AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (636.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Metabolic fate of tea polyphenols and their crosstalk with gut microbiota

Meiyan Wanga( )Jianying LiaTing Hub( )Hui Zhaoa( )
Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
Hubei Key Laboratory for EFGIR, Huanggang Normal University, Huanggang 438000, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Tea represents an abundant source of naturally occurring polyphenols. Tea polyphenols (TPs) have received growing attentions for its wide consumption in the world, and more importantly its pleiotropic bioeffects for human health. After ingestion, TPs may undergo absorption and phase II reaction in the small intestine, and most undigested proportion would be submitted to the colon to interact with gut microbiota. Interactions between gut microbiota and TPs are bidirectional, including not only bacteria-mediated TPs metabolism, e.g., removal of gallic acid moiety and ring fission to release phenolic acid catabolites, but also TPs-based modification of bacterial profiles. Crosstalk between TPs and gut microbes may benefit for gut barrier function, for example, improvement of the intestinal permeability to alleviate inflammation. Moreover, by reshaping microbial composition and associated metabolites, TPs may exert a systemic protection on host metabolism, which contributes to improve certain chronic metabolic disorders. Given that, further understanding of the metabolic fate of TPs and interplay with gut microbiota as well as potential health-promoting effects are of great significance to development and application of tea and their polyphenolic components in the future as dietary supplements and/or functional ingredients in medical foods.

References

[1]

J.V. Higdon, B. Frei, Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions, Crit. Rev. Food Sci. Nutr. 43 (2003) 89-143. https://doi.org/10.1080/10408690390826464.

[2]
United States Department of Agriculture, Agricultural Research Service. USDA Database for the Flavonoid Content of Selected Foods. 2018 Accessed 2018 March; Release 3.3: [Available from: https://www.fas.usda.gov/psdonline/circulars/citrus.pdf.
[3]

D.A. Balentine, S.A. Wiseman, L.C. Bouwens, The chemistry of tea flavonoids, Crit. Rev. Food Sci. Nutr. 37 (1997) 693-704. https://doi.org/10.1080/10408399709527797.

[4]

S. Sang, J.D. Lambert, C.T. Ho, et al., The chemistry and biotransformation of tea constituents, Pharmacol. Res. 64 (2011) 87-99. https://doi.org/10.1016/j.phrs.2011.02.007.

[5]

N. Kuhnert, M.N. Clifford, A. Müller, Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS, Food Funct. 1 (2010) 180-199. https://doi.org/10.1039/c0fo00066c.

[6]

R. Yan, C.T. Ho, X. Zhang, Interaction between tea polyphenols and intestinal microbiota in host metabolic diseases from the perspective of the gut-brain axis, Mol. Nutr. Food Res. 64 (2020) e2000187. https://doi.org/10.1002/mnfr.202000187.

[7]

N. Khan, H. Mukhtar, Tea polyphenols in promotion of human health, Nutrients 11 (2018). https://doi.org/10.3390/nu11010039.

[8]

J.D. Lambert, S. Sang, C.S. Yang, Biotransformation of green tea polyphenols and the biological activities of those metabolites, Mol. Pharm. 4 (2007) 819-825. https://doi.org/10.1021/mp700075m.

[9]

H. Chen, T.A. Parks, X. Chen, et al., Structural identification of mouse fecal metabolites of theaflavin 3,3'-digallate using liquid chromatography tandem mass spectrometry, J. Chromatogr. A 1218 (2011) 7297-7306. https://doi.org/10.1016/j.chroma.2011.08.056.

[10]

R.Y. Gan, H.B. Li, Z.Q. Sui, et al., Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review, Crit. Rev. Food Sci. Nutr. 58 (2018) 924-941. https://doi.org/10.1080/10408398.2016.1231168.

[11]

J. Zhou, L. Tang, C.L. Shen, et al., Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats, J. Nutr. Biochem. 61 (2018) 68-81. https://doi.org/10.1016/j.jnutbio.2018.07.018.

[12]

T. Chen, C.S. Yang, Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects, Crit. Rev. Food Sci. Nutr. 60 (2020) 2691-2709. https://doi.org/10.1080/10408398.2019.1654430.

[13]

X. Yuan, Y. Long, Z. Ji, et al., Green tea liquid consumption alters the human intestinal and oral microbiome, Mol. Nutr. Food Res. 62 (2018) e1800178. https://doi.org/10.1002/mnfr.201800178.

