22
Views
1
Downloads
41
Crossref
37
WoS
41
Scopus
0
CSCD
Edible fungi are large fungi with high added value that can be utilized as resources. They are rich in high-quality protein, carbohydrate, various vitamins, mineral elements and other nutrients, and are characterized by high protein, low sugar, low fat and low cholesterol. In addition, edible fungi contain a variety of bioactive substances, such as polysaccharides, dietary fiber, steroids, polyphenols, and most of these compounds have antioxidant, anti-tumor and other physiological functions. This review comprehensively discusses the bioactive components and functional characteristics of edible fungi (such as antioxidant, anti-aging, hypolipidemic activities, etc.). Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized. The objective of this review is to improve the understanding of health-promoting properties of edible fungi, and provide reference for the industrial production of edible fungi-based health products.
Edible fungi are large fungi with high added value that can be utilized as resources. They are rich in high-quality protein, carbohydrate, various vitamins, mineral elements and other nutrients, and are characterized by high protein, low sugar, low fat and low cholesterol. In addition, edible fungi contain a variety of bioactive substances, such as polysaccharides, dietary fiber, steroids, polyphenols, and most of these compounds have antioxidant, anti-tumor and other physiological functions. This review comprehensively discusses the bioactive components and functional characteristics of edible fungi (such as antioxidant, anti-aging, hypolipidemic activities, etc.). Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized. The objective of this review is to improve the understanding of health-promoting properties of edible fungi, and provide reference for the industrial production of edible fungi-based health products.
M. Zhang, S.W. Cui, P.C.K. Cheung, et al., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity, Trends Food Sci, Technol. 18 (2007) 4-19. https://doi.org/10.1016/j.tifs.2006.07.013.
D. Meng, P. Zhang, S.M. Li, et al., Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model, J. Funct. Foods. 38 (2017) 36-44. https://doi.org/10.1016/j.jff.2017.08.041.
A.P. Montes, E. Rangel-Vargas, J.M. Lorenzo, et al., Edible mushrooms as a novel trend in the development of healthier meat products, Curr. Opin. Food Sci. 40 (2021) 118-124. https://doi.org/10.1016/j.cofs.2020.10.004.
F.M.N.A. Aida, M. Shuhaimi, M. Yazid, et al., Mushroom as a potential source of prebiotics: a review, Trends Food Sci. Tech. 20 (2009) 567-575. https://doi.org/10.1016/j.tifs.2009.07.007.
P. Gong, S.Y. Wang, M. Liu, et al., Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: a mini-review, Carbohydrate Res. 494 (2020) 108037. https://doi.org/10.1016/j.carres.2020.108037.
G. Cardwell, J.F. Bornman, A.P. James, et al., A review of mushrooms as a potential source of dietary vitamin D, Nutrients 10 (2018) 1498. https://doi.org/10.3390/nu10101498.
M. Yang, T. Belwal, H.P. Devkota, et al., Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: a comprehensive review, Trends Food Sci. Technol. 92 (2019) 94-110. https://doi.org/10.1016/j.tifs.2019.08.009.
J.S. Lohmann, M. Nussbaum, W. Brandt, et al., Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella, Tetrahedron, (2018) 5113-5118. https://doi.org/10.1016/j.tet.2018.06.049.
B. Chen, S. Wang, G. Liu, et al., Anti-inflammatory diterpenes and steroids from peels of the cultivated edible mushroom Wolfiporia cocos, Phytochem. Lett. 36 (2020) 11-16. https://doi.org/10.1016/j.phytol.2020.01.005.
Q.X. Yan, M.X. Huang, P. Sun, et al., Steroids, fatty acids and ceramide from the mushroom Stropharia rugosoannulata Farlow apud Murrill, Biochem, Syst. Ecol. 88 (2020) 103963. https://doi.org/10.1016/j.bse.2019.103963.
N.J. Dubost, B. Ou, R.B. Beelman, Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity, Food Chem. 105 (2007) 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030.
M. Reverberi, A.A. Fabbri, S. Zjalic, et al., Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production, Appl. Microbiol. Biot. 69 (2005) 207-215. https://doi.org/10.1007/s00253-005-1979-1.
W. Wang, K. Chen, Q. Liu, et al., Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration, Plos One. 9 (2014) 102673. https://doi.org/10.1371/journal.pone.0102673.
M.E. Valverde, T. Hernández-Pérez, O. Paredes-López, Edible mushrooms: improving human health and promoting quality life, Int. J. Microbiol. 2015 (2015) 376387. https://doi.org/10.1155/2015/376387.
R. Khursheed, S.K. Singh, S. Wadhwa, et al., Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides, Int. J. Biol. Macromol. 164 (2020) 1194-1205. https://doi.org/10.1016/j.ijbiomac.2020.07.145.
