Journal Home > Volume 9 , Issue 3

Compounds with regulating glucose metabolism and improving insulin resistance (IR) activity are abundant in nature and can be obtained from several sources. They have high potential to be used to treat diabetes mellitus. These compounds isolated from natural plants can be classified seven categories: terpenoids, alkaloids, quinones, flavonoids, phenols, phenyl propanoids, steroids, and other types of compounds. They exert biological effects by different ways and mechanisms. This review illustrated the potential natural products as a rich resource in regulation of glucose metabolism and IR, as well as their mechanisms.


menu
Abstract
Full text
Outline
About this article

Natural products: Regulating glucose metabolism and improving insulin resistance

Show Author's information Fatma S.A. Saadeldeena,b,1Yun Niua,b,1Honglin Wanga,b,1Li Zhoua,bLijun Menga,bSitan Chena,bDongxiao Sun-WaterhousedGeoffrey Ivan Neil WaterhousedZhenhua Liua,b,c( )Wenyi Kanga,b,c( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng 475004, Henan, China
School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand

1 These authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd]]>

Abstract

Compounds with regulating glucose metabolism and improving insulin resistance (IR) activity are abundant in nature and can be obtained from several sources. They have high potential to be used to treat diabetes mellitus. These compounds isolated from natural plants can be classified seven categories: terpenoids, alkaloids, quinones, flavonoids, phenols, phenyl propanoids, steroids, and other types of compounds. They exert biological effects by different ways and mechanisms. This review illustrated the potential natural products as a rich resource in regulation of glucose metabolism and IR, as well as their mechanisms.

Keywords: Glucose metabolism, Natural products, Insulin resistance (IR)

References(103)

[1]

C. Lankatillake, T. Huynh, D.A. Dias, Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants, Plant Methods 15 (105) (2019), http://doi.org/10.1186/s13007-019-0487-8.

[2]

H. Hussain, I.R. Green, G. Abbas, et al., Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents: patent review (2015-2018), Expert Opin. Ther. Pat. (2019), http://doi.org/10.1080/13543776.2019.1655542.

[3]

S. Guo, Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms, Endocrinology 220 (2) (2014) 1-23, http://doi.org/10.1530/JOE-13-0327.

[4]

M.J. Robinson, H. Cobb, Mitogen activated protein kinase pathway, Curr. Opin. Cell Biol. 9 (2) (1997) 180-186.

[5]

L.S. Harrington, G.M. Findlay, A. Gray, et al., The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins, Cell Biol. 166 (2) (2004) 213-223.

[6]

E.W. Kraegen, P.W. Clark, A.B. Jenkins, et al., Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats, Diabetes 40 (11) (1991) 1397-1403, http://doi.org/10.2337/diab.40.11.1397.

[7]

A. Guilherme, J.V. Virbasius, V. Puri, et al., Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes, Nat. Rev. Mol. Cell Biol. 9 (5) (2008) 367-377, http://doi.org/10.1038/nrm2391.

[8]

J. Choi, K.J. Kim, E.J. Koh, et al., Gelidium elegans extract ameliorates type 2 diabetes via regulation of MAPK and PI3K/Akt signaling, Nutrients 10 (1) (2018) 51-64, http://doi.org/10.3390/nu10010051.

[9]

H. Ando, T. Takamura, N. Matsuzawanagata, et al., The hepatic circadian clock is preserved in a lipid-induced mouse model of non-alcoholic steatohepatitis, Biochem. Biophys. Res. Commun. 380 (3) (2009) 684-688, http://doi.org/10.1016/j.bbrc.2009.01.150.

[10]

E.L. Seifert, C. Estey, J.Y. Xuan, et al., Electron transport chain-dependent and -independent mechanisms of mitochondrial h2o2 emission during long-chain fatty acid oxidation, Biol. Chem. 285 (8) (2010) 5748.

