Journal Home > Volume 10 , Issue 4

The polysaccharides from edible fungus showed many kinds of biological activities, including anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetes, improving functional constipation activities. In particular, the immunomodulatory effects have been paid more and more attention by scholars, but there was no systematic introduction of their immunomodulatory mechanism. So, this review introduced the immunomodulatory effects and mechanism of edible fungus polysaccharides in recent years, and then the relationships between structure and immunomodulatory effect were also discussed.


menu
Abstract
Full text
Outline
About this article

Immunomodulatory effects of polysaccharides from edible fungus: a review

Show Author's information Zhenghua Yina,b,cZhenhua Lianga,b,cChangqin Lia,b,cJinmei Wanga,b,cChangyang Maa,b,cWenyi Kanga,b,c( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, Henan 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, Henan 475004, China
Functional Food Engineering Technology Research Center, Kaifeng, Henan 475004, China

# These authors contributed equally to this work. Peer review under responsibility of KeAi Communications Co., Ltd]]>

Abstract

The polysaccharides from edible fungus showed many kinds of biological activities, including anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetes, improving functional constipation activities. In particular, the immunomodulatory effects have been paid more and more attention by scholars, but there was no systematic introduction of their immunomodulatory mechanism. So, this review introduced the immunomodulatory effects and mechanism of edible fungus polysaccharides in recent years, and then the relationships between structure and immunomodulatory effect were also discussed.

Keywords: Polysaccharides, Edible fungus, Immunomodulatory effect, Mechanisms-immunomodulatory relationship

References(74)

[1]

Y.H. Li, Z.K. Li, C.Y. Li, et al., Study on the regulatory effect of crude polysaccharides from Plantago asiatica L. on the immune function of human macrophages and its mechanism, J. Chin. Med. Mater. 43 (2020) 2795-2798. https://doi.org/10.13863/j.issn1001-4454.2020.11.036.

[2]

Y. Miao, G.H. Ren, D. Zhen, et al., Molecular mechanism of Cordyceps militaris polysaccharides in regulating the immune function of macrophage RAW264.7 cells, Food Sci. 40 (2019) 188-194. https://doi.org/10.7506/spkx1002-6630-20180122-294.

[3]

B. Muszyńska, A. Grzywacz-Kisielewska, K. Kała, et al., Anti-inflammatory properties of edible mushrooms: a review, Food Chem. 243 (2018) 373-381. https://doi.org/10.1016/j.foodchem.2017.09.149.

[4]

M.E. Valverde, T. Hernández-Pérez, Q. Paredes-López, Edible mushrooms: improving human health and promoting quality life, Int. J. Med. Microbiol. 7 (2015) 1-12. https://doi.org/10.1155/2015/376387.

[5]

D. Sharma, V.P. Singh, N.K. Singh, A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms, Mini. Rev. Med. Chem. 18 (2018) 1095-1109. https://doi.org/10.2174/1389557517666170927144119.

[6]

R.S. Oliveiraa, S.M.P. Biscaia, D.L. Bellan, et al., Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus, Carbohydr. Polym. 225 (2019) 115203. https://doi.org/10.1016/j.carbpol.2019.115203.

[7]

D.Q. Yang, J.X. Wang, L.H. Li, et al., Structural analysis and immunoregulatory activity of polysaccharides from Crassostrea rivularis, Food Sci. 41 (2020) 38-46. https://doi.org/10.7506/spkx1002-6630-20190524-295.

[8]

X. Xin, Y.Y. Niu, M.M. Xing, et al., Amelioration of constipation by Cordyceps militaris polysaccharides, Curr. Top. Nutraceutical Res. 17 (2019) 372-375. https://doi.org/10.37290/ctnr2641-452X.17:372-375.

[9]

L. Ma, H. Chen, P. Dong, et al., Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus, Food Chem. 139 (2013) 503-508. https://doi.org/10.1016/j.foodchem.2013.01.030.

[10]

M. Friedman, Mushroom polysaccharides: chemistry and antiobesity, anti-diabetes, anticancer, and antibiotic properties in cells, rodents, and humans, Foods 5 (2016) 80. https://doi.org/10.3390/foods5040080.

[11]

F.L. Kong, F.E. Li, Z.M. He, et al., Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus, Int. J. Biol. Macromol. 69 (2014) 561-566. https://doi.org/10.1016/j.ijbiomac.2014.05.045.

