Journal Home > Volume 11 , Issue 1

It is unclear how docosahexaenoic acid (DHA) improves insulin resistance via modulating gut microbiome in obese individuals. We used diet-induced obesity (DIO) mice as a model to study the effects of DHA-rich fish oil (DHA-FO) on host metabolic disorders and colonic microbiome. DHA-FO reduced fat deposition, regulated lipid profiles and alleviated insulin resistance in DIO mice. Probably because DHA-FO prevented the permeation of lipopolysaccharide across intestinal epithelial barrier, and promoted peptide YY (PYY) secretion via the mediation of short chain fatty acids receptor (FFAR2) in colon. Furthermore, DHA-FO might regulate PYY expression by reversing microbial dysbiosis, including increasing the abundance of Akkermansia muciniphila and Lactobacillus, and suppressing the growth of Helicobacter. DHA-FO also altered gut microbial function (e.g. "linoleic acid metabolism") associated with PYY expression (r > 0.80, P < 0.05). Herein, DHA-FO enhanced insulin action on glucose metabolism by altering gut microbiome and facilitating colonic PYY expression in DIO mice.


menu
Abstract
Full text
Outline
About this article

Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice

Show Author's information Wanxiu Caoa,bFang LiuaRobert W. LicYaoxian ChindYuming Wanga,eChanghu Xuea,eQingjuan Tanga( )
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
Hainan Tropical Ocean University, Sanya 572022, China
Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

It is unclear how docosahexaenoic acid (DHA) improves insulin resistance via modulating gut microbiome in obese individuals. We used diet-induced obesity (DIO) mice as a model to study the effects of DHA-rich fish oil (DHA-FO) on host metabolic disorders and colonic microbiome. DHA-FO reduced fat deposition, regulated lipid profiles and alleviated insulin resistance in DIO mice. Probably because DHA-FO prevented the permeation of lipopolysaccharide across intestinal epithelial barrier, and promoted peptide YY (PYY) secretion via the mediation of short chain fatty acids receptor (FFAR2) in colon. Furthermore, DHA-FO might regulate PYY expression by reversing microbial dysbiosis, including increasing the abundance of Akkermansia muciniphila and Lactobacillus, and suppressing the growth of Helicobacter. DHA-FO also altered gut microbial function (e.g. "linoleic acid metabolism") associated with PYY expression (r > 0.80, P < 0.05). Herein, DHA-FO enhanced insulin action on glucose metabolism by altering gut microbiome and facilitating colonic PYY expression in DIO mice.

Keywords: Insulin resistance, Gut microbiome, Docosahexaenoic acid, Diet-induced obesity, Peptide YY

References(69)

[1]

Z.H. Yang, H. Miyahara, J. Takeo, et al., Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice, Dlabetol. Metab. Syndr. 4 (2012) 32. http://doi.org/10.1186/1758-5996-4-32.

[2]

M.C. Petersen, G.I. Shulman, Mechanisms of insulin action and insulin resistance, Physiol. Rev. 98 (2018) 2133-2223. http://doi.org/10.1152/physrev.00063.2017.

[3]

M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes, Nat. Med. 23 (2017) 804-814. http://doi.org/10.1038/nm.4350.

[4]

M. Kassem, F. Philippe, W. Isabelle, Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines, ISRN Inflamm. 2013 (2013) 139239. http://doi.org/10.1155/2013/139239.

[5]

S. Loman, J.W. van der Kamp, Insulin resistance as key factor for linking modulation of gut microbiome to health claims and dietary recommendations to tackle obesity, Trends Food Sci. Tech. 57 (2016) 306-310. http://doi.org/10.1016/j.tifs.2016.10.008.

[6]

N.M. Delzenne, P.D. Cani, Gut microbiota and the pathogenesis of insulin resistance, Curr. Diabetes Rep. 11 (2011) 154-159. http://doi.org/10.1007/s11892-011-0191-1.

[7]

C. Lerin, A.B. Goldfine, T. Boes, et al., Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism, Mol. Metab. 5 (2016) 926-936. http://doi.org/10.1016/j.molmet.2016.08.001.

[8]

K.C.G. De Git, R.A.H. Adan, Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation, Obes. Rev. 16 (2015) 207-224. http://doi.org/10.1111/obr.12243.

[9]

P.A. Gill, M.C. van Zelm, J.G. Muir, et al., Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders, Aliment. Pharm. Ther. 48 (2018) 15-34. http://doi.org/10.1111/apt.14689.