[14]

S.M. Henning, J. Yang, M. Hsu, et al., Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice, Eur. J. Nutr. 57 (2018) 2759-2769. https://doi.org/10.1007/s00394-017-1542-8.

[15]

P. Quezada-Fernández, J. Trujillo-Quiros, S. Pascoe-González, et al., Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled trial, Int. J. Food Sci. Nutr. 70 (2019) 977-985. https://doi.org/10.1080/09637486.2019.1589430.

[16]

L.Y. Rios, R.N. Bennett, S.A. Lazarus, et al., Cocoa procyanidins are stable during gastric transit in humans, Am. J. Clin. Nutr. 76 (2002) 1106-1110. https://doi.org/10.1093/ajcn/76.5.1106.

[17]

M.N. Clifford, J.J. van der Hooft, A. Crozier, Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols, Am. J. Clin. Nutr. 98 (2013) 1619S-1630S. https://doi.org/10.3945/ajcn.113.058958.

[18]

A. Stalmach, W. Mullen, H. Steiling, et al., Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy, Mol. Nutr. Food Res. 54 (2010) 323-334. https://doi.org/10.1002/mnfr.200900194.

[19]

D. Del Rio, A. Rodriguez-Mateos, J.P. Spencer, et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid. Redox Signal. 18 (2013) 1818-1892. https://doi.org/10.1089/ars.2012.4581.

[20]

A. Stalmach, S. Troufflard, M. Serafini, et al., Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans, Mol. Nutr. Food Res. 53 Suppl 1 (2009) S44-S53. https://doi.org/10.1002/mnfr.200800169.

[21]

S. Shahrzad, I. Bitsch, Determination of gallic acid and its metabolites in human plasma and urine by high-performance liquid chromatography, J. Chromatogr. B Biomed. Sci. Appl. 705 (1998) 87-95. https://doi.org/10.1016/s0378-4347(97)00487-8.

[22]

S. Shahrzad, K. Aoyagi, A. Winter, et al., Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans, J. Nutr. 131 (2001) 1207-1210. https://doi.org/10.1093/jn/131.4.1207.

[23]

S. Roowi, A. Stalmach, W. Mullen, et al., Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans, J. Agric. Food Chem. 58 (2010) 1296-1304. https://doi.org/10.1021/jf9032975.

[24]

L. Calani, D. Del Rio, M. Luisa Callegari, et al., Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans, Int. J. Food Sci. Nutr. 63 (2012) 513-521. https://doi.org/10.3109/09637486.2011.640311.

[25]

S.M. Henning, Y. Niu, N.H. Lee, et al., Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement, Am. J. Clin. Nutr. 80 (2004) 1558-1564. https://doi.org/10.1093/ajcn/80.6.1558.

[26]

P.C. Hollman, K.H. van Het Hof, L.B. Tijburg, et al., Addition of milk does not affect the absorption of flavonols from tea in man, Free Radic. Res. 34 (2001) 297-300. https://doi.org/10.1080/10715760100300261.

[27]

T.P. Mulder, C.J. van Platerink, P.J.Wijnand Schuyl, et al., Analysis of theaflavins in biological fluids using liquid chromatography-electrospray mass spectrometry, J. Chromatogr. B Biomed. Sci. Appl. 760 (2001) 271-279. https://doi.org/10.1016/s0378-4347(01)00285-7.

[28]

H. Chen, S. Hayek, J. Rivera Guzman, et al., The microbiota is essential for the generation of black tea theaflavins-derived metabolites, PLoS One 7 (2012) e51001. https://doi.org/10.1371/journal.pone.0051001.

[29]

A.M. O'Hara, F. Shanahan, The gut flora as a forgotten organ, EMBO Reports 7 (2006) 688-693. https://doi.org/10.1038/sj.embor.7400731.

[30]

J.I. Ottaviani, G. Borges, T.Y. Momma, et al., The metabolome of [2-(14)C](–)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives, Sci. Rep. 6 (2016) 29034. https://doi.org/10.1038/srep29034.

[31]

G. Borges, J.I. Ottaviani, J.J.J. van der Hooft, et al., Absorption, metabolism, distribution and excretion of (–)-epicatechin: a review of recent findings, Mol. Aspects Med. 61 (2018) 18-30. https://doi.org/10.1016/j.mam.2017.11.002.

