Journal Home > Volume 10 , Issue 4

Edible fungi are large fungi with high added value that can be utilized as resources. They are rich in high-quality protein, carbohydrate, various vitamins, mineral elements and other nutrients, and are characterized by high protein, low sugar, low fat and low cholesterol. In addition, edible fungi contain a variety of bioactive substances, such as polysaccharides, dietary fiber, steroids, polyphenols, and most of these compounds have antioxidant, anti-tumor and other physiological functions. This review comprehensively discusses the bioactive components and functional characteristics of edible fungi (such as antioxidant, anti-aging, hypolipidemic activities, etc.). Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized. The objective of this review is to improve the understanding of health-promoting properties of edible fungi, and provide reference for the industrial production of edible fungi-based health products.


menu
Abstract
Full text
Outline
About this article

Healthy function and high valued utilization of edible fungi

Show Author's information Yanrong Zhanga,b,1Dawei Wanga,c,1Yuetong Chena,cTingting Liua,bShanshan Zhanga,cHongxiu Fana,cHongcheng Liua,bYu Lid( )
School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China

Peer review under responsibility of KeAi Communications Co., Ltd]]>

Abstract

Edible fungi are large fungi with high added value that can be utilized as resources. They are rich in high-quality protein, carbohydrate, various vitamins, mineral elements and other nutrients, and are characterized by high protein, low sugar, low fat and low cholesterol. In addition, edible fungi contain a variety of bioactive substances, such as polysaccharides, dietary fiber, steroids, polyphenols, and most of these compounds have antioxidant, anti-tumor and other physiological functions. This review comprehensively discusses the bioactive components and functional characteristics of edible fungi (such as antioxidant, anti-aging, hypolipidemic activities, etc.). Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized. The objective of this review is to improve the understanding of health-promoting properties of edible fungi, and provide reference for the industrial production of edible fungi-based health products.

Keywords: Edible fungi, Functional components, Processing and utilization, High valued utilization

References(171)

[1]

M. Zhang, S.W. Cui, P.C.K. Cheung, et al., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity, Trends Food Sci, Technol. 18 (2007) 4-19. https://doi.org/10.1016/j.tifs.2006.07.013.

[2]

D. Meng, P. Zhang, S.M. Li, et al., Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model, J. Funct. Foods. 38 (2017) 36-44. https://doi.org/10.1016/j.jff.2017.08.041.

[3]

A.P. Montes, E. Rangel-Vargas, J.M. Lorenzo, et al., Edible mushrooms as a novel trend in the development of healthier meat products, Curr. Opin. Food Sci. 40 (2021) 118-124. https://doi.org/10.1016/j.cofs.2020.10.004.

[4]

F.M.N.A. Aida, M. Shuhaimi, M. Yazid, et al., Mushroom as a potential source of prebiotics: a review, Trends Food Sci. Tech. 20 (2009) 567-575. https://doi.org/10.1016/j.tifs.2009.07.007.

[5]

P. Gong, S.Y. Wang, M. Liu, et al., Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: a mini-review, Carbohydrate Res. 494 (2020) 108037. https://doi.org/10.1016/j.carres.2020.108037.

[6]

G. Cardwell, J.F. Bornman, A.P. James, et al., A review of mushrooms as a potential source of dietary vitamin D, Nutrients 10 (2018) 1498. https://doi.org/10.3390/nu10101498.

[7]

M. Yang, T. Belwal, H.P. Devkota, et al., Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: a comprehensive review, Trends Food Sci. Technol. 92 (2019) 94-110. https://doi.org/10.1016/j.tifs.2019.08.009.

[8]

J.S. Lohmann, M. Nussbaum, W. Brandt, et al., Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella, Tetrahedron, (2018) 5113-5118. https://doi.org/10.1016/j.tet.2018.06.049.

[9]

B. Chen, S. Wang, G. Liu, et al., Anti-inflammatory diterpenes and steroids from peels of the cultivated edible mushroom Wolfiporia cocos, Phytochem. Lett. 36 (2020) 11-16. https://doi.org/10.1016/j.phytol.2020.01.005.

[10]

Q.X. Yan, M.X. Huang, P. Sun, et al., Steroids, fatty acids and ceramide from the mushroom Stropharia rugosoannulata Farlow apud Murrill, Biochem, Syst. Ecol. 88 (2020) 103963. https://doi.org/10.1016/j.bse.2019.103963.

[11]

N.J. Dubost, B. Ou, R.B. Beelman, Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity, Food Chem. 105 (2007) 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030.

[12]

M. Reverberi, A.A. Fabbri, S. Zjalic, et al., Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production, Appl. Microbiol. Biot. 69 (2005) 207-215. https://doi.org/10.1007/s00253-005-1979-1.

[13]

W. Wang, K. Chen, Q. Liu, et al., Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration, Plos One. 9 (2014) 102673. https://doi.org/10.1371/journal.pone.0102673.

[14]

M.E. Valverde, T. Hernández-Pérez, O. Paredes-López, Edible mushrooms: improving human health and promoting quality life, Int. J. Microbiol. 2015 (2015) 376387. https://doi.org/10.1155/2015/376387.

[15]

R. Khursheed, S.K. Singh, S. Wadhwa, et al., Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides, Int. J. Biol. Macromol. 164 (2020) 1194-1205. https://doi.org/10.1016/j.ijbiomac.2020.07.145.