E. Guillamón, A. García-Lafuente, M. Lozano, et al., Edible mushrooms: role in the prevention of cardiovascular diseases, Fitoterapia 81(7) (2010) 715-723. https://doi.org/10.1016/j.fitote.2010.06.005.
Y.N. Sun, M. Zhang, Z.X. Fang, Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: a review, Trends Food Sci. Tech. 105 (2020) 468-482. https://doi.org/10.1016/j.tifs.2019.02.026.
A.A. Khan, A. Gani, F.A. Khanday, et al., Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient, Bioact. Carbohydr. Diet. Fibre 16 (2018) 1-13. https://doi.org/10.1016/j.bcdf.2017.12.002.
P. Chen, Y. Yong, Y. Gu, et al., Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms, Int. J. Med. Mushrooms. 17 (2015) 287-297. https://doi.org/10.1615/IntJMedMushrooms.v17.i3.80.
W. Zhang, W. Qu, X. Zhang, et al., The anti-hyperglycemic activity of polysaccharides from Tremella aurantialba mycelium, Acta Nutrimenta Sinica 4 (2004) 300-303. https://doi.org/10.1007/BF02911031.
Y. Zhang, S. Li, X. Wang, et al., Advances in lentinan: isolation, structure, chain conformation and bioactivities, Food Hydrocoll 25 (2011) 196-206. https://doi.org/10.1016/j.foodhyd.2010.02.001.
Q. Wu, Z. Tan, H. Liu, et al., Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice, Int. J Biol. Macromol. 46 (2010) 284-288. https://doi.org/10.1016/j.ijbiomac.2010.01.016.
S. Zhang, S. Nie, D. Huang, et al., A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system, J. Agr. Food Chem. 62 (2014) 1581-1589. https://doi.org/10.1021/jf4053012.
D. Choi, Y. Piao, S.J. Yu, et al., Antihyperglycemic and antioxidant activities of polysaccharide produced from Pleurotus ferulae in streptozotocin-induced diabetic rats, Korean J. Chem. Eng. 33 (2016) 1872-1882. https://doi.org/10.1007/s11814-016-0007-8.
J.F. Teng, C.H. Lee, T.H. Hsu, et al., Potential activities and mechanisms of extracellular polysaccharopeptides from fermented Trametes versicolor on regulating glucose homeostasis in insulin-resistant HepG2 cells, Plos One. 13 (2018) 1020-1131. https://doi.org/10.1371/journal.pone.0201131.
J. Wang, C. Wang, S. Li, et al., Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway, Biomed. Pharmacother. 95 (2017) 1669-1677. https://doi.org/10.1016/j.fct.2017.01.007.
K.H. Lee, S.L. Morris-Natschke, X.M. Yang, et al., Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine, J, Tradit. Complement. Med. 2(2) (2012) 84-95. https://doi.org/10.6219/jtcm.2012.2011020-R.
H.A. Enshasy, R. Hatti-Kaul, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol. 31 (2013) 668-677. https://doi.org/10.1016/j.tibtech.2013.09.003.
C. Gründemanna, J.K. Reinhardtb, U. Lindequistc, European medicinal mushrooms: do they have potential for modern medicine?. –An update, Phytomedicine 66 (2020) 153131. https://doi.org/10.1016/j.phymed.2019.153131.
Y.K. Leong, F.C. Yang, J.S. Chang, Extraction of polysaccharides from edible mushrooms: emerging technologies and recent advances, Carbohyd. Polym. 251 (2021) 117006. https://doi.org/10.1016/j.carbpol.2020.117006.
A. Klaus, M. Kozarski, M. Niksic, et al., Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune, LWT-Food Sci. Technol. 44(10) (2011) 2005-2011. https://doi.org/10.1016/j.lwt.2011.05.010.
E. Baeva, R. Bleha, E. Lavrova, et al., Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: isolation and structural characterization, Molecules (Basel, Switzerland) 24(15) (2019) 2740. https://doi.org/10.3390/molecules24152740.
I. Alzorqia, S. Sudheer, T.J. Lu, et al., Ultrasonically extracted β-D-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity, Ultrason, Sonochem. 35 (2017) 531-540. https://doi.org/10.1016/j.ultsonch.2016.04.017.
A. Gil-Ramirez, F.R. Smiderle, D. Morales, et al., Strengths and weaknesses of the aniline-blue method used to test mushroom (1→3)-β-D-glucans obtained by microwave-assisted extractions, Carbohyd. Polym. 217 (2019) 135-143. https://doi.org/10.1016/j.carbpol.201904051.
O. Parniakov, N.I. Lebovka, E.V. Hecke, et al., Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus Bisporus), Food Bioprocess Tech. 7 (2014) 174-183. https://doi.org/10.1007/s11947-013-1059-y.
X.J. Du, Y. Zhang, H.M. Mu, et al., Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantialba, Food Hydrocoll. 43 (2015) 459-464. https://doi.org/10.1016/j.foodhyd.2014.07.004.