[11]

P. Lebrun, E. Cognard, R. Bellon-Paul, et al., Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice, Diabetologia 52 (10) (2009) 2201-2212, http://doi.org/10.1007/s00125-009-1474-9.

[12]

B.B. Yaspelkis, I.A. Kvasha, T.Y. Figueroa, High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle, Am. J. Physiol. -Regul. Intergr. Compar. Physiol. 296 (6) (2009) 1709-1715, http://doi.org/10.1152/ajpregu.00117.2009.

[13]

N. Kallscheuer, T. Classen, T. Drepper, et al., Production of plant metabolites with applications in the food industry using engineered microorganisms, Curr. Opin. Biotechnol. 56 (2019) 7-17, http://doi.org/10.1016/j.copbio.2018.07.008.

[14]

Y. Zhang, L.J. Yu, W.J. Cai, Protopanaxatriol, a novel PPAR gamma antagonist from Panax ginseng, alleviates steatosis in mice, Sci. Rep. 4 (2014) 7375, http://doi.org/10.1038/srep07375.

[15]

Y. Huang, W. Chang, S. Huang, et al., Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation, Eur. J. Pharmacol. 684 (2010) 39-49, http://doi.org/10.1016/j.ejphar.2010.08.021.

[16]

G.S. Banu, Cucurbitacin augments insulin sensitivity and glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway, World J. Pharm. Res. 6 (8) (2017) 1096-2017, http://doi.org/10.20959/wjpr20178-8924.

[17]

J.H. Qin, J.Z. Ma, X.W. Yang, et al., A triterpenoid inhibited hormone-induced adipocyte differentiation and alleviated dexamethasone-induced insulin resistance in 3t3-l1 adipocytes, Nat. Prod. Bioprospect. 5 (3) (2015) 159-166, http://doi.org/10.1007/s13659-015-0063-5.

[18]

R. Khanra, N. Bhattacharjee, T.K. Dua, et al., Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats, Biomed. Pharmacother. 94 (2017) 726-741, http://doi.org/10.1016/j.biopha.2017.07.112.

[19]

V. Ramachandran, R. Saravanan, Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats, Hum. Exp. Toxicol. 34 (9) (2015) 884-893, http://doi.org/10.1177/0960327114561663.

[20]

S.C. Wei, J.R. Wang, K.H. Ye, et al., Effect of guavenoic acid on improving insulin resistance in INS-1 cells and its mechanisms, Chin. Tradit. Patent Med. 37 (4) (2015) 710-715.

[21]

Y. He, W. Li, Y. Li, et al., Ursolic acid increases glucose uptake through the PI3K signaling pathway in adipocytes, PLoS One 9 (10) (2014), http://doi.org/10.1371/journal.pone.0110711.

[22]

Y. Li, J. Wang, T. Gu, et al., Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats, Toxicol. Appl. Pharmacol. 277 (2) (2014) 155-163, http://doi.org/10.1016/j.taap.2014.03.016.

[23]

K.N. Zhu, C.H. Jiang, Y.S. Tian, Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: the relationship to AMPK activation, Phytomeddicine 22 (9) (2015) 837-846, http://doi.org/10.1016/j.phymed.2015.05.058.

[24]

M.S. Kang, S.Z. Hirai, T.Y. Goto, Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation, Biochem. Biophys. Res. Commun. 369 (2) (2008) 333-338, http://doi.org/10.1016/j.bbrc.2008.02.002.

[25]

D. Arha, S. Pandeti, A. Mishra, et al., Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic affect in vivo, Eur. J. Pharmacol. 768 (2015) 207-216, http://doi.org/10.1016/j.ejphar.2015.10.055.

[26]

F.F. Liu, M.W. Yang, X.Q. Wang, Effect of catalpol, berberine, and their combination on insulin resistant 3T3-L1 adipocytes, Chin. Tradit. Herbal Drugs 38 (10) (2007) 1523-1526.

[27]

K. Park, Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes, Cytokine 62 (3) (2013) 407-412, http://doi.org/10.1016/j.cyto.2013.04.005.