[12]

Y. Yao, Y.Y. Zhu, G.X. Ren, Immunoregulatory activities of polysaccharides from mung bean, Carbohydr. Polym. 139 (2016) 61-66. https://doi.org/10.1016/j.carbpol.2015.12.001.

[13]

H. Sun, X.Q. Ni, D. Zeng, et al., Bidirectional immunomodulating activity of fermented polysaccharides from Yupingfeng, Res. Vet. Sci. 110 (2016) 22-28. https://doi.org/10.1016/j.rvsc.2016.10.015.

[14]

D. Wendehenne, A. Pugin, D.F. Klessig, et al., Nitric oxide: comparative synthesis and signaling in animal and plant cells, Trends Plant Sci. 6 (2001) 177-183. https://doi.org/10.1016/S1360-1385(01)01893-3.

[15]

Y.F. Wang, X.J. Ren, J.J. Shao, et al., Study on the immunomodulatory activity of a novel polysaccharide from the lichen Umbilicaria Esculenta, Int. J. Biol. Macromol. 121 (2019) 846-851. https://doi.org/10.1016/j.ijbiomac.2018.10.080.

[16]

W. Ouyang, S. Rutz, N.K. Crellin, et al., Regulation and functions of the IL-10 family of cytokines in inflammation and disease, Annu. Rev. Immunol. 29 (2011) 71-109. https://doi.org/10.1146/annurev-immunol-031210-101312.

[17]

C.K. Han, H.C. Chian, C.Y. Lin, et al., Comparison of immunomodulatory and anticancer activities in different strains of Tremella fuciformis Berk, Am. J. Chin. Med. 43 (2015) 1637-1655. https://doi.org/10.1142/S0192415X15500937.

[18]

X.X. Liu, W.H. Wang, L. Feng, et al. Immunoregulatory effect of homogeneous polysaccharide FVPB1 from fruiting body of Flammulina velutipes on mouse T cells and macrophages, Acta Edulis Fungi 26 (2019) 123-130. https://doi.org/10.16488/j.cnki.1005-9873.2019.04.017.

[19]

J.F. Ye, X.D. Wang, K. Wang, et al., A novel polysaccharide isolated from Flammulina velutipes, characterization, macrophage immunomodulatory activities and its impact on gut microbiota in rats, J. Anim. Physiol. Anim. Nutr. (Berl) 104 (2020) 735-748. https://doi.org/10.1111/jpn.13290.

[20]

Y. Liu, Y.F. Zhou, M.D. Liu, et al., Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus, Int. J. Biol. Macromol. 12 (2018) 326-332. https://doi.org/10.1016/j.ijbiomac.2018.01.132.

[21]

Y. Liu, M.L. Luo, F. Liu, et al., Effects of freeze drying and hot-air drying on the physicochemical properties and bioactivities of polysaccharides from Lentinula edodes, Int. J. Biol. Macromol. 145 (2020) 476-483. https://doi.org/10.1016/j.ijbiomac.2019.12.222.

[22]

Y.Y. Chen, Y.R. Huang, Z.M. Cui, et al., Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus, Int. J. Biol. Macromol. 79 (2015) 587-594. https://doi.org/10.1016/j.ijbiomac.2015.05.016.

[23]

G.H. Mao, Y. Ren, W.W. Feng, et al., Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa, Carbohydr. Polym. 134 (2015) 406-412. https://doi.org/10.1016/j.carbpol.2015.08.020.

[24]

M. Meng, D. Cheng, L.R. Han, et al., Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body, Carbohydr. Polym. 157 (2017) 1134-1143. https://doi.org/10.1016/j.carbpol.2016.10.082.

[25]

G.H. Mao, Y. Ren, Q. Li, et al., Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa, Int. J. Biol. Macromol. 82 (2016) 607-613. https://doi.org/10.1016/j.ijbiomac.2015.10.083.

[26]

Y. Zhang, Y. Zeng, Y. Men, et al., Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae, Int. J. Biol. Macromol. 115 (2018) 978-984. https://doi.org/10.1016/j.ijbiomac.2018.04.145.

[27]

D. Wu, C. Tang, Y.F. Liu, et al., Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus, Carbohydr. Polym. 222 (2019) 114996. https://doi.org/10.1016/j.carbpol.2019.114996.