L.H. Fu, Y.P. Wang, J.J. Wang, et al., Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta, Food Funct. 4 (2013) 871-879. https://doi.org/10.1039/c3fo60033e.
S. Khatua, K. Acharya, Alkaline extractive crude polysaccharide from Russula senecis possesses antioxidant potential and stimulates innate immunity response, J. Pharm. Pharmacol. 69 (2017) 1817-1828. https://doi.org/10.1111/jphp.12813.
Z. Chen, Y. Tang, A. Liu, et al., Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action, Mol. Nutr. Food Res. 61 (2017) 1700313. https://doi.org/10.1002/mnfr.201700313.
J. Zhang, G. Meng, G. Zhai, et al., Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum, Int, J. Biol. Macromol. 82 (2016) 432-439. https://doi.org/10.1016/j.ijbiomac.2015.10.016.
X. Li, Y. Lu, W. Zhang, et al., Antioxidant capacity and cytotoxicity of sulfated polysaccharide TLH-3 from Tricholoma lobayense, Int. J. Biol. Macromol. 82 (2016) 913-919. https://doi.org/10.1016/j.ijbiomac.2015.10.006.
L.M. Hao, Z.C. Sheng, J. Lu, et al., Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola, Carbohyd. Polym. 141 (2016) 54-59. https://doi.org/10.1016/j.carbpol.2012.02.026.
S.C. Jeong, S.R. Koyyalamudi, Y.T. Jeong, et al., Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms, J. Med. Food 15 (2012) 58-65. https://doi.org/10.1089/jmf.2011.1704.
M. Sun, W. Zhao, Q. Xie, et al., Lentinan reduces tumor progression by enhancing gemcitabine chemotherapy in urothelial bladder cancer, Surg. Oncol. 24 (2015) 28-34. https://doi.org/10.1016/j.suronc.2014.11.002.
M.K. Lemieszek, C. Cardoso, F.H.F.M. Nunes, et al., Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells, Food Funct. 4 (2013) 575-585. https://doi.org/10.1039/c2fo30324h.
W.T. Chou, I.C. Sheih, T.J. Fang, The applications of polysaccharides from various mushroom wastes as prebiotics in different systems, J. Food Sci. 78 (2013) 1041-1048. https://doi.org/10.1111/1750-3841.12160.
S. Zhang, S. Nie, D. Huang, et al., A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system, J. Agr. Food Chem. 62 (2014) 1581-1589. https://doi.org/10.1021/jf4053012.
X. Shi, Y. Zhao, Y. Jiao, et al., ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells, Plos One. 8 (2013) 164-266. https://doi.org/10.1371/journal.pone.0064266.
S.W. Kim, H.J. Hwang, B.C. Lee, et al., Submerged production and characterization of Grifola frondosa polysaccharides–a new application to cosmeceuticals, Food Technol. Biotech. 45 (2007) 295-305. https://doi.org/10.1517/14712598.7.7.1107.
Y.O. Kim, S.W. Lee, J.S. Kim, A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease, J. Mushroom 12 (2014) 77-81. https://doi.org/10.14480/JM.2014.12.2.77.
L. Wen, Q. Gao, C. Ma, et al., Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging, J. Funct. Foods 20 (2016) 400-441. https://doi.org/10.1016/j.jff.2015.11.014.
Y. Yang, J. Chen, L. Lei, et al., Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage raw 264.7 cells, Food Chem. Toxicol. 125 (2018) 38-45. https://doi.org/10.1016/j.fct.2018.12.036.
Z.Z. Ren, W.B. Liu, X.L. Song, et al., Antioxidant and anti-inflammation of enzymatic-hydrolysis residue polysaccharides by Lentinula edodes, Int. J. Biol. Macromol. 120 (2018) 811-822. https://doi.org/10.1016/j.ijbiomac.2018.08.114.
D.M. Wu, W.Q. Duan, Y. Liu, et al., Anti-inflammatory effect of the polysaccharides of golden needle mushroom in burned rats, Int. J. Biol. Macromol. 46 (2010) 100-103. https://doi.org/10.1016/j.ijbiomac.2009.10.013.
K.I. Minato, L.C. Laan, I.V. Die, et al., Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation, Int. J. Biol. Macromol. 122 (2019) 705-712. https://doi.org/10.1016/j.ijbiomac.2018.10.157.
S.C. Jeong, S.R. Koyyalamudi, Y.T. Jeong, et al., Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus and white button mushrooms, J. Med. Food. 15 (2012) 58-65. https://doi.org/10.1089/jmf.2011.1704.
R. Li, J. Zhang, T.H. Zhang, Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells, Food Chem. 340 (2020) 127933. https://doi.org/10.1016/j.foodchem.2020.127933.