[32]

F. Castello, G. Costabile, L. Bresciani, et al., Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans, Arch. Biochem. Biophys. 646 (2018) 1-9. https://doi.org/10.1016/j.abb.2018.03.021.

[33]

A. Takagaki, F. Nanjo, Effects of metabolites produced from (–)-epigallocatechin gallate by rat intestinal bacteria on angiotensin I-converting enzyme activity and blood pressure in spontaneously hypertensive rats, J. Agric. Food Chem. 63 (2015) 8262-8266. https://doi.org/10.1021/acs.jafc.5b03676.

[34]

A. Takagaki, F. Nanjo, Bioconversion of (–)-epicatechin, (+)-epicatechin, (–)-catechin, and (+)-catechin by (–)-epigallocatechin-metabolizing bacteria, Biol. Pharm. Bull. 38 (2015) 789-794. https://doi.org/10.1248/bpb.b14-00813.

[35]

A. Takagaki, F. Nanjo, Catabolism of (+)-catechin and (–)-epicatechin by rat intestinal microbiota, J. Agric. Food Chem. 61 (2013) 4927-4935. https://doi.org/10.1021/jf304431v.

[36]

M. Kutschera, W. Engst, M. Blaut, et al., Isolation of catechin-converting human intestinal bacteria, J. Appl. Microbiol. 111 (2011) 165-175. https://doi.org/10.1111/j.1365-2672.2011.05025.x.

[37]

C. Li, M.J. Lee, S. Sheng, et al., Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion, Chem. Res. Toxicol. 13 (2000) 177-184. https://doi.org/10.1021/tx9901837.

[38]

T. Kohri, N. Matsumoto, M. Yamakawa, et al., Metabolic fate of (–)-[4-(3)H]epigallocatechin gallate in rats after oral administration, J. Agric. Food Chem. 49 (2001) 4102-4112. https://doi.org/10.1021/jf001491+.

[39]

A. Takagaki, F. Nanjo, Metabolism of (–)-epigallocatechin gallate by rat intestinal flora, J. Agric. Food Chem. 58 (2010) 1313-1321. https://doi.org/10.1021/jf903375s.

[40]

A. Takagaki, F. Nanjo, Biotransformation of (–)-epicatechin, (+)-epicatechin, (–)-catechin, and (+)-catechin by intestinal bacteria involved in isoflavone metabolism, Biosci. Biotechnol. Biochem. 80 (2016) 199-202. https://doi.org/10.1080/09168451.2015.1079480.

[41]

T. Kohri, M. Suzuki, F. Nanjo, Identification of metabolites of (–)-epicatechin gallate and their metabolic fate in the rat, J. Agric. Food Chem. 51 (2003) 5561-5566. https://doi.org/10.1021/jf034450x.

[42]

A. Takagaki, Y. Kato, F. Nanjo, Isolation and characterization of rat intestinal bacteria involved in biotransformation of (–)-epigallocatechin, Arch. Microbiol. 196 (2014) 681-695. https://doi.org/10.1007/s00203-014-1006-y.

[43]

G. Borges, J.J.J. van der Hooft, A. Crozier, A comprehensive evaluation of the [2-(14)C](–)-epicatechin metabolome in rats, Free Radic. Biol. Med. 99 (2016) 128-138. https://doi.org/10.1016/j.freeradbiomed.2016.08.001.

[44]

P. Mena, L. Bresciani, N. Brindani, et al., Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity, Nat. Prod. Rep. 36 (2019) 714-752. https://doi.org/10.1039/c8np00062j.

[45]

S. Stoupi, G. Williamson, J.W. Drynan, et al., A comparison of the in vitro biotransformation of (–)-epicatechin and procyanidin B2 by human faecal microbiota, Mol. Nutr. Food Res. 54 (2010) 747-759. https://doi.org/10.1002/mnfr.200900123.

[46]

M. Monagas, M. Urpi-Sarda, F. Sánchez-Patán, et al., Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites, Food Funct. 1 (2010) 233-253. https://doi.org/10.1039/c0fo00132e.

[47]

G. Williamson, C.D. Kay, A. Crozier, The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective, Compr. Rev. Food Sci. F. 17 (2018) 1054-1112. https://doi.org/10.1111/1541-4337.12351.

