Journal Home > Volume 11 , Issue 1

Inflammatory bowel disease (IBD) is a chronic inflammatory lesion of the intestine, mainly manifested by infiltration of intestinal inflammatory cells and imbalance of gut microbiota. Conventional treatments for IBD include antibiotics, immunosuppressive agents, 5-aminosalicylic acid, steroids and surgery, which have high toxic side effects. Resveratrol is a natural polyphenol, and its various derivatives have anti-oxidation and anti-inflammatory properties. In this paper, we comprehensively review the mechanism of resveratrol and its derivates to alleviate IBD by improving intestinal barrier, regulating the unbalanced gut microbiota, and targeting various inflammatory signaling pathways.


menu
Abstract
Full text
Outline
About this article

Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways

Show Author's information Ming LiPing LiRongxue TangHui Lu( )
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory lesion of the intestine, mainly manifested by infiltration of intestinal inflammatory cells and imbalance of gut microbiota. Conventional treatments for IBD include antibiotics, immunosuppressive agents, 5-aminosalicylic acid, steroids and surgery, which have high toxic side effects. Resveratrol is a natural polyphenol, and its various derivatives have anti-oxidation and anti-inflammatory properties. In this paper, we comprehensively review the mechanism of resveratrol and its derivates to alleviate IBD by improving intestinal barrier, regulating the unbalanced gut microbiota, and targeting various inflammatory signaling pathways.

Keywords: Gut microbiota, Resveratrol, Inflammatory bowel disease, Intestinal barrier, Inflammatory signaling pathways

References(98)

[1]

G.P. Ramos, K.A. Papadakis, Mechanisms of disease: inflammatory bowel diseases, Mayo. Clin. Proc. 94 (2019) 155-165. https://doi.org/10.1016/j.mayocp.2018.09.013.

[2]

S.C. Ng, H.Y. Shi, N. Hamidi, et al., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies, Lancet 390 (2017) 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0.

[3]

F. Sanchez-Munoz, A. Dominguez-Lopez, J.K. Yamamoto-Furusho, Role of cytokines in inflammatory bowel disease, World J. Gastroenterol. 14 (2008) 4280-4288. https://doi.org/10.3748/wjg.14.4280.

[4]

M. Eisenstein, Biology: a slow-motion epidemic, Nature 540 (2016) S98-S99. https://doi.org/10.1038/540S98a.

[5]

C. Williams, R. Panaccione, S. Ghosh, et al., Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease, Therap. Adv. Gastroenterol. 4 (2011) 237-248. https://doi.org/10.1177/1756283X11405250.

[6]

P.M. Irving, R.B. Gearry, M.P. Sparrow, et al., Appropriate use of corticosteroids in Crohn's disease, Aliment. Pharmacol. Ther. 26 (2007) 313-329. https://doi.org/10.1111/j.1365-2036.2007.03379.x.

[7]

G. D'Haens, Anti-TNF therapy for Crohn's disease, Curr. Pharm. Des. 9 (2003) 289-294.

[8]

J.N. Clough, O.S. Omer, S. Tasker, et al., Regulatory T-cell therapy in Crohn's disease: challenges and advances, Gut 69 (2020) 942-952. https://doi.org/10.1136/gutjnl-2019-319850.

[9]

M.S. Drutskaya, G.A. Efimov, A.A. Kruglov, et al., Can we design a better anti-cytokine therapy? J. Leukocyte Biol. 102 (2017) 783-790. https://doi.org/10.1189/jlb.3MA0117-025R.

[10]

N.E. Duran, D.W. Hommes, Stem cell-based therapies in inflammatory bowel disease: promises and pitfalls, Therap. Adv. Gastroenterol. 9 (2016) 533-547. https://doi.org/10.1177/1756283X16642190.

[11]

Q. Li, X. Ding, K. Liu, et al., Fecal microbiota transplantation for ulcerative colitis: the optimum timing and gut microbiota as predictors for long-term clinical outcomes, Clin. Transl. Gastroenterol. 11 (2020) e00224. https://doi.org/10.14309/ctg.0000000000000224.

[12]

L. Kong, J. Lloyd-Price, T. Vatanen, et al., Linking strain engraftment in fecal microbiota transplantation with maintenance of remission in Crohn's disease, Gastroenterology 159 (2020) 2193-2202. https://doi.org/10.1053/j.gastro.2020.08.045.