Y. Cui, H. Yan, X. Zhang, Preparation of Lentinula edodes polysaccharidecalcium complex and its immunoactivity, Biosci. Biotech. Bioch. 79 (2015) 1619-1623. https://doi.org/10.1080/09168451.2015.1044930.
K. Sanjaya, S.M. Mallick, S.K. Bhutia, et al., Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus, J. Med. Food 13 (2010) 665-672. https://doi.org/10.1089/jmf.2009.1300.
C. Zhang, J. Li, C. Hu, et al., Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice, Sci, Rep. -UK 7 (2017) 10847. https://doi.org/10.1038/s41598-017-11457-w.
J. Zhang, G. Meng, C. Zhang, et al., The antioxidative effects of acidic-, alkalic-, and enzymatic-extractable mycelium zinc polysaccharides by Pleurotus djamor on liver and kidney of streptozocin-induced diabetic mice, BMC Complem, Altern. M. 15 (2015) 440. https://doi.org/10.1186/s12906-015-0964-1.
H.T. Ma, J.F. Hsieh, S.T. Chen, Anti-diabetic effects of Ganoderma lucidum, Phytochemistry 114 (2015) 109-113. https://doi.org/10.1016/j.phytochem.2015.02.017.
C. Xiao, Q. Wu, Y. Xie, et al., Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats, Food Funct. 6 (2015) 3567-3575. https://doi.org/10.1039/c5fo00497g.
C.K.P. Cheung, Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits, Food Sci. Human Wellness 2 (2013) 162-166. https://doi.org/10.1016/j.fshw.2013.08.001.
Z.H. Xue, Q.Q. Ma, Y.P. Lu, et al., Structure characterization of soluble dietary fiber fractions from mushroom Lentinula edodes (Berk. ) Pegler and the effects on fermentation and human gut microbiota in vitro, Food Res. Int. 129 (2020) 108870. https://doi.org/10.1016/j.foodres.2019.108870.
S.V. Reshetnikov, S.P. Wasser, K.K. Tan, Higher basidiomycetes as a source of antitumor and immunostimulating polysaccharides, Int. J. Med. Mushrooms. 3 (2001) 361-394. https://doi.org/10.1615/IntJMedMushr.v3.i4.80.
F. Liu, V.E.C. Ooi, S.T. Chang, Free radical scavenging activities of mushroom polysaccharides extracts, Life Sci. 60 (1997) 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0.
S.P. Wasser, K.K. Tan, V.I. Elisashvilli, Hypoglycemic, interferonogenesis and immunomodulatory activity of Tremellastin from the submerged culture of Tremella mesenterica, Int, J. Med. Mushrooms. 4 (2002) 215-227. https://doi.org/10.1615/IntJMedMushr.v4.i3.40.
M. Zhang, P.C.K. Cheung, L. Zhang, Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of Pleurotus tuber-regium (fries) singer as a potential antitumor agent, J. Agric. Food Chem. 49 (2001) 5059-5062. https://doi.org/10.1021/jf010228l.
Z.H. Xue, X. Gao, Y. Jia, et al., Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk. ) Pegler and its interaction mechanism with pancreatic lipase and bile salts, Int. J. Biol. Macromol. 153 (2020) 1281-1290. https://doi.org/10.1016/j.foodres.2019.108870.
Z.H. Xue, Q.Q. Ma, Q.W. Guo, et al., Physicochemical and functional properties of extruded dietary fiber from mushroom Lentinula edodes residues, Food Biosci. 32 (2019) 100452. https://doi.org/10.1016/j.foodhyd.2019.04.015.
A. Fernandes, J.C.M. Barreira, A.L. Antonio, et al., Exquisite wild mushrooms as a source of dietary fiber: analysis in electron-beam irradiated samples, LWT-Food Sci. Technol. 60 (2015) 855-859. http://doi.org/10.1016/j.lwt.2014.10.050.
Z.H. Xue, Y. Chen, Y.N. Jia, et al., Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk. ) Pegler residues, Food Hydrocoll. 95 (2019) 10-18. https://doi.org/10.1016/j.fbio.2019.100452.
G. Zhang, J. Sun, H. Wang, et al., First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom, Phytomedicine 17(10) (2010) 775-781. https://doi.org/10.1016/j.phymed.2010.02.001.
P. Paaventhan, S.J. Jeremiah, V.S. See, et al., A 1.7 Å structure of Fve, a member of the new fungal immunomodulatory protein family, J, Mol. Biol. 332 (2003) 461-470. https://doi.org/10.1016/S0022-2836(03)00923-9.
X.F. Xu, H.D. Yan, J. Chen, et al., Bioactive proteins from mushrooms, Biotechnol. Adv. 29 (2011) 667-674. https://doi.org/10.1016/j.biotechadv.2011.05.003.
G.Q. Zhang, Y.F. Wang, X.Q. Zhang, et al., Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima, Process Biochem. 45(5) (2010) 627-633. https://doi.org/10.1016/B978-0-12-394309-5.00006-7.