[28]

F.F. Wu, C.H. Zhou, D.D. Zhou, et al., Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities, Food Funct. 9 (2018) 294. https://doi.org/10.1039/C7FO01389B.

[29]

C.H. Wang, S.S. Shi, Q. Chen, et al., Antitumor and immunomodulatory activities of Ganoderma lucidum polysaccharides in glioma-bearing rats, Integr. Cancer Ther. 17 (2018) 674-683. https://doi.org/10.1177/1534735418762537.

[30]

T.L.A. Kawahara, E. Michishita, A.S. Adler, et al., SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span, Cell 136 (2009) 62-74. https://doi.org/10.1016/j.cell.2008.10.052.

[31]

M.H. Pan, S.Y. Lin-Shiau, C.T. Ho, et al., Suppression of lipopolysaccharide-induced nuclear factor-κB activity by theaflavin-3,3′-digallate from black tea and other polyphenols through down-regulation of IκB kinase activity in macrophages, Biochem. Pharmacol. 59 (2000) 357-367. https://doi.org/10.1016/S0006-2952(99)00335-4.

[32]

Y.Y. Zhang, N. Song, F. Liu, et al., Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain, Int. J. Oral Sci. 11 (2019) 24. https://doi.org/10.1038/s41368-019-0055-0.

[33]

W.H. Wang, J.S. Zhang, T. Feng, et al., Structural elucidation of a polysaccharide from Flammulina velutipes and its immunomodulation activities on mouse B lymphocytes, Sci. Rep. 8 (2018) 3120. https://doi.org/10.1016/j.ijbiomac.2016.07.016.

[34]

D.D. Xu, H.Y. Wang, W. Zheng, et al., Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii, Int. J. Biol. Macromol. 92 (2016) 30-36. https://doi.org/10.1016/j.ijbiomac.2016.07.016.

[35]

X.T. Sheng, J.M. Yan, Y. Meng, et al. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology, Food Funct. 8 (2017) 1020-1027. https://doi.org/10.1039/C7FO00071E.

[36]

Q.D. Xiang, Q. Yu, H. Wang, et al., Immunomodulatory activity of Ganoderma atrum polysaccharide on purified T lymphocytes through Ca2+/CaN and MAPK pathway based on RNA-seq, J. Agric. Food Chem. 65 (2017) 5306-5315. https://doi.org/10.1021/acs.jafc.7b01763.

[37]

X.T. Zhao, P.L. Hou, H.J. Xin, et al. A glucogalactomanan polysaccharide isolated from Agaricus bisporus causes an inflammatory response via the ERK/MAPK and I(B/NF(B pathways in macrophages, Int. J. Biol. Macromol. 151 (2020) 1067-1073. https://doi.org/10.1016/j.ijbiomac.2019.10.148.

[38]

B.L. He, Q.W. Zheng, L.Q. Guo, et al., Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris, Int. J. Biol. Macromol. 145 (2019) 11-20. https://doi.org/10.1016/j.ijbiomac.2019.12.115.

[39]

L.M. Sordillo, S.L. Aitken, Impact of oxidative stress on the health and immune function of dairy cattle, Vet. Immunol. Immunopathol. 128 (2009) 104-109. https://doi.org/10.1016/j.vetimm.2008.10.305.

[40]

C. Vida, E.M. González, M.D.L. Fuente, Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety, Curr. Pharm. Des. 20 (2014) 4656-4678. https://doi.org/10.2174/1381612820666140130201734.

[41]

W.J. Li, L. Li, W.Y. Zhen, et al., Ganoderma atrum polysaccharide ameliorates ROS generation and apoptosis in spleen and thymus of immunosuppressed mice, Food Chem. Toxicol. 99 (2016) 199-208. https://doi.org/10.1016/j.fct.2016.11.033.

[42]

J.Y. Liu, C.P. Feng, X. Li, et al., Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice, Int. J. Biol. Macromol. 86 (2016) 594-598. https://doi.org/10.1016/j.ijbiomac.2016.02.009.

[43]

H. Yang, C.Y. Tang, C. Luo, et al. Resveratrol attenuates the cytotoxicity induced by amyloid-β1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway, Neurochem. Res. 43 (2018) 297-305. https://doi.org/10.1007/s11064-017-2421-7.