[10]

J. Lin, R.J. Hodge, R.L. O'Connor-Semmes, et al., GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects, Diabetes Obes Metab. 17 (2015) 1007-1010. http://doi.org/10.1111/dom.12533.

[11]

G. Angelini, S. Salinari, G.L. Castagneto, et al., Small intestinal metabolism is central to whole-body insulin resistance, Gut (2020) 1-12. http://doi.org/10.1136/gutjnl-2020-322073.

[12]

N.M. Delzenne, P.D. Cani, A.M. Neyrinck, Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data, J. Nutr. 137 (2007) 2547S-2551S. https://doi.org/10.1093/jn/137.11.2547S.

[13]

N.M. Delzenne, P.D. Cani, C. Daubioul, et al., Impact of inulin and oligofructose on gastrointestinal peptides, Brit. J. Nutr. 93 (2005) S157-S161. https://doi.org/10.1079/bjn20041342.

[14]

D.A. Winer, H. Luck, S. Tsai, et al., The intestinal immune system in obesity and insulin resistance, Cell Metab. 23 (2016) 413-426. http://doi.org/10.1016/j.cmet.2016.01.003.

[15]

L. Zhu, L. Sha, K. Li, et al., Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats, Lipids Health Dis. 19 (2020) 20. http://doi.org/10.1186/s12944-019-1167-4.

[16]

R. Caesar, V. Tremaroli, P. Kovatcheva-Datchary, et al., Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling, Cell Metab. 22 (2015) 658-668. http://doi.org/10.1016/j.cmet.2015.07.026.

[17]

N. Qin, G. Song, X. Ren, et al., Fish oil from Coregonus peled improves obese phenotype and changes gut microbiota in a high-fat diet induced recurrent obese mouse model, Food Funct. 11 (2020) 6158-6169. http://doi.org/10.1039/d0fo00911c.

[18]

F. Capel, C. Acquaviva, E. Pitois, et al., DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation, J. Nutr. Biochem. 26 (2015) 949-959. http://doi.org/10.1016/j.jnutbio.2015.04.003.

[19]

P. Zhuang, Y. Zhang, Q. Shou, et al., Eicosapentaenoic and docosahexaenoic acids differentially alter gut microbiome and reverse high-fat diet-induced insulin resistance, Mol. Nutr. Food Res. 64 (2020) 1900946. http://doi.org/10.1002/mnfr.201900946.

[20]

N. Farrell, G. Norris, S.G. Lee, et al., Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice, Food Funct. 6 (2015) 1278-1287. http://doi.org/10.1039/c4fo01036.

[21]

L. Zhang, D. Wang, M. Wen, et al., Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa, J. Funct. Foods 28 (2017) 28-35. http://doi.org/10.1016/j.jff.2016.10.022.

[22]

L.A. David, C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2013) 559-563. http://doi.org/10.1038/nature12820.

[23]

N. Zhang, X. Mao, R.W. Li, et al., Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function, Mol. Nutr. Food Res. 61 (2017) 1600585. http://doi.org/10.1002/mnfr.201600585.

[24]

Y. Li, X. Liu, Y. Fan, et al., Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism, PeerJ. 5 (2017) 3305. http://doi.org/10.7717/peerj.3305.

[25]

J. Xu, Y. Li, M. Lou, et al., Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production, Pharmacol. Res. 136 (2018) 62-73. http://doi.org/10.1016/j.phrs.2018.08.018.

[26]

C. Zhan, D. Chen, J. Luo, et al., Protective role of down-regulated microRNA-31 on intestinal barrier dysfunction through inhibition of NF-κB/HIF-1α pathway by binding to HMOX1 in rats with sepsis, Mol. Med. 24 (2018) 55. http://doi.org/10.1186/s10020-018-0053-2.

[27]

A. Sankoda, N. Harada, K. Iwasaki, et al., Long-chain free fatty acid receptor GPR120 mediates oil-induced GIP secretion through CCK in male mice, Endocrinology 158 (2017) 1172-1180. http://doi.org/10.1210/en.2017-00090.

[28]

F. O'Halloran, C. Bruen, B. McGrath, et al., A casein hydrolysate increases GLP-1 secretion and reduces food intake, Food Chem. 252 (2018) 303-310. http://doi.org/10.1016/j.foodchem.2018.01.107.

[29]

N.J. Kellow, M.T. Coughlan, G.S. Savige, et al., Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomised crossover clinical trial, BMC Endocr. Disord. 14 (2014) 55. http://doi.org/10.1186/1472-6823-14-55.