Q.H. Hu, H.J. Du, G.X. Ma, et al., Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii, Food Funct. 9 (2018) 3764. https://doi.org/10.1039/c8fo00604krsc.li/food-function.
H.X. Wang, T.B. Ng, Isolation of Pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium, Biochem, Bioph. Res. Co. 288 (2001) 718-721. https://doi.org/10.1006/bbrc.2001.5816.
G.C.L. Reisa, B.M. Dala-Paula, O.L. Tavano, et al., In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom, Food Res. Int. 137 (2020) 109616. https://doi.org/10.1016/j.foodres.2020.109616.
S. Beluhan, A. Ranogajec, Chemical composition and non-volatile components of Croatian wild edible mushroom, Food Chem. 124 (2011) 1076-1082. https://doi.org/10.1016/j.foodchem.2010.07.081.
A.R. Song, L.Z. Guo, Y.C. Zhang, Analysis and comparison of the amino acids in seven white Flammulina velutipes strains, Acta Edulis Fungi 3 (1996) 33-38.
M. Dong, L. Qin, J. Xue, et al., Simultaneous quantification of free amino acids and 5′-nucleotides inshiitake mushrooms by stable isotope labeling-LC-MS/MS analysis, Food Chem. 268 (2018) 57-65. https://doi.org/10.1016/j.foodchem.2018.06.054.
M.M. Poojary, V. Orliena, P. Passamonti, et al., Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms, J. Food Compos. Anal. 63 (2017) 171-183. http://doi.org/10.1016/j.jfca.2017.08.004.
R.P.Z. Furlani, H.T. Godoy, Vitamins B1 and B2 contents in cultivated mushrooms, Food Chem. 106 (2008) 816-819. http://doi.org/10.1016/j.foodchem.2007.06.007.
C. Chaiyasut, B.S. Sivamaruthi, Anti-hyperglycemic property of Hericium erinaceus–a mini review, Asian Pac. J. Trop. Bio. 7(11) (2017) 1036-1040. https://doi.org/10.1016/j.apjtb.2017.09.024.
V.J. Jasinghe, C.O. Perera, Ultraviolet irradiation: the generator of vitamin D2 in edible mushrooms, Food Chem. 95 (2006) 638-643. http://doi.org/10.1016/j.ifset.2017.04.008.
D. Morales, A. Gil-Ramirez, F.R. Smiderle, et al., Vitamin D-enriched extracts obtained from shiitake mushrooms (Lentinula edodes) by supercritical fluid extraction and UV-irradiation, Innov. Food Sci. Emerg. 41 (2017) 330-336. http://doi.org/10.1016/j.ifset.2017.04.008.
H.Y. Xiong, Q. Song, Investigation on the content of vitamin B1 and B2 in 6 kinds of edible fungi in Yunnan Province, J. Food Saf. Qual. 10 (2019) 7606-7609. https://doi.org/10.1016/j.ifset.2017.04.008.
P. Ziarati, H. Rabizadeh, Z. Mousavi, et al., The effect of cooking method in potassium, lead and cadmium contents in commonly consumed packaged mushroom (Agaricus bisporus) in Iran, Int, J. Farming and Allied Sci. 2 (2013) 728-733.
M.V. Dimitrijevic, V.D. Mitic, J.S. Nikolic, et al., First report about mineral content, fatty acids composition and biological activities of four wild edible mushrooms, Chem, Biodiversity. 16 (2019) 1800492. http://doi.org/10.1002/cbdv.201800492.
A.K. Kojta, J. Falandysz, Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius, Food Chem. 200 (2016) 206-214. http://doi.org/10.1016/j.foodchem.2016.01.006.
J. Falandysz, J. Borovička, Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks, Appl. Microbiol. Biot. 97 (2013) 477-501. https://doi.org/10.1007/s00253-012-4552-8.
P. Mattila, K. Könko, M. Eurola, et al., Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms, J, Agric. Food Chem. 49 (2001) 2343-2348. https://doi.org/10.1021/jf001525d.
J.L. Wang, Y.B. Li, R.M. Liu, et al., A new ganoderic acid from Ganoderma lucidum mycelia, J. Asian Nat. Prod. Res. 12 (2010) 727-730. https://doi.org/10.1080/10286020.2010.493506.
S.P. Wasser, Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J. 37 (2014) 345-356. https://doi.org/10.4103/2319-4170.138318.
D.H. Ryu, J.Y. Cho, N.B. Sadiq, et al., Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology, Food Chem. 335 (2021) 127645. https://doi.org/10.1016/j.foodchem.2020.127645.
Y.B. Li, J.L. Wang, J.J. Zhong, Enhanced recovery of four antitumor ganoderic acids from Ganoderma lucidum mycelia by a novel process of simultaneous extraction and hydrolysis, Process Biochem. 48 (2013) 331-339. http://doi.org/10.1016/j.procbio.2012.12.002.