[13]

G. Bevivino, G. Monteleone, Advances in understanding the role of cytokines in inflammatory bowel disease, Expert Rev. Gastroenterol Hepatol. 12 (2018) 907-915. https://doi.org/10.1080/17474124.2018.1503053.

[14]

N. Benech, H. Sokol, Fecal microbiota transplantation in gastrointestinal disorders: time for precision medicine, Genome. Med. 12 (2020) 1-4. https://doi.org/10.1186/s13073-020-00757-y.

[15]

S. Shao, D. Wang, W. Zheng, et al., A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors, Int. Immunopharmacol. 71(2019) 411-422. https://doi.org/10.1016/j.intimp.2019.02.038.

[16]

J. Tong, J. Gao, Q. Liu, et al., Resveratrol derivative excited postsynaptic potentiation specifically via PKCβ-NMDA receptor mediation, Pharmacol. Res. 152 (2020) 104618. https://doi.org/10.1016/j.phrs.2019.104618.

[17]

M.J. Banez, M.I. Geluz, A. Chandra, et al., A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health, Nutr. Res. 78 (2020) 11-26. https://doi.org/10.1016/j.nutres.2020.03.002.

[18]

J. Wang, Z. Zhang, A. Fang, et al., Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1, Biol. Pharm. Bull. 43 (2020) 450-457. https://doi.org/10.1248/bpb.b19-00786.

[19]

M. Samsami-kor, N.E. Daryani, P.R. Asl, et al., Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study, Arch. Med. Res. 46 (2015) 280-285. https://doi.org/10.1016/j.arcmed.2015.05.005.

[20]

M. Samsami-kor, N.E. Daryani, P.R. Asl, et al., Resveratrol supplementation and oxidative/anti-oxidative status in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study, Arch. Med. Res. 47 (2016) 304-309. https://doi.org/10.1016/j.arcmed.2016.07.003.

[21]

J. Yao, J.Y. Wang, L. Liu, et al., Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis, Arch. Med. Res. 41 (2010) 288-294. https://doi.org/10.1016/j.arcmed.2010.05.002.

[22]

G. Yildiz, Y. Yildiz, P. Ulutas, et al., Resveratrol pretreatment ameliorates TNBS colitis in rats, Recent Pat. Endocr. Metab. Immune Drug Discovery 9 (2015) 134-140. https://doi.org/10.2174/1872214809666150806105737.

[23]

S. Nunes, F. Danesi, D. Del Rio, et al., Resveratrol and inflammatory bowel disease: the evidence so far, Nutr. Res. Rev. 31 (2018) 85-97. https://doi.org/10.1017/S095442241700021X.

[24]

W. Pei, S. Shengmin, Metabolism and pharmacokinetics of resveratrol and pterostilbene, BioFactors 44 (2018) 16-25. https://doi.org/10.1002/biof.1410.

[25]

M. Miksits, A. Maier-Salamon, S. Aust, et al., Sulfation of resveratrol in human liver: evidence of a major role for the sulfotransferases SULT1A1 and SULT1E1, Xenobiotica 35(2005) 1101-1119. https://doi.org/10.1080/00498250500354253.

[26]

M. Urpi-Sarda, R. Zamora-Ros, R. Lamuela-Raventos, et al., HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans, Clin. Chem. 53 (2007) 292-299. https://doi.org/10.1373/clinchem.2006.071936.

[27]

U. Etxeberria, N. Arias, N. Boque, et al., Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry, Food Funct. 6 (2015) 2758-2767. https://doi.org/10.1039/C5FO00473J.

[28]

L.M. Bode, D. Bunzel, M. Huch, et al., In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota, Am. J. Clin. Nutr. 97 (2013) 295-309. https://doi.org/10.3945/ajcn.112.049379.

[29]

C.M. Jung, T.M. Heinze, L.K. Schnackenberg, et al., Interaction of dietary resveratrol with animal-associated bacteria, FEMS Microbiol Lett. 297 (2009) 266-273. https://doi.org/10.1111/j.1574-6968.2009.01691.x.