[30]

H. Moyaert, F. Pasmans, R. Ducatelle, et al., Evaluation of 16S rRNA gene-based PCR assays for genus-level identification of Helicobacter species, J. Clin. Microbiol. 46 (2008) 1867-1869. http://doi.org/10.1128/jcm.00139-08.

[31]

A. Croswell, E. Amir, P. Teggatz, et al., Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection, Infect. Immun. 77 (2009) 2741-2753. http://doi.org/10.1128/iai.00006-09.

[32]

I. Lagkouvardos, R. Pukall, B. Abt, et al., The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota, Nat. Microbial. 1 (2006) 1-15. http://doi.org/10.1038/nmicrobiol.2016.131.

[33]

J.D. Buckley, P.R.C. Howe, Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity—a review, Nutrients 2 (2010) 1212-1230. http://doi.org/10.3390/nu2121212.

[34]

K.A. Abbott, T.L. Burrows, S. Acharya, et al., DHA-enriched fish oil reduces insulin resistance in overweight and obese adults, Prostag. Leukotri. Ess. 159 (2020) 102154. http://doi.org/10.1016/j.plefa.2020.102154.

[35]

A. Kennedy, K. Martinez, C.C. Chuang, et al., Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications, J. Nutr. 139 (2009) 1-4. http://doi.org/10.3945/jn.108.098269.

[36]

D. Camuesco, J. Gálvez, A. Nieto, et al., Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis, J. Nutr. 135 (2005) 687-694. http://doi.org/10.1093/jn/135.4.687.

[37]

P. Zhuang, Q. Shou, Y. Lu, et al., Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose liver axis, Biochim. Biophys. Acta 1863 (2017) 2715-2726. http://doi.org/10.1016/j.bbadis.2017.07.003.

[38]

C.Y. Lee, The effect of high-fat diet-induced pathophysiological changes in the gut on obesity: what should be the ideal treatment?, Clin. Transl. Gastroen. 4 (2013) e39. http://doi.org/10.1038/ctg.2013.11.

[39]

C. Martin-Gallausiaux, L. Marinelli, H.M. Blottière, et al., SCFA: mechanisms and functional importance in the gut, P. Nutr. Soc. 80 (2020) 1-13. http://doi.org/10.1017/s0029665120006916.

[40]

S. Mohammad, Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis, Curr. Drug Targets 16 (2015) 771-775. http://doi.org/10.2174/1389450116666150408103557.

[41]

T.U. Greiner, F. Bäckhed, Microbial regulation of GLP-1 and L-cell biology, Mol. Metab. 5 (2016) 753-758. http://doi.org/10.1016/j.molmet.2016.05.012.

[42]

I. Depoortere, Taste receptors of the gut: emerging roles in health and disease, Gut 63 (2013) 179-190. http://doi.org/10.1136/gutjnl-2013-305112.

[43]

L. Brooks, A. Viardot, A. Tsakmaki, et al., Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety, Mol. Metab. 6 (2017) 48-60. http://doi.org/10.1016/j.molmet.2016.10.011.

[44]

U. Hanusch-Enserer, M.A. Ghatei, E. Cauza, et al., Relation of fasting plasma peptide YY to glucose metabolism and cardiovascular risk factors after restrictive bariatric surgery, Wien. Klin. Wochenschr. 119 (2007) 291-296. http://doi.org/10.1007/s00508-007-0776-5.

[45]

Y. Guo, L. Ma, P.J. Enriori, et al., Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans, Obesity 14 (2006) 1562-1570. http://doi.org/10.1038/oby.2006.180.

[46]

F. Greenway, C.E. O'Neil, L. Stewart, et al., Fourteen weeks of treatment with viscofiber® increased fasting levels of glucagon-like peptide-1 and peptide-YY, J. Med. Food 10 (2007) 720-724. http://doi.org/10.1089/jmf.2007.405.

[47]

S. Manning, R.L. Batterham, The role of gut hormone peptide YY in energy and glucose homeostasis: twelve years on, Annu. Rev. Physiol. 76 (2014) 585-608. http://doi.org/10.1146/annurev-physiol-021113-170404.

[48]

L.J. Karhunen, K.R. Juvonen, S.M. Flander, et al., A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults, J. Nutr. 140 (2010) 737-744. http://doi.org/10.3945/jn.109.115436.

[49]

S.H. Duncan, G.E. Lobley, G. Holtrop, et al., Human colonic microbiota associated with diet, obesity and weight loss, Int. J. Obesit. 32 (2008) 1720-1724. http://doi.org/10.1038/ijo.2008.155.