[48]

M.N. Clifford, E.L. Copeland, J.P. Bloxsidge, et al., Hippuric acid as a major excretion product associated with black tea consumption, Xenobiotica 30 (2000) 317-326. https://doi.org/10.1080/004982500237703.

[49]

C.A. Daykin, J.P. Van Duynhoven, A. Groenewegen, et al., Nuclear magnetic resonance spectroscopic based studies of the metabolism of black tea polyphenols in humans, J. Agric. Food Chem. 53 (2005) 1428-1434. https://doi.org/10.1021/jf048439o.

[50]

T.P. Mulder, A.G. Rietveld, J.M. van Amelsvoort, Consumption of both black tea and green tea results in an increase in the excretion of hippuric acid into urine, Am. J. Clin. Nutr. 81 (2005) 256S-260S. https://doi.org/10.1093/ajcn/81.1.256S.

[51]

H. Chen, S. Sang, Biotransformation of tea polyphenols by gut microbiota, J. Funct. Foods 7 (2014) 26-42. https://doi.org/10.1016/j.jff.2014.01.013.

[52]

G. Pereira-Caro, J.M. Moreno-Rojas, N. Brindani, et al., Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism, J. Agric. Food Chem. 65 (2017) 5365-5374. https://doi.org/10.1021/acs.jafc.7b01707.

[53]

G. Pereira-Caro, G. Borges, I. Ky, et al., In vitro colonic catabolism of orange juice (poly)phenols, Mol. Nutr. Food Res. 59 (2015) 465-475. https://doi.org/10.1002/mnfr.201400779.

[54]

C. Manach, D. Milenkovic, T. Van de Wiele, et al., Addressing the inter-individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction, Mol. Nutr. Food Res. 61 (2017). https://doi.org/10.1002/mnfr.201600557.

[55]

J. van Duynhoven, E.E. Vaughan, D.M. Jacobs, et al., Metabolic fate of polyphenols in the human superorganism, Proc. Natl. Acad. Sci. U.S.A. 108 Suppl 1 (2011) 4531-4538. https://doi.org/10.1073/pnas.1000098107.

[56]

K.A. Clarke, T.P. Dew, R.E. Watson, et al., High performance liquid chromatography tandem mass spectrometry dual extraction method for identification of green tea catechin metabolites excreted in human urine, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 972 (2014) 29-37. https://doi.org/10.1016/j.jchromb.2014.09.035.

[57]

J. van Duynhoven, J.J. van der Hooft, F.A. van Dorsten, et al., Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption, J. Proteome Res. 13 (2014) 2668-2678. https://doi.org/10.1021/pr5001253.

[58]

N. Brindani, P. Mena, L. Calani, et al., Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine, Mol. Nutr. Food Res. 61 (2017). https://doi.org/10.1002/mnfr.201700077.

[59]

S. Roberto, J.I. Ottaviani, R.M. Ana, et al., Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies, Am. J. Clin. Nutr. 105 (2017) 352-360. https://doi.org/10.3945/ajcn.116.140046.

[60]

L. Actis-Goretta, A. Lévèques, F. Giuffrida, et al., Elucidation of (–)-epicatechin metabolites after ingestion of chocolate by healthy humans, Free Radic. Biol. Med. 53 (2012) 787-795. https://doi.org/10.1016/j.freeradbiomed.2012.05.023.

[61]

E.J.J. van Velzen, J.A. Westerhuis, C.H. Grün, et al., Population-based nutrikinetic modeling of polyphenol exposure, Metabolomics 10 (2014) 1059-1073. https://doi.org/10.1007/s11306-014-0645-y.

[62]

S. Hazim, P.J. Curtis, M.Y. Schär, et al., Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial, Am. J. Clin. Nutr. 103 (2016) 694-702. https://doi.org/10.3945/ajcn.115.125690.

[63]

J. Wang, L. Tang, H. Zhou, et al., Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats, J. Nutr. Biochem. 56 (2018) 55-64. https://doi.org/10.1016/j.jnutbio.2018.01.005.

[64]

M. Wang, H. Zhao, X. Wen, et al., Citrus flavonoids and the intestinal barrier: interactions and effects, Compr. Rev. Food Sci. F. 20 (2021) 225-251. https://doi.org/10.1111/1541-4337.12652.