[28]

Z. Ma, L. Chu, H. Liu, et al., Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats, Sci. Rep. 7 (2017) 44819, http://doi.org/10.1038/srep44819.

[29]

C. Prata, L. Zambonin, B. Rizzo, et al., Glycosides from Stevia rebaudiana Bertoni possess insulin-mimetic and antioxidant activities in rat cardiac fibroblasts, Oxid. Med. Cell. Longev. 2017 (2017) 1-13, http://doi.org/10.1155/2017/3724545.

[30]

L. Jia, Y. Zhao, Current evaluation of the millennium phytomedicine-Ginseng (Ⅰ): etymology, pharmacognosy, phytochemistry, market and regulations, Curr. Med. Chem. 16 (19) (2009) 2475-2484, http://doi.org/10.2174/092986709788682146.

[31]

M.R. Tabandeh, S.A. Hosseini, M. Hosseini, Ginsenoside Rb1 exerts antidiabetic action on C2C12 muscle cells by leptin receptor signaling pathway, J. Recept. Signal Transduct. Res. 37 (4) (2017) 370-378, http://doi.org/10.1080/10799893.2017.1286676.

[32]

L. Lv, S.Y. Wu, G.F. Wang, et al., Effect of astragaloside Ⅳ on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin, Phytotherapy 24 (2010) 219-224, http://doi.org/10.1002/ptr.2915.

[33]

Q. Du, S.H. Zhang, A.Y. Li, et al., Astragaloside Ⅳ inhibits adipose lipolysis and reduces hepatic glucose production via Akt dependent PDE3B expression in HFFD-fed mice, Front. Physiol. 9 (2018) 15, http://doi.org/10.3389/fphys.2018.00015.

[34]

J.Y. Ahn, M.Y. Um, H.J. Lee, Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice, Evid. Based Complement. Altern. Med. (2013) 934183, http://doi.org/10.1155/2013/934183.

[35]

J. Wang, X. Hu, W. Ai, et al., Phytol increases adipocyte number and glucose tolerance through activation of PI3K/Akt signaling pathway in mice fed high-fat and high-fructose diet, Biochem. Biophys. Res. Commun. 489 (4) (2017) 432-438, http://doi.org/10.1016/j.bbrc.2017.05.160.

[36]

I. Soundharrajan, D.H. Kim, S. Srisesharam, et al., Limonene promotes osteoblast differentiation and 2-deoxy-d-glucose uptake through p38MAPK and Akt signaling pathways in C2C12 skeletal muscle cells, Phytomedicine 1 (45) (2018) 41-48, http://doi.org/10.1016/j.phymed.2018.03.019.

[37]

A. Rathinam, L. Pari, Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats, Chemico-Biol. Interact. 256 (2016) 161-166, http://doi.org/10.1016/j.cbi.2016.07.009.

[38]

L.Z. Liu, L.L. Cheung, S.K. Ho, et al., Berberine modulates insulin signaling transduction in insulin-resistant cells, Mol. Cell. Endocrinol. 317 (1) (2010) 148-153, http://doi.org/10.1016/j.mce.2009.12.027.

[39]

M.L. Zuo, A.P. Wang, Y. Tian, et al., Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and Akt in the liver, J. Cell. Biochem. 120 (2019) 16185-16194, http://doi.org/10.1002/jcb.28898.

[40]

Y. Yoshioka, E. Harada, E. Ge, et al., Adenosine isolated from Grifola gargal promotes glucose uptake via PI3K and AMPK signaling pathways in skeletal muscle cells, J. Funct. Foods 33 (2017) 268-277, http://doi.org/10.1016/j.jff.2017.03.050.

[41]

N. Nooron, A. Athipornchai, A. Suksamrarn, et al., Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells, Biochem. Biophys. Res. Commun. 494 (2017) 101-106, http://doi.org/10.1016/j.bbrc.2017.10.075.