[16]

E. Guillamón, A. García-Lafuente, M. Lozano, et al., Edible mushrooms: role in the prevention of cardiovascular diseases, Fitoterapia 81(7) (2010) 715-723. https://doi.org/10.1016/j.fitote.2010.06.005.

[17]
Global mushroom market, global mushroom market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2018 to 2026. (2019) Available online from: https://www.fortunebusinessinsights,com/industry-reports/mushroom-market-100197.
[18]

Y.N. Sun, M. Zhang, Z.X. Fang, Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: a review, Trends Food Sci. Tech. 105 (2020) 468-482. https://doi.org/10.1016/j.tifs.2019.02.026.

[19]

A.A. Khan, A. Gani, F.A. Khanday, et al., Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient, Bioact. Carbohydr. Diet. Fibre 16 (2018) 1-13. https://doi.org/10.1016/j.bcdf.2017.12.002.

[20]

P. Chen, Y. Yong, Y. Gu, et al., Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms, Int. J. Med. Mushrooms. 17 (2015) 287-297. https://doi.org/10.1615/IntJMedMushrooms.v17.i3.80.

[21]

W. Zhang, W. Qu, X. Zhang, et al., The anti-hyperglycemic activity of polysaccharides from Tremella aurantialba mycelium, Acta Nutrimenta Sinica 4 (2004) 300-303. https://doi.org/10.1007/BF02911031.

[22]

Y. Zhang, S. Li, X. Wang, et al., Advances in lentinan: isolation, structure, chain conformation and bioactivities, Food Hydrocoll 25 (2011) 196-206. https://doi.org/10.1016/j.foodhyd.2010.02.001.

[23]

Q. Wu, Z. Tan, H. Liu, et al., Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice, Int. J Biol. Macromol. 46 (2010) 284-288. https://doi.org/10.1016/j.ijbiomac.2010.01.016.

[24]

S. Zhang, S. Nie, D. Huang, et al., A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system, J. Agr. Food Chem. 62 (2014) 1581-1589. https://doi.org/10.1021/jf4053012.

[25]

D. Choi, Y. Piao, S.J. Yu, et al., Antihyperglycemic and antioxidant activities of polysaccharide produced from Pleurotus ferulae in streptozotocin-induced diabetic rats, Korean J. Chem. Eng. 33 (2016) 1872-1882. https://doi.org/10.1007/s11814-016-0007-8.

[26]

J.F. Teng, C.H. Lee, T.H. Hsu, et al., Potential activities and mechanisms of extracellular polysaccharopeptides from fermented Trametes versicolor on regulating glucose homeostasis in insulin-resistant HepG2 cells, Plos One. 13 (2018) 1020-1131. https://doi.org/10.1371/journal.pone.0201131.

[27]

J. Wang, C. Wang, S. Li, et al., Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway, Biomed. Pharmacother. 95 (2017) 1669-1677. https://doi.org/10.1016/j.fct.2017.01.007.

[28]

K.H. Lee, S.L. Morris-Natschke, X.M. Yang, et al., Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine, J, Tradit. Complement. Med. 2(2) (2012) 84-95. https://doi.org/10.6219/jtcm.2012.2011020-R.

[29]

H.A. Enshasy, R. Hatti-Kaul, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol. 31 (2013) 668-677. https://doi.org/10.1016/j.tibtech.2013.09.003.

[30]

C. Gründemanna, J.K. Reinhardtb, U. Lindequistc, European medicinal mushrooms: do they have potential for modern medicine?. –An update, Phytomedicine 66 (2020) 153131. https://doi.org/10.1016/j.phymed.2019.153131.

[31]

Y.K. Leong, F.C. Yang, J.S. Chang, Extraction of polysaccharides from edible mushrooms: emerging technologies and recent advances, Carbohyd. Polym. 251 (2021) 117006. https://doi.org/10.1016/j.carbpol.2020.117006.

[32]
F. Liu, V.E.C. Ooi, S.T. Chang, Free radical scavenging activities of mushroom polysaccharide extract, Life Sci. 60(10) (1997) 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0 Get rights and content.
[33]

A. Klaus, M. Kozarski, M. Niksic, et al., Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune, LWT-Food Sci. Technol. 44(10) (2011) 2005-2011. https://doi.org/10.1016/j.lwt.2011.05.010.

[34]

E. Baeva, R. Bleha, E. Lavrova, et al., Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: isolation and structural characterization, Molecules (Basel, Switzerland) 24(15) (2019) 2740. https://doi.org/10.3390/molecules24152740.

[35]

I. Alzorqia, S. Sudheer, T.J. Lu, et al., Ultrasonically extracted β-D-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity, Ultrason, Sonochem. 35 (2017) 531-540. https://doi.org/10.1016/j.ultsonch.2016.04.017.

[36]

A. Gil-Ramirez, F.R. Smiderle, D. Morales, et al., Strengths and weaknesses of the aniline-blue method used to test mushroom (1→3)-β-D-glucans obtained by microwave-assisted extractions, Carbohyd. Polym. 217 (2019) 135-143. https://doi.org/10.1016/j.carbpol.201904051.

[37]

O. Parniakov, N.I. Lebovka, E.V. Hecke, et al., Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus Bisporus), Food Bioprocess Tech. 7 (2014) 174-183. https://doi.org/10.1007/s11947-013-1059-y.