Y.I. Yang, J.L. Ren, H. Zhang, Research progress of terpenoids and bioactivities in edible mushroom, Technology of Food Industry 40(1) (2019) 305-309. http://doi.org/10.13386/j.issn1002-0306.2019.01.054.
E.L. Wang, R.H. He, Determination of adenosine in Lingzhi (Ganoderma lucidum) by HPLC, Strait Pharm. J. 21 (2009) 46-47. http://doi.org/1006-3765(2009)-03-0046-02.
L. Zhu, S. Wang, Z. Zhang, et al., Dissolution of bioactive components from dried fruiting bodies of the culinary-medicinal shiitake mushroom, Lentinus edodes (Agaricomycetes), during cleaning, soaking, and cooking, Int. J. Med. Mushrooms. 21 (2019) 37-45. http://doi.org/10.1615/IntJMedMushrooms.2018029006.
F.S.A. Saadeldeen, Y. Niu, H.L. Wang, et al., Natural products: regulating glucose metabolism and improving insulin resistance, Food Sci. Human Wellness 9 (2020) 214-228. https://doi.org/10.1016/j.fshw.2020.04.005.
M.M. Poojary, V. Orlien, P. Passamonti, et al., Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms, J. Food Compos. Anal. 63 (2017) 171-183. https://doi.org/10.1016/j.jfca.2017.08.004.
L. Aguirre, J.M. Frias, C. Barry-Ryan, et al., Assessing the effect of product variability on the management of the quality of mushrooms (Agaricus bisporus), Postharvest Biol. Tech. 49 (2008) 247-254. http://doi.org/10.1016/j.postharvbio.2008.01.014.
C.H. Chou, T.J. Sung, Y.N. Hu, et al., Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation, Int, J. Biol. Macromol. 131 (2019) 1021-1031. http://doi.org/10.1016/j.jfca.2017.08.004.
D.L. Fang, K.L. Yu, Z.L. Deng, et al., Storage quality and flavor evaluation of Volvariella volvacea packaged with nanocomposite-based packaging material during commercial storage condition, Food Packaging Shelf. 22 (2019) 100412. https://doi.org/10.1016/j.fpsl.2019.100412.
C.C. Hsieh, C.K. Chang, L.W. Wong, et al., Alternating current electric field inhibits browning of Pleurotus ostreatus via inactivation of oxidative enzymes during postharvest storage, LWT-Food Sci. Technol. 134 (2020) 110212. https://doi.org/10.1016/j.lwt.2020.110212.
Y.X. Niu, J.M. Yun, Predicting the shelf life of postharvest Flammulina velutipes at various temperatures based on mushroom quality and specific spoilage organisms, Postharvest Biol. Tech. 167 (2020) 111235. https://doi.org/10.1016/j.postharvbio.2020.111235.
M.K. Roy, S.R. Chatterjee, D. Bahukhandi, et al., Gamma radiation in increasing productivity of Agaricus bisporus and Pleurotus sajor-caju and enhancing storage life of P. sajor-caju, J. Food Tech. - Mysore 37 (2000) 83-86. https://doi.org/10.1016/j.postharvbio.2020.111235.
E.M. Moda, Shelf-life increase of fresh mushrooms Pleurotus sajor-caju using gamma radiation, Food and Agriculture Organization of the United Nations. 105 (2008) 88-100.
D.P. Murr, L.L. Morris, Effect of storage atmosphere on post-harvest growth of mushrooms, J. Am. Soc. Hortic. Sci. 100 (1975) 298-301.
G. Antmann, G. Ares, P. Lema, et al., Influence of modified atmosphere packaging on sensory quality of shiitake mushrooms, Postharvest Biol. Technol. 49 (2008) 164-170. https://doi.org/10.1016/j.postharvbio.2008.01.02.
F. Tao, M. Zhang, H. Yu, Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions, J. Food Eng. 79 (2007) 1302-1309. https://doi.org/10.1016/j.jfoodeng.2006.04.011.
G. Ares, C. Lareo, P. Lema, Modified atmosphere packaging for postharvest storage of mushrooms: a review, Global Science Books. 1 (2007) 32-40.
I. Palacios, C. Moro, M. Lozano, et al., Use of modified atmosphere packing to preserve mushroom quality during storage, Nutr. Agric. 3 (2011) 196-203. https://doi.org/10.2174/2212798411103030196.
M.J. Galotto, Effect of ozone treatment and storage temperature on physicochemical properties of mushrooms (Agaris bisporus), Food Sci. Technol. Int. 7 (2001) 251-258. https://doi.org/10.1106/6a9r-dkev-adv7-y30x.
C. Zhao, C. Zhang, Z. Xing, et al., Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: a comprehensive review, Int. J. Biol. Macromol. 121 (2019) 1160-1178. https://doi.org/10.1016/j.ijbiomac.2018.10.076.