[42]

S.H. Kim, J.T. Hwang, H.S. Park, et al., Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway, Biochem. Biophys. Res. Commun. 439 (1) (2013) 66-70, http://doi.org/10.1016/j.bbrc.2013.08.027.

[43]

G. Naresh, N. Jaiswal, P. Sukanya, et al., Glucose uptake stimulatory effect of 4-hydroxypipecolic acid by increased GLUT 4 translocation in skeletal muscle cells, Bioorg. Med. Chem. Lett. 22 (17) (2012) 5648-5651, http://doi.org/10.1016/j.bmcl.2012.06.101.

[44]

Q. Liu, X. Li, C. Li, et al., 1-deoxynojirimycin alleviates insulin resistance via activation of insulin signaling pI3k/Akt pathway in skeletal muscle of db/db mice, Molecules 20 (12) (2015) 21700-21714, http://doi.org/10.3390/molecules201219794.

[45]

L. Xu, M. Xing, X. Xu, et al., Alizarin increase glucose uptake through PI3K/Akt signaling and improve alloxan-induced diabetic mice, Future Med. Chem. 11 (5) (2019), http://doi.org/10.4155/fmc-2018-0515.

[46]

Y.J. Wang, S.L. Huang, F. Ying, Emodin, an 11 beta-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function in vitro and exerts anti-diabetic effect in ob/ob mice, Acta Pharmacol. Sin. 33 (9) (2020) 1195-1203, http://doi.org/10.1038/aps.2012.87.

[47]

Z.W. Gong, C. Huang, X.Y. Sheng, The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism, Endocrinology 150 (1) (2009) 104-113, http://doi.org/10.1210/en.2008-0322.

[48]

S. Pandeti, D. Arha, A. Mishra, et al., Glucose uptake stimulatory potential and antidiabetic activity of the Arnebin-1 from Arnabia nobelis, Eur. J. Pharmacol. 789 (2016) 449-457, http://doi.org/10.1016/j.ejphar.2016.08.010.

[49]

S.S. Choi, B.Y. Cha, Y.S. Lee, Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells, Life Sci. 84 (25) (2009) 908-914, http://doi.org/10.1016/j.lfs.2009.04.001.

[50]

A.K. Tamrakar, N. Jaiswal, P.P. Yadav, et al., Pongamol from Pongamia pinnata, stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells, Mol. Cell. Endocrinol. 339 (2011) 98-104.

[51]

G.L. Shyni, S. Kavitha, K.F. Sajin, et al., Licarin B from Myristica fragrans improves insulin sensitivity via PPARγ and activation of GLUT4 in the IRS-1/PI3K/Akt pathway in 3T3-L1 adipocytes, RSC Adv. 6 (83) (2016) 79859-79870, http://doi.org/10.1039/C6RA13055K.

[52]

N. Hyun, J.J. Kim, Y.N. Kim, Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice, Nutrients 10 (11) (2018) 1734, http://doi.org/10.3390/nu10111734.

[53]

J.T. Hwang, S.H. Kim, H.J. Hur, Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet, Phytother. Res. 26 (5) (2012) 633-638, http://doi.org/10.1002/ptr.3612.

[54]

K.W. Ong, A. Hsu, B.K.H. Tan, Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes, PLoS One 7 (3) (2013), http://doi.org/10.1371/journal.pone.0032718.

[55]

S.H. Kim, H.S. Park, M.J. Hong, Caffeic acid phenethyl ester improves metabolic syndrome by activating PPAR-gamma and inducing adipose tissue remodeling in diet-induced obese mice, Mol. Nutr. Food Res. 62 (10) (2018), http://doi.org/10.1002/mnfr.201700701.

[56]

X.Q. Xu, F.S.A. Saadeldeen, L.T. Xu, et al., The mechanism of phillyrin from the leaves of Forsythia suspensa for improving insulin resistance, Biomed Res. Int. (2019), http://doi.org/10.1155/2019/3176483.

