AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (456.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Structural characterization of oligosaccharide from Spirulina platensis and its effect on the faecal microbiota in vitro

Bingna Caia,b,1Xiangxi Yic,1Qian HancJianyu Pana,dHua Chena,bHuili SunaPeng Wana,d( )
Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 Guangdong, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 Guangdong, China
School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200 Guangxi, China
Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510000 Guangdong, China

1 These authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

In the present study, an oligosaccharide SPO-1 from Spirulina platensis was prepared by glycosidase from a marine bacterium. The prebiotic activity of SPO-1 on the growth of Lactobacillus paracasei and Bifidobacterium animalis, and its effect on human gut microbiota were examined in vitro. The molecular weight of the tetrasaccharide SPO-1 was 650.2 Da, and it was mainly composed of glucose with α-type glycosidic linkages. The prebiotic activity score of SPO-1 was the highest for the growth of probiotic strains L. paracasei and B. animalis. Furthermore, as fermentation proceeded, SPO-1 was gradually degraded and utilized by intestinal bacteria. The results showed that after treatment with SPO-1, carbohydrate consumption and short-chain fatty acids levels were increased, especially those of i-butyric and i-valeric acids. Moreover, SPO-1 significantly promoted the abundance, diversity and composition of gut microbiota, especially stimulating the growth of Bacteroides, Escherichia-Shigella and Megamonas. In addition, the change in intestinal microbiota function predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) after treatment with SPO-1 is mainly related to the terms "carbohydrate metabolism" and "amino acid metabolism". These results suggest that SPO-1 is a potential oligosaccharide in regulation of intestinal microbiota.

References

[1]

Q.S. Shang, H. Jiang, C. Cai, et al., Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: an overview, Carbohyd. Polym. 179 (2018) 173-185. http://dx.doi.org/10.1016/j.carbpol.2017.09.059.

[2]

R. Valcheva, L.A. Dieleman, Prebiotics: definition and protective mechanisms, Best Pract. Res. Cl. Ga. 30 (2016) 27-37. http://dx.doi.org/10.1016/j.bpg.2016.02.008.

[3]

M.P.L. Guarino, A. Altomare, S. Emerenziani, et al., Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults, Nutrients 12 (2020) 1037. https://doi.org/10.3390/nu12041037.

[4]

F.J. Moreno, N. Corzo, A. Montilla, et al., Current state and latest advances in the concept production and functionality of prebiotic oligosaccharides, Curr. Opin. Food Sci. 13 (2017) 50-55. http://dx.doi.org/10.1016/j.cofs.2017.02.009.

[5]

R.R.R. Sardari, E.N. Karlsson, Marine poly- and oligosaccharides as prebiotics, J. Agr. Food Chem. 66(2018) 11544-11549. http://dx.doi.org/10.1021/acs.jafc.8b04418.

[6]

A. Lopez-Santamarina, J.M. Miranda, A.D. Mondragon, et al., Potential use of marine seaweeds as prebiotics: a review, Molecules 25 (2020) 1004. http://dx.doi.org/10.3390/molecules25041004.

[7]

M. Asadpoor, C. Peeters, P.A.J. Henricks, et al., Anti-pathogenic functions of non-digestible oligosaccharides in vitro, Nutrients 12 (2020) 1789. https://doi.org/10.3390/nu12061789.

[8]

X. Zhang, J.J. Aweya, Z.X. Huang, et al., In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human faecal inocula and its impact on microbiota, Carbohyd. Polym. 234 (2020) 867-871. http://dx.doi.org/10.1016/j.carbpol.2020.115894.

[9]

Y. Wang, F. Han, B. Hu, et al., In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate, Nutr. Res. 26 (2006) 597-603. http://dx.doi.org/10.1016/j.carbpol.2020.115894.

[10]

J. Liu, S.Q. Yang, X.T. Li, et al., Alginate oligosaccharides: production, biological activities, and potential applications, Compr. Rev. Food Sci. F. 18 (2019) 1859-1881. http://dx.doi.org/10.1111/1541-4337.12494.