F.S. Reis, A. Martins, M.H. Vasconcelos, et al., Functional foods based on extracts or compounds derived from mushrooms, Int. J. Biol. Macromol. 121 (2019) 1160-1178. https://doi.org/10.1016/j.tifs.2017.05.010.
M. Haneef, L. Ceseracciu, C. Canale, et al., Advanced materials from fungal mycelium: fabrication and tuning of physical properties, Sci. Rep. -UK 7 (2017) 41292. https://doi.org/10.1038/srep41292.
H. Rathore, S. Prasad, M. Kapri, et al., Medicinal importance of mushroom mycelium: mechanisms and applications, J. Funct. Foods. 56 (2019) 182-193. https://doi.org/10.1016/j.jff.2019.03.016.
C.C. Chien, M.L. Tsai, C.C. Chen, et al., Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms, Mycopathologia 166 (2008) 117. https://doi.org/10.1007/s11046-008-9128-x.
R. Mukhopadhyay, A.K. Guha, A comprehensive analysis of the nutritional quality of edible mushroom Pleurotus sajor-caju grown in deproteinized whey medium, LWT-Food Sci. Technol. 61 (2015) 339-345. https://doi.org/10.1016/j.lwt.2014.12.055.
E.M. Silva, A. Machuca, A.M.F. Milagres, Evaluating the growth and enzyme production from Lentinula edodes strains, Process Biochem. 40 (2005) 161-164. https://doi.org/10.1016/j.procbio.2003.11.053.
K. Kim, B. Choi, I. Lee, et al., Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue, J. Sci. Food Agr. 91 (2011) 1561-1568. https://doi.org/10.1002/jsfa.4348.
H. Rathore, S. Prasad, M. Kapri, et al., Medicinal importance of mushroom mycelium: mechanisms and applications, J. Funct. Foods. 56 (2019) 182-193. https://doi.org/10.1016/j.jff.2019.03.016.
E. Ulziijargal, J.H. Yang, L.Y. Lin, et al., Quality of bread supplemented with mushroom mycelia, Food Chem. 138 (2013) 70-76. https://doi.org/10.1016/j.foodchem.2012.10.051.
C. Kustrim, K.C. Akkaya, C. Pohl, et al., Fungi as source for new bio-based materials: a patent review, Fungal Biology & Biotechnology 6 (2019) 17-27. https://doi.org/10.1186/s40694-019-0080-y.
W. Hao, P. Zhao, Q. Zhang, et al., Preparation and properties of cushion packaging material based on mycelium, Journal of Zhejiang University of Science and Technology 1 (2015) 28-33.
T.T. Meng, Preliminary study on mycelium composite as a new interior design material, Sci. Guide (2015) 262-263. https://doi.org/10.1016/j.foodchem.2012.10.051.
L. Wang, C. Li, L. Ren, et al., Production of pork sausages using Pleaurotus eryngii with different treatments as replacements for pork back fat, J. Food Sci. 84 (2019) 3091-3098. https://doi.org/10.1111/1750-3841.14839.
L. Wang, H. Guo, X. Liu, et al., Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage, Meat Sci. 156 (2019) 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016.
K. Jo, S. Lee, C. Jo, et al., Utility of winter mushroom treated by atmospheric non-thermal plasma as an alternative for synthetic nitrite and phosphate in ground ham, Meat Sci. 166 (2020) 108151. https://doi.org/10.1016/j.meatsci.2020.108151.
S. Novakovic, I. Djekic, A. Klaus, et al., Application of porcini mushroom (Boletus edulis) to improve the quality of frankfurters, J. Food Process Preserv. 44(8) (2020) 14556. https://doi.org/10.1111/jfpp.14556.
T.V. Mattar, C.S. Gonçalves, R.C. Pereira, et al., A shiitake mushroom extract as a viable alternative to NaCl for a reduction in sodium in beef burgers: a sensory perspective, Br. Food J. 120 (2018) 1366-1380. https://doi.org/10.1108/BFJ-05-2017-0265.
X. Wang, M. Xu, J. Cheng, et al., Effect of Flammulina velutipes on the physicochemical and sensory characteristics of Cantonese sausages, Meat Sci. 154 (2019) 22-28. https://doi.org/10.1016/j.meatsci.2019.04.003.
B. Yuan, L.Y. Zhao, W.J. Yang, et al., Enrichment of bread with nutraceutical-rich mushrooms: impact of Auricularia auricula (Mushroom) four upon quality attributes of wheat dough and bread, J. Food Sci. 82(9) (2017) 2041-2050. https://doi.org/10.1111/1750-3841.13812.
X. Lua, M.A. Brennana, L. Serventia, et al., Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta, Food Chem. 264 (2018) 199-209. https://doi.org/10.1016/j.foodchem.2018.04.130.