[30]

G.P. Ramos, K.A. Papadakis, Mechanisms of disease: inflammatory bowel diseases, Mayo. Clin. Proc. 94 (2019) 155-165. https://doi.org/10.1016/j.mayocp.2018.09.013.

[31]

F.D. Chen, T.S. Stappenbeck, Microbiome control of innate reactivity, Curr. Opin. Immunol. 56 (2019) 107-113. https://doi.org/10.1016/j.coi.2018.12.003.

[32]

S. Jing, S. Xiao, L. Yi, et al., Therapeutic potential to modify the mucus barrier in inflammatory bowel disease, Nutrients 8 (2016) 44. https://doi.org/10.3390/nu8010044.

[33]

M.C. Visschedijk, R. Alberts, S. Mucha, et al., Pooled resequencing of 122 ulcerative colitis genes in a large Dutch cohort suggests population-specific associations of rare variants in MUC2, PLoS One 11 (2016) 1-15. https://doi.org/10.1371/journal.pone.0159609.

[34]

D. Hwang, H. Jo, S.H. Ma, et al., Oxyresveratrol stimulates mucin production in an NAD+-dependent manner in human intestinal goblet cells, Food Chem. Toxicol. 118 (2018) 880-888. https://doi.org/10.1016/j.fct.2018.06.039.

[35]

S. He, L. Chen, Y. He, et al., Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers, Anim. Prod. Sci. (2020). https://doi.org/10.1071/AN19218.

[36]

N. Wang, Q. Han, G. Wang, et al., Resveratrol protects oxidative stress-induced intestinal epithelial barrier dysfunction by upregulating heme oxygenase-1 expression, Dig. Dis. Sci. 61 (2016) 2522-2534. https://doi.org/10.1007/s10620-016-4184-4.

[37]

S. Yin, H. Yang, Y. Tao, et al., Artesunate ameliorates DSS-induced ulcerative colitis by protecting intestinal barrier and inhibiting inflammatory response, Inflammation 43 (2020) 1-12. https://doi.org/10.1007/s10753-019-01164-1.

[38]

R. Pittayanon, J.T. Lau, G.I. Leontiadis, et al., Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review, Gastroenterology 158 (2020) 930-946. https://doi.org/10.1053/j.gastro.2019.11.294.

[39]

F. Imhann, A.V. Vila, M.J. Bonder, et al., Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease, Gut 67 (2016) 108-119. http://dx.doi.org/10.1136/gutjnl-2016-312135.

[40]

I. Ahmed, B.C. Roy, S.A. Khan, et al., Microbiome, metabolome and inflammatory bowel disease, Microorganisms 4 (2016) 20. https://doi.org/10.3390/microorganisms4020020.

[41]

M.T. Henke, D.J. Kenny, C.D. Cassilly, et al., Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 12672-12677. https://doi.org/10.1073/pnas.1904099116.

[42]

J.E. Axelrad, O. Olén, J. Askling, et al., Gastrointestinal infection increases odds of inflammatory bowel disease in a nationwide case–control study, Clin. Gastroenterol. Hepatol. 17 (2019) 1311-1322. https://doi.org/10.1016/j.cgh.2018.09.034.

[43]

C. Rodríguez, E. Romero, L. Garrido-Sanchez, et al., Microbiota insights in Clostridium difficile infection and inflammatory bowel disease, Gut Microbes. 12 (2020) 1-25. https://doi.org/10.1080/19490976.2020.1725220.

[44]

K. Atarashi, T. Tanoue, K. Oshima, et al., Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota, Nature 500 (2013) 232-236. https://doi.org/10.1038/nature12331.

[45]

D.N. Frank, A.L.S. Amand, R.A. Feldman, et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 13780-13785. https://doi.org/10.1073/pnas.0706625104.

[46]

K. Takahashi, A. Nishida, T. Fujimoto, et al., Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease, Digestion 93(2016)174-174. https://doi.org/10.1159/000441768.

[47]

I. Kushkevych, D. Dordević, M. Vítězová, Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development, J. Adv. Res. 27 (2021) 71-78. https://doi.org/10.1016/j.jare.2020.03.007.

[48]

M. Larrosa, M.J. Yanez-Gascon, M.V. Selma, et al., Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model, J. Agric. Food Chem. 57 (2009) 2211-2220. https://doi.org/10.1021/jf803638d.