[38]

X.J. Du, Y. Zhang, H.M. Mu, et al., Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantialba, Food Hydrocoll. 43 (2015) 459-464. https://doi.org/10.1016/j.foodhyd.2014.07.004.

[39]

L.H. Fu, Y.P. Wang, J.J. Wang, et al., Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta, Food Funct. 4 (2013) 871-879. https://doi.org/10.1039/c3fo60033e.

[40]

S. Khatua, K. Acharya, Alkaline extractive crude polysaccharide from Russula senecis possesses antioxidant potential and stimulates innate immunity response, J. Pharm. Pharmacol. 69 (2017) 1817-1828. https://doi.org/10.1111/jphp.12813.

[41]

Z. Chen, Y. Tang, A. Liu, et al., Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action, Mol. Nutr. Food Res. 61 (2017) 1700313. https://doi.org/10.1002/mnfr.201700313.

[42]

J. Zhang, G. Meng, G. Zhai, et al., Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum, Int, J. Biol. Macromol. 82 (2016) 432-439. https://doi.org/10.1016/j.ijbiomac.2015.10.016.

[43]

X. Li, Y. Lu, W. Zhang, et al., Antioxidant capacity and cytotoxicity of sulfated polysaccharide TLH-3 from Tricholoma lobayense, Int. J. Biol. Macromol. 82 (2016) 913-919. https://doi.org/10.1016/j.ijbiomac.2015.10.006.

[44]

L.M. Hao, Z.C. Sheng, J. Lu, et al., Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola, Carbohyd. Polym. 141 (2016) 54-59. https://doi.org/10.1016/j.carbpol.2012.02.026.

[45]

S.C. Jeong, S.R. Koyyalamudi, Y.T. Jeong, et al., Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms, J. Med. Food 15 (2012) 58-65. https://doi.org/10.1089/jmf.2011.1704.

[46]

M. Sun, W. Zhao, Q. Xie, et al., Lentinan reduces tumor progression by enhancing gemcitabine chemotherapy in urothelial bladder cancer, Surg. Oncol. 24 (2015) 28-34. https://doi.org/10.1016/j.suronc.2014.11.002.

[47]

M.K. Lemieszek, C. Cardoso, F.H.F.M. Nunes, et al., Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells, Food Funct. 4 (2013) 575-585. https://doi.org/10.1039/c2fo30324h.

[48]

W.T. Chou, I.C. Sheih, T.J. Fang, The applications of polysaccharides from various mushroom wastes as prebiotics in different systems, J. Food Sci. 78 (2013) 1041-1048. https://doi.org/10.1111/1750-3841.12160.

[49]

S. Zhang, S. Nie, D. Huang, et al., A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system, J. Agr. Food Chem. 62 (2014) 1581-1589. https://doi.org/10.1021/jf4053012.

[50]

X. Shi, Y. Zhao, Y. Jiao, et al., ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells, Plos One. 8 (2013) 164-266. https://doi.org/10.1371/journal.pone.0064266.

[51]

S.W. Kim, H.J. Hwang, B.C. Lee, et al., Submerged production and characterization of Grifola frondosa polysaccharides–a new application to cosmeceuticals, Food Technol. Biotech. 45 (2007) 295-305. https://doi.org/10.1517/14712598.7.7.1107.

[52]

Y.O. Kim, S.W. Lee, J.S. Kim, A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease, J. Mushroom 12 (2014) 77-81. https://doi.org/10.14480/JM.2014.12.2.77.

[53]

L. Wen, Q. Gao, C. Ma, et al., Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging, J. Funct. Foods 20 (2016) 400-441. https://doi.org/10.1016/j.jff.2015.11.014.

[54]

Y. Yang, J. Chen, L. Lei, et al., Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage raw 264.7 cells, Food Chem. Toxicol. 125 (2018) 38-45. https://doi.org/10.1016/j.fct.2018.12.036.

[55]

Z.Z. Ren, W.B. Liu, X.L. Song, et al., Antioxidant and anti-inflammation of enzymatic-hydrolysis residue polysaccharides by Lentinula edodes, Int. J. Biol. Macromol. 120 (2018) 811-822. https://doi.org/10.1016/j.ijbiomac.2018.08.114.

[56]

D.M. Wu, W.Q. Duan, Y. Liu, et al., Anti-inflammatory effect of the polysaccharides of golden needle mushroom in burned rats, Int. J. Biol. Macromol. 46 (2010) 100-103. https://doi.org/10.1016/j.ijbiomac.2009.10.013.

[57]

K.I. Minato, L.C. Laan, I.V. Die, et al., Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation, Int. J. Biol. Macromol. 122 (2019) 705-712. https://doi.org/10.1016/j.ijbiomac.2018.10.157.

[58]

S.C. Jeong, S.R. Koyyalamudi, Y.T. Jeong, et al., Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus and white button mushrooms, J. Med. Food. 15 (2012) 58-65. https://doi.org/10.1089/jmf.2011.1704.

[59]

R. Li, J. Zhang, T.H. Zhang, Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells, Food Chem. 340 (2020) 127933. https://doi.org/10.1016/j.foodchem.2020.127933.

[60]

Y. Cui, H. Yan, X. Zhang, Preparation of Lentinula edodes polysaccharidecalcium complex and its immunoactivity, Biosci. Biotech. Bioch. 79 (2015) 1619-1623. https://doi.org/10.1080/09168451.2015.1044930.