[65]

S.V. Luca, I. Macovei, A. Bujor, et al., Bioactivity of dietary polyphenols: the role of metabolites, Crit. Rev. Food Sci. Nutr. 60 (2020) 626-659. https://doi.org/10.1080/10408398.2018.1546669.

[66]

M. Cheng, X. Zhang, J. Zhu, et al., A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols, Food Funct. 9 (2018) 1079-1087. https://doi.org/10.1039/c7fo01570d.

[67]

X.M. Wu, R.X. Tan, Interaction between gut microbiota and ethnomedicine constituents, Nat. Prod. Rep. 36 (2019) 788-809. https://doi.org/10.1039/c8np00041g.

[68]

I. Rowland, G. Gibson, A. Heinken, et al., Gut microbiota functions: metabolism of nutrients and other food components, Eur. J. Nutr. 57 (2018) 1-24. https://doi.org/10.1007/s00394-017-1445-8.

[69]

S. Barnes, J. Prasain, H. Kim, In nutrition, can we "see" what is good for us? Advances in nutrition (Bethesda, Md.) 4 (2013) 327S-334S. https://doi.org/10.3945/an.112.003558.

[70]

U. Etxeberria, A. Fernández-Quintela, F.I. Milagro, et al., Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition, J. Agric. Food Chem. 61 (2013) 9517-9533. https://doi.org/10.1021/jf402506c.

[71]

R.E. Ley, F. Backhed, P. Turnbaugh, et al., Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 11070-11075. https://doi.org/10.1073/pnas.0504978102.

[72]

P.J. Turnbaugh, F. Bäckhed, L. Fulton, et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell Host Microbe 3 (2008) 213-223. https://doi.org/10.1016/j.chom.2008.02.015.

[73]

M. Remely, F. Ferk, S. Sterneder, et al., EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice, Oxid. Med. Cell. Longev. 2017 (2017) 3079148. https://doi.org/10.1155/2017/3079148.

[74]

M. Cheng, X. Zhang, Y. Miao, et al., The modulatory effect of (–)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model, Food Res. Int. 92 (2017) 9-16. https://doi.org/10.1016/j.foodres.2016.12.008.

[75]

L. Wang, B. Zeng, Z. Liu, et al., Green tea polyphenols modulate colonic microbiota diversity and lipid metabolism in high-fat diet treated HFA mice, J. Food Sci. 83 (2018) 864-873. https://doi.org/10.1111/1750-3841.14058.

[76]

X. Zhang, M. Zhang, C.T. Ho, et al., Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model, J. Funct. Foods 46 (2018) 268-277. https://doi.org/10.1016/j.jff.2018.05.003.

[77]

X. Guo, M. Cheng, X. Zhan, et al., Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition, Int. J. Food Sci. Tech. 52 (2017) 1723-1730. https://doi.org/10.1111/ijfs.13479.

[78]

Y. Chen, X. Zhang, L. Cheng, et al., The evaluation of the quality of Feng Huang Oolong teas and their modulatory effect on intestinal microbiota of high-fat diet-induced obesity mice model, Int. J. Food Sci. Nutr. 69 (2018) 842-856. https://doi.org/10.1080/09637486.2017.1420757.

[79]

Z. Liu, Z. Chen, H. Guo, et al., The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice, Food Funct. 7 (2016) 4869-4879. https://doi.org/10.1039/c6fo01439a.

[80]

X. Gao, Q. Xie, P. Kong, et al., Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice, Infect. Immun. 86 (2018). https://doi.org/10.1128/iai.00601-17.

[81]

A.L. Molan, Z. Liu, R. Tiwari, The ability of green tea to positively modulate key markers of gastrointestinal function in rats, Phytother. Res. 24 (2010) 1614-1619. https://doi.org/10.1002/ptr.3145.

[82]

U. Axling, C. Olsson, J. Xu, et al., Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice, Nutr. Metab. 9 (2012) 105. https://doi.org/10.1186/1743-7075-9-105.

[83]

Z.L. Liao, B.H. Zeng, W. Wang, et al., Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal bifidobacteria in high-fat-fed ApoE(-/-) mice, Front. Nutr. 3 (2016) 42. https://doi.org/10.3389/fnut.2016.00042.

[84]

D.P. Singh, J. Singh, R.K. Boparai, et al., Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice, Pharmacol. Res. 123 (2017) 103-113. https://doi.org/10.1016/j.phrs.2017.06.015.