[49]

Selma. M.V, M. Larrosa, D. Beltran, et al., Resveratrol and some glucosyl, glucosylacyl, and glucuronide derivatives reduce Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes scott a adhesion to colonic epithelial cell lines, J. Agric. Food Chem. 60 (2012) 7367-7374. ttps://doi.org/10.1021/jf203967u.

[50]

Z.D. Gan, W.Y. Wei, Y. Li, et al., Curcumin and resveratrol regulate intestinal bacteria and alleviate intestinal inflammation in weaned piglets, Molecules 24 (2019) 1220. https://doi.org/10.3390/molecules24071220.

[51]

A. Cannatelli, S. Principato, O.L. Colavecchio, et al., Synergistic activity of colistin in combination with resveratrol against colistin-resistant gramnegative pathogens, Front Microbiol. 9 (2018) 1808. https://doi.org/10.3389/fmicb.2018.01808.

[52]

C.L. Campbell, R.Q. Yu, F.Z. Li, et al., Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice, Diabetes Metab. Syndr. Obes. 12 (2019) 97-107. https://doi.org/10.2147/DMSO.S192228.

[53]

J. Al Azzaz, A. Rieu, V. Aires, et al., Resveratrol-induced xenophagy promotes intracellular bacteria clearance in intestinal epithelial cells and macrophages, Front Immunol. 9 (2019) 3149. https://doi.org/10.3389/fimmu.2018.03149.

[54]

F. Li, Y. Han, X. Cai, et al., Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice, Food Funct. 11 (2020) 1063-1073. https://doi.org/10.1039/C9FO01519A.

[55]

H.R. Alrafas, P.B. Busbee, M. Nagarkatti, et al., Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells, J. Leukoc. Biol. 106 (2019) 467-480. https://doi.org/10.1002/JLB.3A1218-476RR.

[56]

M. Chen, P. Hou, M. Zhou, et al., Resveratrol attenuates high-fat diet-induced non-alcoholic steatohepatitis by maintaining gut barrier integrity and inhibiting gut inflammation through regulation of the endocannabinoid system, Clin. Nutr. 39 (2019) 1264-1275. https://doi.org/10.1016/j.clnu.2019.05.020.

[57]

M.J. Jung, J. Lee, N.R. Shin, et al., Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice, Sci. Rep. 6 (2016) 1-10. https://doi.org/10.1038/srep30887.

[58]

M.M. Heimesaat, S. Mousavi, U. Escher, et al., Resveratrol alleviates acute Campylobacter jejuni induced enterocolitis in a preclinical murine intervention study, Microorganisms 8 (2020) 1858. https://doi.org/10.3390/microorganisms8121858.

[59]

L. Huang, M. Shen, G.A. Morris, et al., Sulfated polysaccharides: immunomodulation and signaling mechanisms, Trends Food Sci. Technol. 92 (2019) 1-11. https://doi.org/10.1016/j.tifs.2019.08.008.

[60]

K.A. Fitzgerald, J.C. Kagan, Toll-like receptors and the control of immunity, Cell 180 (2020) 104-1066. https://doi.org/10.1016/j.cell.2020.02.041.

[61]

T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: update on toll-like receptors, Nat. Immunol. 11 (2010) 373-384. https://doi.org/10.1038/ni.1863.

[62]

M.A. Panaro, V. Carofiglio, A. Acquafredda, et al., Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells, Br. J. Nutr. 108 (2012) 1623-1632. https://doi.org/10.1017/S0007114511007227.

[63]

G. Wang, Z. Hu, Q. Fu, et al., Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade, Sci. Rep. 7 (2017) 45006. https://doi.org/10.1038/srep45006.

[64]

M.H. Sung, S. Regot, Understanding immunobiology through the specificity of NF-κB, Front. Immunol. 11 (2020). https://doi.org/10.3389/fimmu.2020.00059.

[65]

T. Liu, L. Zhang, D. Joo, et al., NF-κB signaling in inflammation, Signal. Transduct. Target Ther. 2 (2017) 1-9. https://doi.org/10.1038/sigtrans.2017.23.