[44]

X. Wang, Z.Q. Wang, H.H. Wu, et al., Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress, Int. J. Biol. Macromol. 120 (2018) 736-744. https://doi.org/10.1016/j.ijbiomac.2018.08.157.

[45]

C. Lull, H.J. Wichers, H.F. Savelkoul, Antiinflammatory and immunomodulating properties of fungal metabolites, Mediators Inflamm. 2005 (2005) 63-80. https://doi.org/10.1155/MI.2005.63.

[46]

T. Zhao, Y. Feng, J. Li, et al., Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages, Int. J. Biol. Macromol. 65 (2014) 33-40. https://doi.org/10.1016/j.ijbiomac.2014.01.018.

[47]

S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity, Cell 124 (2006) 783-801. https://doi.org/10.1016/j.cell.2006.02.015.

[48]

J.M. Yan, Z. Han, Y.H. Qu, et al., Structure elucidation and immunomodulatory activity of a β-glucan derived from the fruiting bodies of Amillariella mellea, Food Chem. 240 (2018) 534-543. https://doi.org/10.1016/j.foodchem.2017.07.154.

[49]

S.X. Bi, Y.S. Jing, Q.Q. Zhou, et al., Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris, Food Funct. 9 (2018) 279. https://doi.org/10.1039/C7FO01147D.

[50]

L.L. Fang, Y.Q. Zhang, J.B. Xie, et al., Royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetidae), derived polysaccharides exert immunomodulatory activities in vitro and in vivo, Int. J. Biol. Macromol. 18 (2016) 123-132. https://doi.org/10.1615/IntJMedMushrooms.v18.i2.30.

[51]

C. Deng, J.Y. Shang, H.T. Fu, et al., Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiate, Int. J. Biol. Macromol. 91 (2017) 752-759. https://doi.org/10.1016/j.ijbiomac.2016.06.024.

[52]

L.H. Hou, M. Meng, Y.Y. Chen, et al., A water-soluble polysaccharide from Grifola frondosa induced macrophages activation via TLR4-MyD88-IKKβ-NF-κB p65 pathways, Oncotarget 8 (2017) 86604-86614. https://doi.org/10.18632/oncotarget.21252.

[53]

Y.F. Wang, Y.Q. Tian, J.J. ShaO, et al., Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom, Int. J. Biol. Macromol. 108 (2018) 300-306. https://doi.org/10.1016/j.ijbiomac.2017.12.025.

[54]

L. Liu, Y.M. Lu, X.H. Li, et al., A novel process for isolation and purification of the bioactive polysaccharide TLH-3′ from Tricholoma lobayense, Process Biochem. 50 (2015) 1146-1151. https://doi.org/10.1016/j.procbio.2015.04.011.

[55]

M.Z. Zhang, X.H. Tian, Y. Wang, et al., Immunomodulating activity of the polysaccharide TLH-3 from Tricholoma lobayense in RAW264.7 macrophages, Int. J. Biol. Macromol. 107 (2018) 2679-2685. https://doi.org/10.1016/j.ijbiomac.2017.10.165.

[56]

K. Yelithao, U. Surayot, C.S. Lee, et al., Studies on structural properties and immune-enhancing activities of glycomannans from Schizophyllum commune, Carbohydr. Polym. 218 (2019) 37-45. https://doi.org/10.1016/j.carbpol.2019.04.057.

[57]

N. Kamada, S.U. Seo, G.Y. Chen, et al., Role of the gut microbiota in immunity and inflammatory disease, Nat. Rev. Immunol. 13 (2013) 321-335. https://doi.org/10.1038/nri3430.

[58]

X. Xu, P. Xu, C. Ma, et al., Gut microbiota, host health, and polysaccharides, Biotechnol. Adv. 31 (2013) 237-318. https://doi.org/10.1016/j.biotechadv.2012.12.009.

[59]

X.F. Xu, X.W. Zhang, Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice, PLoS One 10 (2015) e0115037. https://doi.org/10.1371/journal.pone.0115037.

[60]

G.X. Ma, B.M. Kimatu, L.Y. Zhao, et al., In vivo fermentation of a Pleurotus eryngii polysaccharide and its effects on fecal microbiota composition and immune response, Food Funct. 8 (2017) 1810. https://doi.org/10.1039/C7FO00341B.