[85]

T. Unno, N. Osakabe, Green tea extract and black tea extract differentially influence cecal levels of short-chain fatty acids in rats, Food Sci. Nutr. 6 (2018) 728-735. https://doi.org/10.1002/fsn3.607.

[86]

T. Okubo, N. Ishihara, A. Oura, et al., In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism, Biosci. Biotechnol. Biochem. 56 (1992) 588-591. https://doi.org/10.1271/bbb.56.588.

[87]

H. Hara, N. Orita, S. Hatano, et al., Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs, J. Vet. Med. Sci. 57 (1995) 45-49. https://doi.org/10.1292/jvms.57.45.

[88]

M. Derrien, E.E. Vaughan, C.M. Plugge, et al., Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium, Int. J. Syst. Evol. Microbiol. 54 (2004) 1469-1476. https://doi.org/10.1099/ijs.0.02873-0.

[89]

C. Lordan, D. Thapa, R.P. Ross, et al., Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components, Gut Microbes 11 (2020) 1-20. https://doi.org/10.1080/19490976.2019.1613124.

[90]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia jmuciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[91]

Z. Qiao, J. Han, H. Feng, et al., Fermentation products of Paenibacillus bovis sp. nov. BD3526 alleviates the symptoms of type 2 diabetes mellitus in GK rats, Front. Microbiol. 9 (2018) 3292. https://doi.org/10.3389/fmicb.2018.03292.

[92]

Y. Xia, D. Tan, R. Akbary, et al., Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats, Appl. Microbiol. Biotechnol. 103 (2019) 1823-1835. https://doi.org/10.1007/s00253-018-09581-2.

[93]

L. Sheng, P.K. Jena, H.X. Liu, et al., Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila, FASEB J. 32 (2018) fj201800370R. https://doi.org/10.1096/fj.201800370R.

[94]

F. Takabayashi, N. Harada, M. Yamada, et al., Inhibitory effect of green tea catechins in combination with sucralfate on Helicobacter pylori infection in Mongolian gerbils, J. Gastroenterol. 39 (2004) 61-63. https://doi.org/10.1007/s00535-003-1246-0.

[95]

X. Zhang, X. Zhu, Y. Sun, et al., Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota, Food Res. Int. 54 (2013) 1589-1595. http://doi.org/10.1016/j.foodres.2013.10.005.

[96]

P.D. Stapleton, S. Shah, K. Ehlert, et al., The beta-lactam-resistance modifier (–)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus, Microbiology (Reading, England) 153 (2007) 2093-2103. https://doi.org/10.1099/mic.0.2007/007807-0.

[97]

F. Cardona, C. Andrés-Lacueva, S. Tulipani, et al., Benefits of polyphenols on gut microbiota and implications in human health, J. Nutr. Biochem. 24 (2013) 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001.

[98]

S.C. Bischoff, G. Barbara, W. Buurman, et al., Intestinal permeability-a new target for disease prevention and therapy, BMC Gastroenterol. 14 (2014) 189-214. https://doi.org/10.1186/s12876-014-0189-7.

[99]

M. Camilleri, Leaky gut: mechanisms, measurement and clinical implications in humans, Gut 68 (2019) 1516-1526. https://doi.org/10.1136/gutjnl-2019-318427.

[100]

J. Mankertz, J.D. Schulzke, Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications, Curr. Opin. Gastroen. 23 (2007) 379-383. https://doi.org/10.1097/MOG.0b013e32816aa392.

[101]

M. Khounlotham, W. Kim, E. Peatman, et al., Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis, Immunity 37 (2012) 563-573. https://doi.org/10.1016/j.immuni.2012.06.017.

[102]

K. Martinez-Guryn, V. Leone, E.B. Chang, Regional diversity of the gastrointestinal microbiome, Cell Host Microbe 26 (2019) 314-324. https://doi.org/10.1016/j.chom.2019.08.011.

[103]

E.C. Martens, M. Neumann, M.S. Desai, Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier, Nat. Rev. Microbiol. 16 (2018) 457-470. https://doi.org/10.1038/s41579-018-0036-x.

[104]

P.D. Cani, S. Possemiers, T. Van de Wiele, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut 58 (2009) 1091-1103. https://doi.org/10.1136/gut.2008.165886.