S. Heo, S. Jeon, S. Lee, Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles, LWT-Food Sci. Technol. 55(2) (2014) 627-631. https://doi.org/10.1016/j.lwt.2013.10.002.
D.N. Parab, J.R. Dhalagade, A.K. Sahoo, et al., Effect of incorporation of mushroom (Pleurotus sajor-caju) powder on quality characteristics of Papad (Indian snack food), Int. J. Food Sci. Nutr. 63(7) (2012) 866-870. https://doi.org/10.3109/09637486.2012.681629.
F.S. Reis, D.S. Stojkovi, M. Sokovi, et al., Chemical characteriz ation of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese, Food Res. Int. 48(2) (2012) 620-626. https://doi.org/10.1016/j.foodres.2012.06.013.
L. Zhang, Y.L. Li, W.X. Deng, et al., Effects of oral Coriolus versicolor polysaccharide on the immune organ and CD4+ and CD8+ T cells in peripheral blood of mice, Journal of Xinxiang Medical College 27 (2010) 453-455.
W.I. Wan Rosli, M.A. Solihah, S.S.J. Mohsin, On the ability of oyster mushroom (Pleurotus sajor-caju) confering changes in proximate composition and sensory evaluation of chicken patty, Int. Food. Res. J. 18 (2011) 1463-1469.
W.I. Wan Rosli, M.A. Solihah, Effect on the addition of Pleurotus sajor-caju (PSC) on physical and sensorial properties of beef patty, Int. Food Res. J. 19 (2012) 993-999.
L.Y. Wang, H.Y. Guo, X.J. Liu, et al., Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage, Meat Sci. 156 (2019) 44-51. https://doi.org/10.1016/j.meatsci.2019.05.016.
Z.L. Qing, J.R. Cheng, X. Wang, et al., The effects of four edible mushrooms (Volvariella volvacea, Hypsizygus marmoreus, Pleurotus ostreatus and Agaricus bisporus) on physicochemical properties of beef paste, LWT-Food Sci. Tech. 135 (2021) 110036. https://doi.org/10.1016/j.lwt.2020.110063.
J. Kim, S.M. Lee, I.Y. Bae, et al., (1-3)(1-6)-β-Glucan-enriched materials from Lentinus edodes mushroom as a high-fibre and low-calorie flour substitute for baked foods, J. Sci. Food Agr. 91 (2011) 1915-1919. https://doi.org/10.1002/jsfa.4409.
D.N. Parab, J.R. Dhalagade, A.K. Sahoo, et al., Effect of incorporation of mushroom (Pleurotus sajor-caju) powder on quality characteristics of Papad (Indian snack food), Int. J. Food Sci. Nutr. 63 (2012) 866-870. https://doi.org/10.3109/09637486.2012.681629.
L. Barros, J.C.M. Barreira, C. Grangeia, et al., Beef burger patties incorporated with Boletus edulis extracts: lipid peroxidation inhibition effects, Eur. J. Lipid Sci. Tech. 113 (2011) 737-743. https://doi.org/10.1002/ejlt.201000478.
D. Stojković, F.S. Reis, A. Ćirić, et al., Boletus aereus growing wild in Serbia: chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat, J, Food Sci. Tech. 52 (2015) 7385-7392. https://doi.org/10.1007/s13197-015-1853-9.
W.T. Chou, I.C. Sheih, T.J. Fang, The applications of polysaccharides from various mushroom wastes as prebiotics in different systems, J. Food Sci. 78 (2013) 1041-1048. https://doi.org/10.1111/1750-3841.12160.
M. Umaña, V. Eim, C. Garau, et al., Ultrasound-assisted extraction of ergosterol and antioxidant components from mushroom by-products and the attainment of a β-glucan rich residue, Food Chem. 332 (2020) 127390. https://doi.org/10.1016/j.foodchem.2020.127390.
T.T. Liu, L. Dai, Q.Q. Wang, et al., Optimization of extrusion parameters for improved oligomerization of Lentinula edodes handle fiber, Food Sci. 35 (2014) 11-17. https://doi.org/10.7506/spkx1002-6630-201416003.
D.W. Wang, D. Long, X. Xu, et al., Effect of rolling-over on overall quality of Lentinula edodes stripe and process optimization, Food Sci. 33 (2013) 33-40.
H. Wen, C.L. Wang, G.H. Du, et al., Characteristics and rheological properties of polysaccharide nanoparticles from edible mushrooms (Flammulina velutipes), J. Food Sci. 82 (2017) 687-693. https://doi.org/10.1111/1750-3841.13626.
K. Zhang, W. Wang, K. Zhao, et al., Producing a novel edible film from mushrooms (L. edodes and F. velutipes) byproducts with a two-stage treatment namely grinding and bleaching, J. Food Eng. 275 (2020) 109862. https://doi.org/10.1016/j.jfoodeng.2019.109862.
www.editage.cn) for English language editing.]]>
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).