[61]

Q. Yu, S.P. Nie, J.Q. Wang, et al., Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes, J. Agric. Food Chem. 63 (2015) 2734-2740. https://doi.org/10.1021/acs.jafc.5b00028.

[62]

Q. Zhang, R.H. Cong, M.H. Hu, et al., Immunoenhancement of edible fungal polysaccharides (lentinan, tremellan, and pachymaran) on cyclophosphamide-induced immunosuppression in mouse model, Evid. Based. Complement Alternat. Med. 2017 (2017) 1-7. https://doi.org/10.1155/2017/9459156.

[63]

X.L. Ma, M. Meng, L.R. Han, et al., Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa, Chin. J. Nat. Med. 13 (2015) 906-914. https://doi.org/10.1016/S1875-5364(15)30096-0.

[64]

Q. Li, F.M. Zhang, G.Y. Chen, et al., Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa, Int. J. Biol. Macromol. 111 (2018) 1293-1303. https://doi.org/10.1016/j.ijbiomac.2018.01.090.

[65]

J. Li, F.F. Gu, C. Cai, et al., Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 143 (2020) 806-813. https://doi.org/10.1016/j.ijbiomac.2019.09.141.

[66]

Y. Meng, F.Z. Lyu, X.J. Xu, et al., Recent advances in chain conformation and bioactivities of triple-helix polysaccharides, Biomacromol 21 (2020) 1653-1677. https://doi.org/10.1021/acs.biomac.9b01644.

[67]

A. Palleschi, G. Bocchinfuso, T. Coviello, et al., Molecular dynamics investigations of the polysaccharide scleroglucan: first study on the triple helix structure, Carbohydr. Polym. 340 (2005) 2154-2162. https://doi.org/10.1016/j.carres.2005.06.026.

[68]

H.A. El Enshasy, R. Hatti-Kaul, Mushroom immunomodulators: unique molecules with unlimited applications, Trends Biotechnol. 31 (2013) 668-677. https://doi.org/10.1016/j.tibtech.2013.09.003.

[69]

J.S. Lee, J.S. Kwon, D.P. Won, et al., Study on macrophage activation and structural characteristics of purified polysaccharide from the liquid culture broth of Cordyceps militaris, Carbohydr. Polym. 82 (2010) 982-988. https://doi.org/10.1016/j.carbpol.2010.06.025.

[70]

L. Sun, L. Wang, Y. Zhou, Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum, Carbohydr. Polym. 82 (2012) 1206-1210. https://doi.org/10.1016/j.carbpol.2011.08.097.

[71]

C.R. Liu, M.W. Choi, X.K. Xue, et al., Immunomodulatory effect of structurally characterized mushroom sclerotial polysaccharides isolated from Polyporus rhinocerus on bone marrow dendritic cells, J. Agric. Food Chem. 67 (2019) 12137-12143. https://doi.org/10.1016/j.foodhyd.2010.04.008.

[72]

C.R. Liu, M.W. Choi, X.J. Li, et al., Immunomodulatory effect of structurally-characterized mushroom sclerotial polysaccharides isolated from Polyporus rhinocerus on human monoctyes THP-1, J. Funct. Foods 41 (2018) 90-99. https://doi.org/10.1016/j.jff.2017.12.039.

[73]

X. Zhang, C. Qi, Y. Guo, et al., Toll-like receptor 4-related immunostimulatory polysaccharides: primary structure, activity relationships, and possible interaction models, Carbohydr. Polym. 149 (2016) 186-206. https://doi.org/10.1016/j.carbpol.2016.04.097.

[74]

J. Li, C. Cai, M.M. Zheng, et al. Alkaline extraction, structural characterization, and bioactivities of (1→6)-β-D-glucan from Lentinus edodes, Molecules 24 (2019) 1610. https://doi.org/10.3390/molecules24081610.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 December 2020
Revised: 21 December 2020
Accepted: 24 December 2020
Published: 04 June 2021
Issue date: July 2021

Copyright

© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgement

This research was financially supported by Major Public Welfare Projects in Henan Province (201300110200), National Key R & D Program of China (2018YFD0400200), Key scientific and technological key projects of Henan science and Technology Department (192102110214 and 202102110283), Henan Province Industry-University-Research Cooperation Project (182107000033), the special fund project of Zhengzhou basic and applied basic research (ZZSZX202003).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return