[66]

N. Yahfoufi, N. Alsadi, M. Jambi, et al., The immunomodulatory and anti-inflammatory role of polyphenols, Nutrients 10 (2018) 1618. https://doi.org/10.3390/nu10111618.

[67]

H. Capiralla, V. Vingtdeux, H. Zhao, et al., Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade, J. Neurochem. 120 (2012) 461-472. https://doi.org/10.1111/j.1471-4159.2011.07594.x.

[68]

J. Youn, J.S. Lee, H.K. Na, et al., Resveratrol and piceatannol inhibit iNOS expression and NF-κB activation in dextran sulfate sodium-induced mouse colitis, Nutr. Cancer 61 (2009) 847-854. https://doi.org/10.1080/01635580903285072.

[69]

M. Samsami-kor, N.E. Daryani, P.R. Asl, et al., Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study, Arch. Med. Res. 46 (2015) 280-285. https://doi.org/10.1016/j.arcmed.2015.05.005.

[70]

T. Wada, J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation, Oncogene 23 (2004) 2838-2849. https://doi.org/10.1038/sj.onc.1207556.

[71]

S. Sánchez-Fidalgo, A. Cárdeno, I. Villegas, et al., Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice, Eur. J. Pharmacol. 633 (2010) 78-84. https://doi.org/10.1016/j.ejphar.2010.01.025.

[72]

S.Y. Choi, Z.H. Piao, L. Jin, et al., Piceatannol attenuates renal fibrosis induced by unilateral ureteral obstruction via downregulation of histone deacetylase 4/5 or p38-MAPK signaling, PLoS One 11 (2016) 1-21. https://doi.org/10.1371/journal.pone.0167340.

[73]

C. Santangelo, R. Varì, B. Scazzocchio, et al., Polyphenols, intracellular signalling and inflammation, Ann. Ist. Super Sanita 43 (2007) 394-405.

[74]

O.K. Radwan, R.F. Ahmed, Amendment effect of resveratrol on diclofenac idiosyncratic toxicity: augmentation of the anti-inflammatory effect by assessment of arachidonic acid and IL-1β levels, J. Appl. Pharm. Sci. 6 (2016) 170-177. https://doi.org/10.7324/JAPS.2016.601224.

[75]

A.R. Martín, I. Villegas, C. La Casa, et al., Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats, Biochem. Pharmacol. 67 (2004) 1399-1410. https://doi.org/10.1016/j.bcp.2003.12.024.

[76]

R.R. Ingalls, B.G. Monks, R. Savedra, et al., CD11/CD18 and CD14 share a common lipid A signaling pathway, J. Immunol. 161 (1998) 5413-5420.

[77]

A. Ilchmann, S. Burgdorf, S. Scheurer, et al., Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type Ⅰ and Ⅱ, J. Allergy Clin. Immunol. 125 (2010) 175-183. https://doi.org/10.1016/j.jaci.2009.08.013.

[78]

H.R. Alrafas, P.B. Busbee, K.N. Chitrala, et al., Alterations in the gut microbiome and suppression of histone deacetylases by resveratrol are associated with attenuation of colonic inflammation and protection against colorectal cancer, J. Clin. Med. 9 (2020) 1796. https://doi.org/10.3390/jcm9061796.

[79]

B. Buttari, E. Profumo, L. Segoni, et al., Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis, Oxid. Med. Cell. Longevity (2014) 257543. https://doi.org/10.1155/2014/257543.

[80]

J. Yao, C. Wei, J.Y. Wang, et al., Effect of resveratrol on Treg/Th17 signaling and ulcerative colitis treatment in mice, World J. Gastroenterol. 21 (2015) 6572-6581. https://doi.org/10.3748/wjg.v21.i21.6572.

[81]

D.M. Abdallah, N.R. Ismael, Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats, Can. J. Physiol. Pharmacol. 89 (2011) 811-818. https://doi.org/10.1139/y11-080.

[82]

G. Yildiz, Y. Yildiz, P. A Ulutas, et al., Resveratrol pretreatment ameliorates TNBS colitis in rats, Recent Pat. Endocr. Metab. Immune Drug Discov. 9 (2015) 134-140. https://doi.org/10.2174/1872214809666150806105737.

