. Pasalich, et al., Tea consumption reduces ovarian cancer risk, Cancer Epidemiol. 37 (2013) 54-59. https://dx.doi.org/10.1016/j.canep.2012.10.003.

[83]

N. Khan, H. Mukhtar, Tea polyphenols in promotion of human health, Nutrients 11 (2019) 39. https://dx.doi.org/10.3390/nu11010039.

[84]

C.S. Yang, P. Maliakal, X. Meng, Inhibition of carcinogenesis by tea, Annu. Rev. Pharmacol. 42 (2002) 25-54. https://dx.doi.org/10.1146/annurev.pharmtox.42.082101.154309.

[85]

C.S. Yang, X. Wang, G. Lu, et al., Cancer prevention by tea: animal studies, molecular mechanisms and human relevance, Nat. Rev. Cancer 9 (2009) 429-439. https://dx.doi.org/10.1038/nrc2641.

Food Science and Human Wellness
Pages 494-501
Cite this article:
Yan R, Ho C-T, Zhang X. Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota. Food Science and Human Wellness, 2022, 11(3): 494-501. https://doi.org/10.1016/j.fshw.2021.12.007

692

Views

50

Downloads

7

Crossref

4

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 12 October 2020
Revised: 29 October 2020
Accepted: 01 November 2020
Published: 04 February 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return