[61]

K. Sanjaya, S.M. Mallick, S.K. Bhutia, et al., Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus, J. Med. Food 13 (2010) 665-672. https://doi.org/10.1089/jmf.2009.1300.

[62]

C. Zhang, J. Li, C. Hu, et al., Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice, Sci, Rep. -UK 7 (2017) 10847. https://doi.org/10.1038/s41598-017-11457-w.

[63]

J. Zhang, G. Meng, C. Zhang, et al., The antioxidative effects of acidic-, alkalic-, and enzymatic-extractable mycelium zinc polysaccharides by Pleurotus djamor on liver and kidney of streptozocin-induced diabetic mice, BMC Complem, Altern. M. 15 (2015) 440. https://doi.org/10.1186/s12906-015-0964-1.

[64]

H.T. Ma, J.F. Hsieh, S.T. Chen, Anti-diabetic effects of Ganoderma lucidum, Phytochemistry 114 (2015) 109-113. https://doi.org/10.1016/j.phytochem.2015.02.017.

[65]

C. Xiao, Q. Wu, Y. Xie, et al., Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats, Food Funct. 6 (2015) 3567-3575. https://doi.org/10.1039/c5fo00497g.

[66]

C.K.P. Cheung, Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits, Food Sci. Human Wellness 2 (2013) 162-166. https://doi.org/10.1016/j.fshw.2013.08.001.

[67]

Z.H. Xue, Q.Q. Ma, Y.P. Lu, et al., Structure characterization of soluble dietary fiber fractions from mushroom Lentinula edodes (Berk. ) Pegler and the effects on fermentation and human gut microbiota in vitro, Food Res. Int. 129 (2020) 108870. https://doi.org/10.1016/j.foodres.2019.108870.

[68]

S.V. Reshetnikov, S.P. Wasser, K.K. Tan, Higher basidiomycetes as a source of antitumor and immunostimulating polysaccharides, Int. J. Med. Mushrooms. 3 (2001) 361-394. https://doi.org/10.1615/IntJMedMushr.v3.i4.80.

[69]
P.C.K. Cheung, Nutritional value and health benefits of mushrooms, mushrooms as functional foods, John Wiley & Sons Inc. (2008) 71-110. https://doi.org/10.1002/9780470367285.ch3.
[70]
P.C.K. Cheung, Antitumor and immunomodulatory activities of mushroom polysaccharides, mushrooms as functional foods, John Wiley & Sons Inc. (2009) 147-198. https://doi.org/10.1002/9780470367285.ch5.
[71]

F. Liu, V.E.C. Ooi, S.T. Chang, Free radical scavenging activities of mushroom polysaccharides extracts, Life Sci. 60 (1997) 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0.

[72]

S.P. Wasser, K.K. Tan, V.I. Elisashvilli, Hypoglycemic, interferonogenesis and immunomodulatory activity of Tremellastin from the submerged culture of Tremella mesenterica, Int, J. Med. Mushrooms. 4 (2002) 215-227. https://doi.org/10.1615/IntJMedMushr.v4.i3.40.

[73]

M. Zhang, P.C.K. Cheung, L. Zhang, Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of Pleurotus tuber-regium (fries) singer as a potential antitumor agent, J. Agric. Food Chem. 49 (2001) 5059-5062. https://doi.org/10.1021/jf010228l.

[74]

Z.H. Xue, X. Gao, Y. Jia, et al., Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk. ) Pegler and its interaction mechanism with pancreatic lipase and bile salts, Int. J. Biol. Macromol. 153 (2020) 1281-1290. https://doi.org/10.1016/j.foodres.2019.108870.

[75]

Z.H. Xue, Q.Q. Ma, Q.W. Guo, et al., Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues, Food Biosci. 32 (2019) 100452. https://doi.org/10.1016/j.foodhyd.2019.04.015.

[76]

A. Fernandes, J.C.M. Barreira, A.L. Antonio, et al., Exquisite wild mushrooms as a source of dietary fiber: analysis in electron-beam irradiated samples, LWT-Food Sci. Technol. 60 (2015) 855-859. http://doi.org/10.1016/j.lwt.2014.10.050.

[77]

Z.H. Xue, Y. Chen, Y.N. Jia, et al., Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk. ) Pegler residues, Food Hydrocoll. 95 (2019) 10-18. https://doi.org/10.1016/j.fbio.2019.100452.

[78]

G. Zhang, J. Sun, H. Wang, et al., First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom, Phytomedicine 17(10) (2010) 775-781. https://doi.org/10.1016/j.phymed.2010.02.001.

[79]

P. Paaventhan, S.J. Jeremiah, V.S. See, et al., A 1.7 Å structure of Fve, a member of the new fungal immunomodulatory protein family, J, Mol. Biol. 332 (2003) 461-470. https://doi.org/10.1016/S0022-2836(03)00923-9.

[80]

X.F. Xu, H.D. Yan, J. Chen, et al., Bioactive proteins from mushrooms, Biotechnol. Adv. 29 (2011) 667-674. https://doi.org/10.1016/j.biotechadv.2011.05.003.

[81]

G.Q. Zhang, Y.F. Wang, X.Q. Zhang, et al., Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima, Process Biochem. 45(5) (2010) 627-633. https://doi.org/10.1016/B978-0-12-394309-5.00006-7.

[82]

Q.H. Hu, H.J. Du, G.X. Ma, et al., Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii, Food Funct. 9 (2018) 3764. https://doi.org/10.1039/c8fo00604krsc.li/food-function.