[57]

H.J. Lee, H. Li, J.J. Hye, Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes, Fitoterapia 112 (2016) 90-96, http://doi.org/10.1016/j.fitote.2016.05.006.

[58]

P.J. Wang, S.Y. Xu, W.Z. Li, Salvianolic acid B inhibited PPAR gamma expression and attenuated weight gain in mice with high-fat diet-induced obesity, Cell. Physiol. Biochem. 2 (2014) 288-298, http://doi.org/10.1159/000362999.

[59]

Y.F. Ma, Y.J. Wu, J.K. Y, et al., Flavonoids content and antioxidant activity of ethanol extracts of Osmanthus fragrans flowers, Bangladesh J. Bot. 46 (3) (2017) 907-915.

[60]

E.J. Bak, J. Kim, Y.H. Choi, Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice, Clin. Nutr. 33 (1) (2014) 156-163, http://doi.org/10.1016/j.clnu.2013.03.013.

[61]

E.Y. Kwon, M.S. Choi, Luteolin, targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice, Nutrients 10 (10) (2018), http://doi.org/10.3390/nu10101415.

[62]

G. Ling, C. Yajun, W. Zhangda, et al., Effect of quercetin on insulin resistance and FGF21/MAPK signaling pathway in type 2 diabetic rats, China Pharmacist (2019).

[63]

J. Dong, X.A. Zhang, L. Zhang, Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPK alpha 1/SIRT1, J. Lipid Res. 55 (3) (2014) 363-374, http://doi.org/10.1194/jlr.M038786.

[64]

J.Z. Shen, L.N. Ma, Y. Han, Pentamethylquercetin generates beneficial effects in monosodium glutamate-induced obese mice and C2C12 myotubes by activating AMP-activated protein kinase, Diabetologia 55 (6) (2012) 1836-1846, http://doi.org/10.1007/s00125-012-2519-z.

[65]

S. Kim, G.W. Go, J.Y. Imm, Promotion of glucose uptake in C2C12 myotubes by cereal flavone tricin and its underlying molecular mechanism, J. Agric. Food Chem. 65 (19) (2017) 3819-3826, http://doi.org/10.1021/acs.jafc.7b00578.

[66]

Q.Y. Li, L. Chen, M.M. Yan, Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPAR gamma and IKK/NF-κB signaling, Pharm. Biol. 53 (11) (2015) 1567-1575, http://doi.org/10.3109/13880209.2014.993038.

[67]

Y. Sakamoto, A. Naka, N. Ohara, et al., Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPAR, Mol. Nutr. Food Res. 58 (4) (2014), http://doi.org/10.1002/mnfr.201300482.

[68]

W.Y. Zhang, J.J. Lee, Y. Kim, et al., Effect of eriodictyol on glucose uptake and insulin resistance in vitro, J. Agric. Food Chem. 60 (31) (2012) 7652-7658, http://doi.org/10.1021/jf300601z.

[69]

J.Z. Cheng, Z. Cha, H. Xiang, Naringenin alleviated the SH-SY5Y cells death and insulin resistance by activating mTOR/p70S6K signalling pathway in oxidative stress induced by H2O2, J. Chongqing Med. Univ. 44 (4) (2019) 424-429.

[70]

F. Li, H. Luo, Z.J. Xu, Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism indb/dband diet-induced obese mice, Diabetologia 59 (6) (2020) 1276-1286, http://doi.org/10.1007/s00125-016-3912-9.

[71]

H.J. Lee, H. Li, M. Noh, Bavachin from Psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 adipocytes, Int. J. Mol. Sci. 17 (4) (2016) 527, http://doi.org/10.3390/ijms17040527.

[72]

W.J. Lee, G. Yoon, M.C. Kim, 5,7-Dihydroxy-6-geranyl flavanone improves insulin sensitivity through PPAR/dual activation, Int. J. Mol. Med. 37 (5) (2016) 1397-1404, http://doi.org/10.3892/ijmm.2016.2531.