[83]

H.R. Alrafas, P.B. Busbee, M. Nagarkatti, et al., Resveratrol downregulates miR-31 to promote T regulatory cells during prevention of TNBS-induced colitis, Mol. Nutr. Food Res. 64 (2020) 1900633. https://doi.org/10.1002/mnfr.201900633.

[84]

L. Zhang, H. Xue, G. Zhao, et al., Curcumin and resveratrol suppress dextran sulfate sodium-induced colitis in mice, Mol. Med. Report 19 (2019) 3053-3060. https://doi.org/10.3892/mmr.2019.9974.

[85]

J. Wang, Z. Zhang, A. Fang, et al., Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1, Biol. Pharm. Bull. 43 (2020) 450-457. https://doi.org/10.1248/bpb.b19-00786.

[86]

G.D. Brown, Dectin-1: a signalling non-TLR pattern-recognition receptor, Nat. Rev. Immunol. 6 (2006) 33-43. https://doi.org/10.1038/nri1745.

[87]

D.M. Reid, N.A.R. Gow, G.D. Brown, Pattern recognition: recent insights from Dectin-1, Curr. Opin. Immunol. 21 (2009) 30-37. https://doi.org/10.1016/j.coi.2009.01.003.

[88]

M. Iyori, H. Kataoka, H.M. Shamsul, et al., Resveratrol modulates phagocytosis of bacteria through an NF-kappa B-dependent gene program, Antimicrob. Agents Chemother. 52 (2008) 121-127. https://doi.org/10.1128/aac.00210-07.

[89]

F.M. Davis, K.A. Gallagher, Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease, Arterioscler. Thromb. Vasc. Biol. 39 (2019) 623-634. https://doi.org/10.1161/ATVBAHA.118.312135.

[90]

Z. Liu, C. Jiang, J. Zhang, et al., Resveratrol inhibits inflammation and ameliorates insulin resistant endothelial dysfunction via regulation of AMP-activated protein kinase and sirtuin 1 activities, J. Diabetes 8 (2016) 324-335. https://doi.org/10.1111/1753-0407.12296.

[91]

H.J. Lee, M.G. Kang, H.Y. Cha, et al., Effects of piceatannol and resveratrol on sirtuins and hepatic inflammation in high-fat diet-fed mice, J. Med. Food 22 (2019) 833-840. https://doi.org/10.1089/jmf.2018.4261.

[92]

K. Pallauf, D. Chin, I. Günther, et al., Resveratrol, lunularin and dihydroresveratrol do not act as caloric restriction mimetics when administered intraperitoneally in mice, Sci. Rep. 9 (2019) 4445. https://doi.org/10.1038/s41598-019-41050-2.

[93]

A. Maugeri, M. Barchitta, M.G. Mazzone, et al., Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation, Int. J. Mol. Sci. 19 (2018) 2118. https://doi.org/10.3390/ijms19072118.

[94]

C. Polytarchou, D.W. Hommes, T. Palumbo, et al., MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice, Gastroenterology 149 (2015) 981-992. https://doi.org/10.1053/j.gastro.2015.05.057.

[95]

H. Li, Z. Jia, A. Li, et al., Resveratrol repressed viability of U251 cells by miR-21 inhibiting of NF-κB pathway, Mol. Cell Biochem. 382 (2013) 137-143. https://doi.org/10.1007/s11010-013-1728-1.

[96]

J. Song, S.Y. Cheon, W. Jung, et al., Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia, Int. J. Mol. Sci. 15 (2014) 15512-15529. https://doi.org/10.3390/ijms150915512.

[97]

N. Benech, H. Sokol, Fecal microbiota transplantation in gastrointestinal disorders: time for precision medicine, Genome. Med. 12 (2020) 1-4. https://doi.org/10.1186/s13073-020-00757-y.

[98]

L.E. Papanicolas, D.L. Gordon, S.L. Wesselingh, et al., Improving risk–benefit in faecal transplantation through microbiome screening, Trends Microbiol. 28 (2020) 331-339. https://doi.org/10.1016/j.tim.2019.12.009.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 July 2020
Revised: 10 January 2021
Accepted: 10 January 2021
Published: 11 September 2021
Issue date: January 2022

Copyright

© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgements

This study was financial supported by the key research and development of general projects of Jiangxi province (20192BBF60026).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return