[83]

H.X. Wang, T.B. Ng, Isolation of Pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium, Biochem, Bioph. Res. Co. 288 (2001) 718-721. https://doi.org/10.1006/bbrc.2001.5816.

[84]

G.C.L. Reisa, B.M. Dala-Paula, O.L. Tavano, et al., In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom, Food Res. Int. 137 (2020) 109616. https://doi.org/10.1016/j.foodres.2020.109616.

[85]

S. Beluhan, A. Ranogajec, Chemical composition and non-volatile components of Croatian wild edible mushroom, Food Chem. 124 (2011) 1076-1082. https://doi.org/10.1016/j.foodchem.2010.07.081.

[86]

A.R. Song, L.Z. Guo, Y.C. Zhang, Analysis and comparison of the amino acids in seven white Flammulina velutipes strains, Acta Edulis Fungi 3 (1996) 33-38.

[87]

M. Dong, L. Qin, J. Xue, et al., Simultaneous quantification of free amino acids and 5′-nucleotides inshiitake mushrooms by stable isotope labeling-LC-MS/MS analysis, Food Chem. 268 (2018) 57-65. https://doi.org/10.1016/j.foodchem.2018.06.054.

[88]

M.M. Poojary, V. Orliena, P. Passamonti, et al., Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms, J. Food Compos. Anal. 63 (2017) 171-183. http://doi.org/10.1016/j.jfca.2017.08.004.

[89]

R.P.Z. Furlani, H.T. Godoy, Vitamins B1 and B2 contents in cultivated mushrooms, Food Chem. 106 (2008) 816-819. http://doi.org/10.1016/j.foodchem.2007.06.007.

[90]

C. Chaiyasut, B.S. Sivamaruthi, Anti-hyperglycemic property of Hericium erinaceus–a mini review, Asian Pac. J. Trop. Bio. 7(11) (2017) 1036-1040. https://doi.org/10.1016/j.apjtb.2017.09.024.

[91]

V.J. Jasinghe, C.O. Perera, Ultraviolet irradiation: the generator of vitamin D2 in edible mushrooms, Food Chem. 95 (2006) 638-643. http://doi.org/10.1016/j.ifset.2017.04.008.

[92]

D. Morales, A. Gil-Ramirez, F.R. Smiderle, et al., Vitamin D-enriched extracts obtained from shiitake mushrooms (Lentinula edodes) by supercritical fluid extraction and UV-irradiation, Innov. Food Sci. Emerg. 41 (2017) 330-336. http://doi.org/10.1016/j.ifset.2017.04.008.

[93]

H.Y. Xiong, Q. Song, Investigation on the content of vitamin B1 and B2 in 6 kinds of edible fungi in Yunnan Province, J. Food Saf. Qual. 10 (2019) 7606-7609. https://doi.org/10.1016/j.ifset.2017.04.008.

[94]

P. Ziarati, H. Rabizadeh, Z. Mousavi, et al., The effect of cooking method in potassium, lead and cadmium contents in commonly consumed packaged mushroom (Agaricus bisporus) in Iran, Int, J. Farming and Allied Sci. 2 (2013) 728-733.

[95]

M.V. Dimitrijevic, V.D. Mitic, J.S. Nikolic, et al., First report about mineral content, fatty acids composition and biological activities of four wild edible mushrooms, Chem, Biodiversity. 16 (2019) 1800492. http://doi.org/10.1002/cbdv.201800492.

[96]

A.K. Kojta, J. Falandysz, Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius, Food Chem. 200 (2016) 206-214. http://doi.org/10.1016/j.foodchem.2016.01.006.

[97]

J. Falandysz, J. Borovička, Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks, Appl. Microbiol. Biot. 97 (2013) 477-501. https://doi.org/10.1007/s00253-012-4552-8.

[98]

P. Mattila, K. Könko, M. Eurola, et al., Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms, J, Agric. Food Chem. 49 (2001) 2343-2348. https://doi.org/10.1021/jf001525d.

[99]

J.L. Wang, Y.B. Li, R.M. Liu, et al., A new ganoderic acid from Ganoderma lucidum mycelia, J. Asian Nat. Prod. Res. 12 (2010) 727-730. https://doi.org/10.1080/10286020.2010.493506.

[100]

S.P. Wasser, Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J. 37 (2014) 345-356. https://doi.org/10.4103/2319-4170.138318.

[101]

D.H. Ryu, J.Y. Cho, N.B. Sadiq, et al., Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology, Food Chem. 335 (2021) 127645. https://doi.org/10.1016/j.foodchem.2020.127645.

[102]

Y.B. Li, J.L. Wang, J.J. Zhong, Enhanced recovery of four antitumor ganoderic acids from Ganoderma lucidum mycelia by a novel process of simultaneous extraction and hydrolysis, Process Biochem. 48 (2013) 331-339. http://doi.org/10.1016/j.procbio.2012.12.002.

[103]

Y.I. Yang, J.L. Ren, H. Zhang, Research progress of terpenoids and bioactivities in edible mushroom, Technology of Food Industry 40(1) (2019) 305-309. http://doi.org/10.13386/j.issn1002-0306.2019.01.054.

[104]

E.L. Wang, R.H. He, Determination of adenosine in Lingzhi (Ganoderma lucidum) by HPLC, Strait Pharm. J. 21 (2009) 46-47. http://doi.org/1006-3765(2009)-03-0046-02.