[105]

X. Zhang, Y. Zhao, M. Zhang, et al., Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats, PLoS One 7 (2012) e42529. https://doi.org/10.1371/journal.pone.0042529.

[106]

E. Cremonini, Z. Wang, A. Bettaieb, et al., (–)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: implications for steatosis and insulin resistance, Redox Biol, 14 (2018) 588-599. https://doi.org/10.1016/j.redox.2017.11.002.

[107]

N.R. Shin, J.C. Lee, H.Y. Lee, et al., An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut 63 (2014) 727-735. https://doi.org/10.1136/gutjnl-2012-303839.

[108]

P. Dey, G.Y. Sasaki, P. Wei, et al., Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation, J. Nutr. Biochem. 67 (2019) 78-89. https://doi.org/10.1016/j.jnutbio.2019.01.017.

[109]

H.S. Oz, T. Chen, W.J. de Villiers, Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models, Front. Immunol. 4 (2013) 132. https://doi.org/10.3389/fimmu.2013.00132.

[110]

S.U. Rahman, Y. Li, Y. Huang, et al., Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches, Inflammopharmacology 26 (2018) 319-330. https://doi.org/10.1007/s10787-018-0462-4.

[111]

V. Linares, V. Alonso, J.L. Domingo, Oxidative stress as a mechanism underlying sulfasalazine-induced toxicity, Expert Opin. Drug Saf. 10 (2011) 253-263. https://doi.org/10.1517/14740338.2011.529898.

[112]

K.H. Katsanos, P.V. Voulgari, E.V. Tsianos, Inflammatory bowel disease and lupus: a systematic review of the literature, J. Crohns Colitis 6 (2012) 735-742. https://doi.org/10.1016/j.crohns.2012.03.005.

[113]

P. Dey, Targeting gut barrier dysfunction with phytotherapies: effective strategy against chronic diseases, Pharmacol. Res. 161 (2020) 105135. https://doi.org/10.1016/j.phrs.2020.105135.

[114]

K. Dabke, G. Hendrick, S. Devkota, The gut microbiome and metabolic syndrome, J. Clin. Invest. 129 (2019) 4050-4057. https://doi.org/10.1172/jci129194.

[115]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.

[116]

N. Qin, F. Yang, A. Li, et al., Alterations of the human gut microbiome in liver cirrhosis, Nature 513 (2014) 59-64. https://doi.org/10.1038/nature13568.

[117]

K.H. Allin, V. Tremaroli, R. Caesar, et al., Aberrant intestinal microbiota in individuals with prediabetes, Diabetologia 61 (2018) 810-820. https://doi.org/10.1007/s00125-018-4550-1.

[118]

Z. Bloomgarden, Diabetes and branched-chain amino acids: what is the link? J. Diabetes 10 (2018) 350-352. https://doi.org/10.1111/1753-0407.12645.

[119]

Z. Wang, Y. Zhao, Gut microbiota derived metabolites in cardiovascular health and disease, Protein & Cell 9 (2018) 416-431. https://doi.org/10.1007/s13238-018-0549-0.

[120]

J.M. Ridlon, D.J. Kang, P.B. Hylemon, Bile salt biotransformations by human intestinal bacteria, J. Lipid Res. 47 (2006) 241-259. https://doi.org/10.1194/jlr.R500013-JLR200.

[121]

V. Lorenzo-Zúñiga, R. Bartolí, R. Planas, et al., Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats, Hepatology 37 (2003) 551-557. https://doi.org/10.1053/jhep.2003.50116.

[122]

T. Inagaki, A. Moschetta, Y.K. Lee, et al., Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 3920-3925. https://doi.org/10.1073/pnas.0509592103.

[123]

A. Parséus, N. Sommer, F. Sommer, et al., Microbiota-induced obesity requires farnesoid X receptor, Gut 66 (2017) 429-437. https://doi.org/10.1136/gutjnl-2015-310283.

[124]

F. Huang, X. Zheng, X. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10 (2019) 4971. https://doi.org/10.1038/s41467-019-12896-x.

[125]

H. Tanaka, K. Doesburg, T. Iwasaki, et al., Screening of lactic acid bacteria for bile salt hydrolase activity, J. Dairy Sci. 82 (1999) 2530-2535. https://doi.org/10.3168/jds.S0022-0302(99)75506-2.