[11]

D.D. Gurpilhares, L.P. Cinelli, N.K. Simas, et al., Marine prebiotics: polysaccharides and oligosaccharides obtained by using microbial enzymes, Food Chem. 280 (2019) 175-186. http://dx.doi.org/10.1016/j.foodchem.2018.12.023.

[12]

M.F.D. Raposo, A.M.M.B. de Morais, R.M.S.C. de Morails, Emergent sources of prebiotics: seaweeds and microalgae, Mar. Drugs 14 (2016) 27. https://doi.org/10.3390/md14020027.

[13]

Q.H. Wu, L. Liu, A. Miron, et al., The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview, Arch. Toxicol. 90 (2016) 1817-1840. https://doi.org/10.1007/s00204-016-1744-5.

[14]

F.Y.F. Hernandez, S. Khandual, I.G.R. Lopez, Cytotoxic effect of Spirulina platensis extracts on human acute leukemia Kasumi-1 and chronic myelogenous leukemia K-562 cell lines, Asian Pac. J. Trop. Bio. 7 (2017) 14-19. https://doi.org/10.1016/j.apjtb.2016.10.011.

[15]

P. Rajasekar, S. Palanisamy, R. Anjali, et al., Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: in vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance, Int. J. Biol. Macromol. 141 (2019) 809-821. http://dx.doi.org/10.1016/j.ijbiomac.2019.09.024.

[16]

A. Kulshreshtha, J.A. Zacharia, U. Jarouliya, et al., Spirulina in health care management, Curr. Pharm. Biotechno. 9 (2008) 400-405. http://dx.doi.org/10.2174/138920108785915111.

[17]

H.P. Chen, F. Zeng, S.M. Li, et al., Spirulina active substance mediated gut microbes improve lipid metabolism in high-fat diet fed rats, J. Funct. Foods 59 (2019) 215-222. http://dx.doi.org/10.1016/j.jff.2019.04.049.

[18]

H.T. Ma, H.Y. Xiong, X.L. Zhu, et al., Polysaccharide from Spirulina platensis ameliorates diphenoxylate-induced constipation symptoms in mice, Int. J. Biol. Macromol. 133 (2019) 1090-1101. https://doi.org/10.1016/j.ijbiomac.2019.04.209.

[19]

F. Kurb, V. Samavati, Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity, Int. J. Biol. Macromol. 74 (2015) 498-506. https://doi.org/10.1016/j.ijbiomac.2015.01.005.

[20]

J. Huebner, R.L. Wehling, R.W. Hutkins, Functional activity of commercial prebiotics, Int. Dairy J. 17 (2007) 770-775. http://dx.doi.org/10.1016/j.idairyj.2006.10.006.

[21]

S. Affes, I. Aranaz, M. Hamdi, et al., Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan, Int. J. Biol. Macromol. 139 (2019) 558-569. http://dx.doi.org/10.1016/j.ijbiomac.2019.07.116.

[22]

T. Di, G.J. Chen, Y. Sun, et al., In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human faecal microbiota of sulfated polysaccharides from Gracilaria rubra, J. Funct. Foods 40 (2018) 18-27. http://dx.doi.org/10.1016/j.jff.2017.10.040.

[23]

F. Bianchi, M. Dall'Asta, D. Del Rio, et al., Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation, Food Chem. 129 (2011) 200-205. http://dx.doi.org/10.1016/j.foodchem.2011.04.022.

[24]

H.S. Wang, P.F. Ren, L. Mang, et al., In vitro fermentation of novel microwave-synthesized non-digestible oligosaccharides and their impact on the composition and metabolites of human gut microbiota, J. Funct. Foods 55 (2019) 156-166. http://dx.doi.org/10.1016/j.jff.2019.02.030.

[25]

Q. Wang, G.M. Garrity, J.M. Tiedje, et al., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microb. 73 (2007) 5261−5267. http://doi.org/10.1128/AEM.00062-07.

[26]

M. Kanehisa, S. Goto, Y. Sato, et al., KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res. 40 (2012) D109−D114, http://dx.doi.org/10.1093/nar/gkr988.