[105]

L. Zhu, S. Wang, Z. Zhang, et al., Dissolution of bioactive components from dried fruiting bodies of the culinary-medicinal shiitake mushroom, Lentinus edodes (Agaricomycetes), during cleaning, soaking, and cooking, Int. J. Med. Mushrooms. 21 (2019) 37-45. http://doi.org/10.1615/IntJMedMushrooms.2018029006.

[106]

F.S.A. Saadeldeen, Y. Niu, H.L. Wang, et al., Natural products: regulating glucose metabolism and improving insulin resistance, Food Sci. Human Wellness 9 (2020) 214-228. https://doi.org/10.1016/j.fshw.2020.04.005.

[107]

M.M. Poojary, V. Orlien, P. Passamonti, et al., Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms, J. Food Compos. Anal. 63 (2017) 171-183. https://doi.org/10.1016/j.jfca.2017.08.004.

[108]

L. Aguirre, J.M. Frias, C. Barry-Ryan, et al., Assessing the effect of product variability on the management of the quality of mushrooms (Agaricus bisporus), Postharvest Biol. Tech. 49 (2008) 247-254. http://doi.org/10.1016/j.postharvbio.2008.01.014.

[109]

C.H. Chou, T.J. Sung, Y.N. Hu, et al., Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation, Int, J. Biol. Macromol. 131 (2019) 1021-1031. http://doi.org/10.1016/j.jfca.2017.08.004.

[110]

D.L. Fang, K.L. Yu, Z.L. Deng, et al., Storage quality and flavor evaluation of Volvariella volvacea packaged with nanocomposite-based packaging material during commercial storage condition, Food Packaging Shelf. 22 (2019) 100412. https://doi.org/10.1016/j.fpsl.2019.100412.

[111]

C.C. Hsieh, C.K. Chang, L.W. Wong, et al., Alternating current electric field inhibits browning of Pleurotus ostreatus via inactivation of oxidative enzymes during postharvest storage, LWT-Food Sci. Technol. 134 (2020) 110212. https://doi.org/10.1016/j.lwt.2020.110212.

[112]

Y.X. Niu, J.M. Yun, Predicting the shelf life of postharvest Flammulina velutipes at various temperatures based on mushroom quality and specific spoilage organisms, Postharvest Biol. Tech. 167 (2020) 111235. https://doi.org/10.1016/j.postharvbio.2020.111235.

[113]

M.K. Roy, S.R. Chatterjee, D. Bahukhandi, et al., Gamma radiation in increasing productivity of Agaricus bisporus and Pleurotus sajor-caju and enhancing storage life of P. sajor-caju, J. Food Tech. - Mysore 37 (2000) 83-86. https://doi.org/10.1016/j.postharvbio.2020.111235.

[114]

E.M. Moda, Shelf-life increase of fresh mushrooms Pleurotus sajor-caju using gamma radiation, Food and Agriculture Organization of the United Nations. 105 (2008) 88-100.

[115]

D.P. Murr, L.L. Morris, Effect of storage atmosphere on post-harvest growth of mushrooms, J. Am. Soc. Hortic. Sci. 100 (1975) 298-301.

[116]

G. Antmann, G. Ares, P. Lema, et al., Influence of modified atmosphere packaging on sensory quality of shiitake mushrooms, Postharvest Biol. Technol. 49 (2008) 164-170. https://doi.org/10.1016/j.postharvbio.2008.01.02.

[117]

F. Tao, M. Zhang, H. Yu, Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions, J. Food Eng. 79 (2007) 1302-1309. https://doi.org/10.1016/j.jfoodeng.2006.04.011.

[118]

G. Ares, C. Lareo, P. Lema, Modified atmosphere packaging for postharvest storage of mushrooms: a review, Global Science Books. 1 (2007) 32-40.

[119]

I. Palacios, C. Moro, M. Lozano, et al., Use of modified atmosphere packing to preserve mushroom quality during storage, Nutr. Agric. 3 (2011) 196-203. https://doi.org/10.2174/2212798411103030196.

[120]

M.J. Galotto, Effect of ozone treatment and storage temperature on physicochemical properties of mushrooms (Agaris bisporus), Food Sci. Technol. Int. 7 (2001) 251-258. https://doi.org/10.1106/6a9r-dkev-adv7-y30x.

[121]

C. Zhao, C. Zhang, Z. Xing, et al., Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: a comprehensive review, Int. J. Biol. Macromol. 121 (2019) 1160-1178. https://doi.org/10.1016/j.ijbiomac.2018.10.076.

[122]

F.S. Reis, A. Martins, M.H. Vasconcelos, et al., Functional foods based on extracts or compounds derived from mushrooms, Int. J. Biol. Macromol. 121 (2019) 1160-1178. https://doi.org/10.1016/j.tifs.2017.05.010.

[123]

M. Haneef, L. Ceseracciu, C. Canale, et al., Advanced materials from fungal mycelium: fabrication and tuning of physical properties, Sci. Rep. -UK 7 (2017) 41292. https://doi.org/10.1038/srep41292.

[124]

H. Rathore, S. Prasad, M. Kapri, et al., Medicinal importance of mushroom mycelium: mechanisms and applications, J. Funct. Foods. 56 (2019) 182-193. https://doi.org/10.1016/j.jff.2019.03.016.