[50]

A. Schwiertz, D. Taras, K. Schäfer, et al., Microbiota and SCFA in lean and overweight healthy subjects, Obesity 18 (2010) 190-195. http://doi.org/10.1038/oby.2009.167.

[51]

R.E. Ley, P.J. Turnbaugh, S. Klein, et al., Microbial ecology: human gut microbes associated with obesity, Nature 444 (2006) 1022-1023. http://doi.org/10.1038/4441022.

[52]

M. Rosenbaum, R. Knight, R.L. Leibel, The gut microbiota in human energy homeostasis and obesity, Trends Endocrin. Met. 26 (2015) 493-501. http://doi.org/10.1016/j.tem.2015.07.002.

[53]

D.M. Carlota, E. Amandine, A.W. Judith, et al., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut 65 (2016) 426-436. http://doi.org/10.1136/gutjnl-2014-308778.

[54]

C. Xu, M. Yan, Y. Sun, et al., Prevalence of Helicobacter pylori infection and its relation with body mass index in a Chinese population, Helicobacter 19 (2014) 437-442. http://doi.org/10.1111/hel.12153.

[55]

Y. Kang, Y. Li, Y. Du, et al., Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota, Int. J. Obesity 43 (2019) 1631-1643. http://doi.org/10.1038/s41366-018-0187-x.

[56]

M. Goffredo, K. Mass, E.J. Parks, et al., Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth, J. Clin. Endocr. Metab. 101 (2016) 4367-4376. http://doi.org/10.1210/jc.2016-1797.

[57]

J. Aarnikunnas, N. von Weymarn, K. Rönnholm, et al., Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate, Biotechnol. Bioeng. 82 (2003) 653-663. http://doi.org/10.1002/bit.10615.

[58]

J. Wang, H. Tang, C. Zhang, et al., Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice, ISME J. 9 (2015) 1-15. http://doi.org/10.1038/ismej.2014.99.

[59]

Y. Wan, F. Wang, J. Yuan, et al., Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial, Gut 68 (2019) 1417-1429. http://doi.org/10.1136/gutjnl-2018-317609.

[60]

S. Hooda, B.M.V. Boler, M.C.R. Serao, et al., 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber, J. Nutr. 142 (2012) 1259-1261. http://doi.org/10.3945/jn.112.158766.

[61]

X. Zhang, Y. Zhao, M. Zhang, et al., Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats, PLoS One 7 (2012) e42529. http://doi.org/10.1371/journal.pone.0042529.

[62]

A.L. Gould, V. Zhang, L. Lamberti, et al., Microbiome interactions shape host fitness, P. National Acad. Sci. 115 (2018) 11951-11960. http://doi.org/10.1073/pnas.1809349115.

[63]

Y. Deng, Y.H. Jiang, Y. Yang, et al., Molecular ecological network analyses, BMC Bioinformatics 13 (2012) 113. http://doi.org/10.1186/1471-2105-13-113.

[64]

J. Miyamoto, M. Igarashi, K. Watanabe, et al., Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids, Nat. Commun. 10 (2019) 1-15. http://doi.org/10.1038/s41467-019-11978-0.

[65]

G. Li, C. Xie, S. Lu, et al., Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota, Cell Metab. 26 (2017) 672-685. http://doi.org/10.1016/j.cmet.2017.08.019.

[66]

M.E.J. Lean, D. Malkova, Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?, Int. J. Obesity 40 (2015) 622-632. http://doi.org/10.1038/ijo.2015.220.

[67]

R.A. DeFronzo, J.B. Buse, T. Kim, et al., Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials, Diabetologia 59 (2016) 1645-1654. http://doi.org/10.1007/s00125-016-3992-6.

[68]

J.B. Hjerpsted, A. Flint, A. Brooks, et al., Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity, Diabetes Obes. Metab. 20 (2017) 610-619. http://doi.org/10.1111/dom.13120.

[69]

C.H. Emilien, W.H. Hsu, J.H. Hollis, The effect of soluble fiber dextrin on subjective and physiological markers of appetite: a randomized trial, Nutrients 12 (2020) 3341. http://doi.org/10.3390/nu12113341.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 December 2020
Revised: 29 January 2021
Accepted: 31 January 2021
Published: 11 September 2021
Issue date: January 2022

Copyright

© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgements

This research was funded by National Key R & D Program of China (grant number 2018YFC0311201), and China Postdoctoral Science Foundation (No.2020M672147).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return