[73]

J.W. Choi, M. Kim, H.D. Song, DMC (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone) improves glucose tolerance as a potent AMPK activator, Metab. -Clin. Exp. 65 (4) (2016) 533-542, http://doi.org/10.1016/j.metabol.2015.12.010.

[74]

Y.H. Watanabe, Y. Nagai, H. Honda, Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice, Sci. Rep. 6 (2016), http://doi.org/10.1038/srep23097.

[75]

T. Horiba, I. Nishimura, Y. Nakai, Naringenin chalcone improves adipocyte functions by enhancing adiponectin production, Mol. Cell. Endocrinol. 323 (2) (2010) 208-214, http://doi.org/10.1016/j.mce.2010.03.020.

[76]

Y. Li, T. Goto, K. Yamakuni, et al., 4-hydroxyderricin, as a PPARγ agonist, promotes adipogenesis, adiponectin secretion, and glucose uptake in 3T3-L1 cells, Lipids 51 (7) (2016) 1-9, http://doi.org/10.1007/s11745-016-4154-9.

[77]

H.B. Li, Y.R. Yang, Z.J. Mo, Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/PI3K/Akt pathway inhibition, Braz. J. Med. Biol. Res. 48 (5) (2015) 440-446, http://doi.org/10.1590/1414-431X20144238.

[78]

M. Taher, M. Amiroudine, M. Zakaria, et al., ɑ-Mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 cells via PPARγ, GLUT4, and leptin expressions, Evid. Based Complement. Altern. Med. 2015 (4) (2015) 1-9, http://doi.org/10.1155/2015/740238.

[79]

H. Lee, H. Li, J.H. Jeong, Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and A MPK activation in 3T3-L1 adipocytes, Fitoterapia 112 (2016) 90-96, http://doi.org/10.1016/j.fitote.2016.05.006.

[80]

M. Ueda-wakagi, S. Nishiumi, H. Nagayasu, et al., Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle, Biochem. Biophys. Res. Commun. 377 (1) (2008) 286-290, http://doi.org/10.1039/C8FO00807H.

[81]

J.M. Peng, Y. Jia, T.Y. Hu, A proanthocyanidin dimer from Camellia ptilophylla, modulates obesity and adipose tissue inflammation in high-fat diet induced obese mice, Mol. Nutr. Food Res. 63 (11) (2019).

[82]

C.Q.Yang J.H. Xu, D.D. Yan, Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition, Chin. J. Nat. Med. 15 (9) (2017) 664-673, http://doi.org/10.1016/S1875-5364(17)30095-X.

[83]

G. Luan, Y. Wang, Z. Wang, et al., Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3T3-L1 adipocytes in vitro, J. Agric. Food Chem. 66 (12) (2018) 3169-3178, http://doi.org/10.1021/acs.jafc.8b00179.

[84]

Y.M. Tzeng, K. Chen, Y.K. Rao, Kaempferitrin activates the insulin signaling pathway and stimulates secretion of adiponectin in 3T3-L1 adipocytes, Eur. J. Pharmacol. 607 (1) (2009) 27-34, http://doi.org/10.1016/j.ejphar.2009.01.023.

[85]

L.L. Cui, J.M. Wang, M.K. Wang, et al., Chemical composition and glucose uptake effect on 3T3-L1 adipocytes ofLigustrum lucidum Ait. flowers, Food Sci. Hum. Wellness (2020), http://doi.org/10.1016/j.fshw.2020.02.002.

[86]
Q.X. Liu, Effects and action mechanism of Daidzin on improving insulin resistance in 3T3-L1 adipocytes, Jinan University, 2014.
[87]

Y. Zhao, Y. Zhou, Puerarin improve insulin resistance of adipocyte through activating Cb1 binding protein path, Chin. J. Integr. Med. 18 (4) (2012) 293-298, http://doi.org/10.1007/s11655-012-1058-2.