[125]

C.C. Chien, M.L. Tsai, C.C. Chen, et al., Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms, Mycopathologia 166 (2008) 117. https://doi.org/10.1007/s11046-008-9128-x.

[126]

R. Mukhopadhyay, A.K. Guha, A comprehensive analysis of the nutritional quality of edible mushroom Pleurotus sajor-caju grown in deproteinized whey medium, LWT-Food Sci. Technol. 61 (2015) 339-345. https://doi.org/10.1016/j.lwt.2014.12.055.

[127]

E.M. Silva, A. Machuca, A.M.F. Milagres, Evaluating the growth and enzyme production from Lentinula edodes strains, Process Biochem. 40 (2005) 161-164. https://doi.org/10.1016/j.procbio.2003.11.053.

[128]

K. Kim, B. Choi, I. Lee, et al., Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue, J. Sci. Food Agr. 91 (2011) 1561-1568. https://doi.org/10.1002/jsfa.4348.

[129]

H. Rathore, S. Prasad, M. Kapri, et al., Medicinal importance of mushroom mycelium: mechanisms and applications, J. Funct. Foods. 56 (2019) 182-193. https://doi.org/10.1016/j.jff.2019.03.016.

[130]

E. Ulziijargal, J.H. Yang, L.Y. Lin, et al., Quality of bread supplemented with mushroom mycelia, Food Chem. 138 (2013) 70-76. https://doi.org/10.1016/j.foodchem.2012.10.051.

[131]

C. Kustrim, K.C. Akkaya, C. Pohl, et al., Fungi as source for new bio-based materials: a patent review, Fungal Biology & Biotechnology 6 (2019) 17-27. https://doi.org/10.1186/s40694-019-0080-y.

[132]

W. Hao, P. Zhao, Q. Zhang, et al., Preparation and properties of cushion packaging material based on mycelium, Journal of Zhejiang University of Science and Technology 1 (2015) 28-33.

[133]

T.T. Meng, Preliminary study on mycelium composite as a new interior design material, Sci. Guide (2015) 262-263. https://doi.org/10.1016/j.foodchem.2012.10.051.

[134]
GNC Ganoderma capsules. Available online from: http://www.vitagou.com/gnc/161.html.
[135]
Gano Shopping. GanoPoly. Available online from: http://www.ganoshopping.com/category.php?id_category=5.
[136]
Agarikon. 1, Professional medicinal mushrooms extract for cancer patient support. Available online from: https://mykosan.com/agarikon-1-medicinal-mushrooms-cancer/.
[137]
EcoNugenics. BreastDefend. Available online from: https://www.econugenics.com/breastdefend/.
[138]
Merroint international healthy and nutritious food. Available online from: https://www.zokogo.com/product/19280.html.
[139]
Hanqi edible mushroom products. Available online from: https://www.meipian.cn/1ez6jqn1.
[140]
Drugs. com. Lentinan. Available online from: https://www.drugs.com/npp/lentinan.html.
[141]
Glyca Nova. LentinanXP/LentinexⓇ. Available online from: http://glycanova.com/products/nutraceuticals/lentinanxp-lentinex/.
[142]
Aloha Medicinals. Agaricus blazei. Available online from: https://mushroomscience.com/agaricus-blazei/.
[143]
Biogenuine. PSK-16. Available online from: http://www.biogenuine.com.
[144]
Concord Mushroom Supplements. Available online from: http://www.concordhealth.net/product/-sunchih-gpsp.
[145]
Imunoglukan P4H. Imunoglukan. Available online from: http://www.imunoglukan.com/en/products.
[146]

L. Wang, C. Li, L. Ren, et al., Production of pork sausages using Pleaurotus eryngii with different treatments as replacements for pork back fat, J. Food Sci. 84 (2019) 3091-3098. https://doi.org/10.1111/1750-3841.14839.

[147]

L. Wang, H. Guo, X. Liu, et al., Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage, Meat Sci. 156 (2019) 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016.

[148]

K. Jo, S. Lee, C. Jo, et al., Utility of winter mushroom treated by atmospheric non-thermal plasma as an alternative for synthetic nitrite and phosphate in ground ham, Meat Sci. 166 (2020) 108151. https://doi.org/10.1016/j.meatsci.2020.108151.

[149]

S. Novakovic, I. Djekic, A. Klaus, et al., Application of porcini mushroom (Boletus edulis) to improve the quality of frankfurters, J. Food Process Preserv. 44(8) (2020) 14556. https://doi.org/10.1111/jfpp.14556.

[150]

T.V. Mattar, C.S. Gonçalves, R.C. Pereira, et al., A shiitake mushroom extract as a viable alternative to NaCl for a reduction in sodium in beef burgers: a sensory perspective, Br. Food J. 120 (2018) 1366-1380. https://doi.org/10.1108/BFJ-05-2017-0265.

[151]

X. Wang, M. Xu, J. Cheng, et al., Effect of Flammulina velutipes on the physicochemical and sensory characteristics of Cantonese sausages, Meat Sci. 154 (2019) 22-28. https://doi.org/10.1016/j.meatsci.2019.04.003.

[152]

B. Yuan, L.Y. Zhao, W.J. Yang, et al., Enrichment of bread with nutraceutical-rich mushrooms: impact of Auricularia auricula (Mushroom) four upon quality attributes of wheat dough and bread, J. Food Sci. 82(9) (2017) 2041-2050. https://doi.org/10.1111/1750-3841.13812.