[126]

X. Lu, J. Liu, N. Zhang, et al., Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition, J. Agric. Food Chem. 67 (2019) 6978-6994. https://doi.org/10.1021/acs.jafc.8b04909.

[127]

C. Thomas, A. Gioiello, L. Noriega, et al., TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab. 10 (2009) 167-177. https://doi.org/10.1016/j.cmet.2009.08.001.

[128]

R.L. Batterham, M.A. Cowley, C.J. Small, et al., Gut hormone PYY(3-36) physiologically inhibits food intake, Nature 418 (2002) 650-654. https://doi.org/10.1038/nature00887.

[129]

J. Tan, C. McKenzie, M. Potamitis, et al., The role of short-chain fatty acids in health and disease, Adv. Immunol. 121 (2014) 91-119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9.

[130]

L.R. Dugas, L. Lie, J. Plange-Rhule, et al., Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol, BMC Public Health 18 (2018) 978. https://doi.org/10.1186/s12889-018-5879-6.

[131]

S. Sanna, N.R. van Zuydam, A. Mahajan, et al., Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases, Nat. Genet. 51 (2019) 600-605. https://doi.org/10.1038/s41588-019-0350-x.

[132]

M.A. Vinolo, H.G. Rodrigues, W.T. Festuccia, et al., Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice, Am. J. Physiol. Endocrinol. Metab. 303 (2012) E272-E282. https://doi.org/10.1152/ajpendo.00053.2012.

[133]

J. Wang, P. Li, S. Liu, et al., Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota, Food Nutr. Res. 64 (2020). https://doi.org/10.29219/fnr.v64.3672.

[134]

A. Damms-Machado, S. Mitra, A.E. Schollenberger, et al., Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption, Biomed Res. Int. 2015 (2015) 806248. https://doi.org/10.1155/2015/806248.

[135]

B.S. Kim, M.Y. Song, H. Kim, The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women, J. Ethnopharmacol. 152 (2014) 532-539. https://doi.org/10.1016/j.jep.2014.01.038.

[136]

T. Shao, L. Shao, H. Li, et al., Combined signature of the fecal microbiome and metabolome in patients with gout, Front. Microbiol. 8 (2017) 268. https://doi.org/10.3389/fmicb.2017.00268.

[137]

S. Bettuzzi, M. Brausi, F. Rizzi, et al., Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study, Cancer Res. 66 (2006) 1234-1240. https://doi.org/10.1158/0008-5472.can-05-1145.

[138]

S. Kuriyama, T. Shimazu, K. Ohmori, et al., Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study, JAMA 296 (2006) 1255-1265. https://doi.org/10.1001/jama.296.10.1255.

[139]

J.D. Lambert, M.J. Kennett, S. Sang, et al., Hepatotoxicity of high oral dose (–)-epigallocatechin-3-gallate in mice, Food Chem. Toxicol. 48 (2010) 409-416. https://doi.org/10.1016/j.fct.2009.10.030.

[140]

G. Galati, A. Lin, A.M. Sultan, et al., Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins, Free Radic. Biol. Med. 40 (2006) 570-580. https://doi.org/10.1016/j.freeradbiomed.2005.09.014.

[141]

J.D. Lambert, S. Sang, C.S. Yang, Possible controversy over dietary polyphenols: benefits vs risks, Chem. Res. Toxicol. 20 (2007) 583-585. https://doi.org/10.1021/tx7000515.

[142]

K. Boehm, F. Borrelli, E. Ernst, et al., Green tea (Camellia sinensis) for the prevention of cancer, Cochrane Db. Syst. Rev. 3 (2009) CD005004. https://doi.org/10.1002/14651858.CD005004.pub2.

[143]

K.D. James, S.C. Forester, J.D. Lambert, Dietary pretreatment with green tea polyphenol, (–)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (–)-epigallocatechin-3-gallate, Food Chem. Toxicol. 76 (2015) 103-108. https://doi.org/10.1016/j.fct.2014.12.009.

Food Science and Human Wellness
Pages 455-466
Cite this article:
Wang M, Li J, Hu T, et al. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness, 2022, 11(3): 455-466. https://doi.org/10.1016/j.fshw.2021.12.003

885

Views

70

Downloads

32

Crossref

30

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 29 December 2020
Revised: 09 January 2021
Accepted: 10 January 2021
Published: 04 February 2022
© 2022 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return