[88]

H.D. Cai, S.L. Su, S. Guo, et al., Effect of flavonoids from Abelmoschus manihot on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance, China J. Chin. Matera Med. 41 (24) (2016) 4635-4641, http://doi.org/10.4268/cjcmm20162424.

[89]

S.E. Mazibuko, E. Joubert, R. Johnson, et al., Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate, Mol. Nutr. Food Res. 59 (11) (2015) 2199-2208, http://doi.org/10.1002/mnfr.201500258.

[90]

H.C. Luisa, D.K. Virgínia, F.P. Danielle, et al., Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola, Fitoterapia 83 (7) (2012) 1176-1183, http://doi.org/10.1016/j.fitote.2012.07.003.

[91]

K.H. Choi, H.A. Lee, M.H. Park, et al., Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes, Environ. Toxicol. Pharmacol. 54 (2017) 1-6, http://doi.org/10.1016/j.etap.2017.06.007.

[92]

M. Xiong, Y. Huang, Y. Liu, et al., Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-A(y) mice with spontaneous type 2 diabetes mellitus, Mol. Nutr. Food Res. 62 (3) (2018), http://doi.org/10.1002/mnfr.201700444.

[93]

K. Mitsuhashi, T. Senmaru, T. Fukuda, et al., Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes, Endocrine 51 (1) (2016) 174-184, http://doi.org/10.1007/s12020-015-0666-y.

[94]

T. Takimoto, Y. Kanbayashi, T. Toyoda, 4 beta-Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-kappa B signaling in diabetic mouse adipose tissue, Int. J. Obesity 38 (11) (2014) 1432-1439, http://doi.org/10.1038/ijo.2014.33.

[95]

T. Ito-Nagahata, C. Kurihara, M. Hasebe, et al., Stilbene analogs of resveratrol improve insulin resistance through activation of AMPK, Biosci. Biotechnol. Biochem. 77 (6) (2013) 1229-1235, http://doi.org/10.1271/bbb.121000.

[96]

C.N.V. Prasad, T. Anjana, A. Banerji, et al., Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells, FEBS Lett. 584 (3) (2010) 531-536, http://doi.org/10.1016/j.febslet.2009.11.092.

[97]

G. Gandhia, G. Jothib, P. Antonya, et al., Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway, Eur. J. Pharmacol. 745 (2014) 201-216, http://doi.org/10.1016/j.ejphar.2014.10.044.

[98]

S.M. Park, J.S. Choi, T.G. Nam, Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone, Eur. J. Pharmacol. 779 (2016) 157-167, http://doi.org/10.1016/j.ejphar.2016.03.023.

[99]

S. Anand, V.S. Muthusamy, S. Sujatha, et al., Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes, FEBS Lett. 584 (14) (2010) 3170-3178, http://doi.org/10.1016/j.febslet.2010.06.004.

[100]

Y.I. Kim, S.Z. Hirai, T.S. Goto, et al., Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice, PLoS One 7 (2) (2012) 31317, http://doi.org/10.1371/journal.pone.0031317.

[101]

T.S. Goto, Y.I. Kim, K.F. Funakoshi, Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways, Am. J. Physiol.-Endocrinol. Metab. 301 (5) (2011) 1022-1032, http://doi.org/10.1152/ajpendo.00061.2011.

[102]

T. Goto, N. Takahashi, S.B. Kato, Bixin activates PPAR alpha and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice, J. Agric. Food Chem. 60 (48) (2012) 11952-11958, http://doi.org/10.1021/jf303639f.

[103]

B. Huang, H.D. Yuan, K.D. Yeon, Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways, J. Agric. Food Chem. 59 (8) (2011) 3666-3673, http://doi.org/10.1021/jf104814t.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 December 2019
Revised: 14 February 2020
Accepted: 03 April 2020
Published: 22 April 2020
Issue date: September 2020

Copyright

© 2020 "Society information". Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (31900292), Science and Technology Development Program of Henan Province (202102110149, 192102110112, and 182102410083) and Science and Technology Project of Kaifeng (1908005, and 1803010).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return