[153]

X. Lua, M.A. Brennana, L. Serventia, et al., Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta, Food Chem. 264 (2018) 199-209. https://doi.org/10.1016/j.foodchem.2018.04.130.

[154]

S. Heo, S. Jeon, S. Lee, Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles, LWT-Food Sci. Technol. 55(2) (2014) 627-631. https://doi.org/10.1016/j.lwt.2013.10.002.

[155]

D.N. Parab, J.R. Dhalagade, A.K. Sahoo, et al., Effect of incorporation of mushroom (Pleurotus sajor-caju) powder on quality characteristics of Papad (Indian snack food), Int. J. Food Sci. Nutr. 63(7) (2012) 866-870. https://doi.org/10.3109/09637486.2012.681629.

[156]

F.S. Reis, D.S. Stojkovi, M. Sokovi, et al., Chemical characteriz ation of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese, Food Res. Int. 48(2) (2012) 620-626. https://doi.org/10.1016/j.foodres.2012.06.013.

[157]

L. Zhang, Y.L. Li, W.X. Deng, et al., Effects of oral Coriolus versicolor polysaccharide on the immune organ and CD4+ and CD8+ T cells in peripheral blood of mice, Journal of Xinxiang Medical College 27 (2010) 453-455.

[158]

W.I. Wan Rosli, M.A. Solihah, S.S.J. Mohsin, On the ability of oyster mushroom (Pleurotus sajor-caju) confering changes in proximate composition and sensory evaluation of chicken patty, Int. Food. Res. J. 18 (2011) 1463-1469.

[159]

W.I. Wan Rosli, M.A. Solihah, Effect on the addition of Pleurotus sajor-caju (PSC) on physical and sensorial properties of beef patty, Int. Food Res. J. 19 (2012) 993-999.

[160]

L.Y. Wang, H.Y. Guo, X.J. Liu, et al., Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage, Meat Sci. 156 (2019) 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016.

[161]

Z.L. Qing, J.R. Cheng, X. Wang, et al., The effects of four edible mushrooms (Volvariella volvacea, Hypsizygus marmoreus, Pleurotus ostreatus and Agaricus bisporus) on physicochemical properties of beef paste, LWT-Food Sci. Tech. 135 (2021) 110036. https://doi.org/10.1016/j.lwt.2020.110063.

[162]

J. Kim, S.M. Lee, I.Y. Bae, et al., (1-3)(1-6)-β-Glucan-enriched materials from Lentinus edodes mushroom as a high-fibre and low-calorie flour substitute for baked foods, J. Sci. Food Agr. 91 (2011) 1915-1919. https://doi.org/10.1002/jsfa.4409.

[163]

D.N. Parab, J.R. Dhalagade, A.K. Sahoo, et al., Effect of incorporation of mushroom (Pleurotus sajor-caju) powder on quality characteristics of Papad (Indian snack food), Int. J. Food Sci. Nutr. 63 (2012) 866-870. https://doi.org/10.3109/09637486.2012.681629.

[164]

L. Barros, J.C.M. Barreira, C. Grangeia, et al., Beef burger patties incorporated with Boletus edulis extracts: lipid peroxidation inhibition effects, Eur. J. Lipid Sci. Tech. 113 (2011) 737-743. https://doi.org/10.1002/ejlt.201000478.

[165]

D. Stojković, F.S. Reis, A. Ćirić, et al., Boletus aereus growing wild in Serbia: chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat, J, Food Sci. Tech. 52 (2015) 7385-7392. https://doi.org/10.1007/s13197-015-1853-9.

[166]

W.T. Chou, I.C. Sheih, T.J. Fang, The applications of polysaccharides from various mushroom wastes as prebiotics in different systems, J. Food Sci. 78 (2013) 1041-1048. https://doi.org/10.1111/1750-3841.12160.

[167]

M. Umaña, V. Eim, C. Garau, et al., Ultrasound-assisted extraction of ergosterol and antioxidant components from mushroom by-products and the attainment of a β-glucan rich residue, Food Chem. 332 (2020) 127390. https://doi.org/10.1016/j.foodchem.2020.127390.

[168]

T.T. Liu, L. Dai, Q.Q. Wang, et al., Optimization of extrusion parameters for improved oligomerization of Lentinula edodes handle fiber, Food Sci. 35 (2014) 11-17. https://doi.org/10.7506/spkx1002-6630-201416003.

[169]

D.W. Wang, D. Long, X. Xu, et al., Effect of rolling-over on overall quality of Lentinula edodes stripe and process optimization, Food Sci. 33 (2013) 33-40.

[170]

H. Wen, C.L. Wang, G.H. Du, et al., Characteristics and rheological properties of polysaccharide nanoparticles from edible mushrooms (Flammulina velutipes), J. Food Sci. 82 (2017) 687-693. https://doi.org/10.1111/1750-3841.13626.

[171]

K. Zhang, W. Wang, K. Zhao, et al., Producing a novel edible film from mushrooms (L. edodes and F. velutipes) byproducts with a two-stage treatment namely grinding and bleaching, J. Food Eng. 275 (2020) 109862. https://doi.org/10.1016/j.jfoodeng.2019.109862.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 October 2020
Revised: 03 December 2020
Accepted: 03 December 2020
Published: 04 June 2021
Issue date: July 2021

Copyright

© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgement

www.editage.cn) for English language editing.]]>

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return