[27]

C.S. Wang, D.W. Zhang, M.L. Zhang, et al., Structural characterization of a novel oligosaccharide from Achyranthes bidentata and its anti-osteoporosis activities, Ind. Crop Prod. 108 (2017) 458−469, http://dx.doi.org/10.1016/j.indcrop.2017.07.018.

[28]

H.Q. Sun, W.W. Song, L.J. Zhang, et al., Structural characterization and inhibition on α-glucosidase of a novel oligosaccharide from barley malt, J. Cereal. Sci. 28 (2018) 82-93. http://dx.doi.org/10.1016/j.jcs.2018.05.009.

[29]

C. Altona, C.A.G. Haasnoot, Prediction of anti and gauche vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings, Org. Magn. Reson. 13 (1980) 417-429. http://doi.org/10.1002/mrc.12701306061980.

[30]

W.T. Tian, X.W. Zhang, H.P. Liu, et al., Structural characterization of an acid polysaccharide from Pinellia ternate and its induction effect on apoptosis of Hep G2 cells, Int. J. Biol. Macromol. 153 (2020) 451-460. https://doi.org/10.1016/j.ijbiomac.2020.02.219.

[31]

H.D. Holscher, Dietary fiber and prebiotics and the gastrointestinal microbiota, Gut Microbes 8 (2017) 172-184. http://dx.doi.org/10.1080/19490976.2017.1290756.

[32]

P.P. Jutur, A.A. Nesamma, K.M. Shaikh, Algae-derived marine oligosaccharides and their biological applications, Front. Mar. Sci. 3 (2016) NUSP83. http://dx.doi.org/10.3389/fmars.2016.00083.

[33]

K. Gerasimidis, K. Bryden, X.F. Chen, et al., The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity, Eur. J. Nutr. 59 (2019) 3213-3230. http://dx.doi.org/10.1007/s00394-019-02161-8.

[34]

J.J. Mou, Q. Li, W.W. Shi, et al., Chain conformation, physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus and its in vitro fermentation by human gut microbiota, Carbohyd. Polym. 228 (2020) UNSP115359. https://doi.org/10.1016/j.carbpol.2019.115359.

[35]

S.A. Badi, A. Moshiri, F.E. Marvasti, et al., Extraction and evaluation of outer membrane vesicles from two important gut microbiota members, Bacteroids fragilis and Bacteroides thetaiotaomicron, Cell J. 22 (2020) 344−349, http://doi.org/10.22074/cellj.2020.6499.

[36]

K.E. Deering, A. Devine, T.A. Q'Sullivan, et al., Characterizing the composition of the pediatric gut microbiome: a systematic review, Nutrients 12 (2020) 16. http://dx.doi.org/10.3390/nu12010016.

[37]

M.E. Sanders, D.J. Merenstein, G. Reid, et al., Probiotics and prebiotics in intestinal health and disease: from biology to the clinic, Nat. Rev. Gastro. Hepat. 16 (2019) 605-616. http://dx.doi.org/10.1038/s41575-019-0173-3.

[38]

Y. Cai, J. Folkerts, G. Folkerts, et al., Microbiota-dependent and independent effects of dietary fibre on human health, Brit. J. Pharmacol. 177 (2019) 1363-1381. http://dx.doi.org/10.1111/bph.14871.

[39]

S. O'Connor, S. Chouinard-Castonguay, C. Gagnon et al., Prebiotics in the management of components of the metabolic syndrome, Maturitas 104 (2017) 11-18. http://dx.doi.org/10.1016/j.maturitas.2017.07.005.

Food Science and Human Wellness
Pages 109-118
Cite this article:
Cai B, Yi X, Han Q, et al. Structural characterization of oligosaccharide from Spirulina platensis and its effect on the faecal microbiota in vitro. Food Science and Human Wellness, 2022, 11(1): 109-118. https://doi.org/10.1016/j.fshw.2021.07.012

619

Views

45

Downloads

18

Crossref

17

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 22 July 2020
Revised: 24 September 2020
Accepted: 08 October 2020
Published: 11 September 2021
© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return