Journal Home > Volume 9 , Issue 2

Fermented plant-based foods and beverages constitute foods of high nutritional and functional value with appreciated health beneficial effects. They represent a natural and sustainable alternative to counteract the large wastage of vegetables and fruits due to their short shelf life. Usually, the use of controlled fermentation process using autochthonous microorganisms adapted to their vegetable matrix is preferred instead of traditionally spontaneous fermentation to designing fermented vegetable foods with the desirable sensory, technological, nutritional and functional properties. This review summarizes the autochthonous microorganisms selected as starters for the successful fermentation of vegetables and fruits. The main beneficial properties of autochthonous starters and fermented vegetable products with a focus on human health are revised.


menu
Abstract
Full text
Outline
About this article

An overview of plant-autochthonous microorganisms and fermented vegetable foods

Show Author's information Sebastian Torresa,b( )Hernán VerónaLuciana ContrerasaMaria I. Islaa,b
Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) – CONICET, Tucumán, Argentina
Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina

Peer review under responsibility of KeAi Communications Co., Ltd.

Abstract

Fermented plant-based foods and beverages constitute foods of high nutritional and functional value with appreciated health beneficial effects. They represent a natural and sustainable alternative to counteract the large wastage of vegetables and fruits due to their short shelf life. Usually, the use of controlled fermentation process using autochthonous microorganisms adapted to their vegetable matrix is preferred instead of traditionally spontaneous fermentation to designing fermented vegetable foods with the desirable sensory, technological, nutritional and functional properties. This review summarizes the autochthonous microorganisms selected as starters for the successful fermentation of vegetables and fruits. The main beneficial properties of autochthonous starters and fermented vegetable products with a focus on human health are revised.

Keywords: Microorganisms, Probiotics, Functional foods, Plant-autochthonous, Fermented vegetable foods, Lactic acid bacteria, Probiotic

References(149)

[1]
B.J.B. Wood, Fermentation, Origins and Applications, Ref. Module Food Sci., Elsevier, 2016, http://dx.doi.org/10.1016/B978-0-08-100596-5.00135-9.
DOI
[2]
E. Peñas, C. Martinez-Villaluenga, J. Frias, Sauerkraut, Fermented Foods ˜Health Dis. Prev., Elsevier, 2017, pp. 557–576, http://dx.doi.org/10.1016/B978-0-12-802309-9.00024-8.
DOI
[3]

T. Xiong, Q. Guan, S. Song, et al., Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation, Food Control 26 (2012) 178–181, http://dx.doi.org/10.1016/j.foodcont.2012.01.027.

[4]

S. Lee, J. Lee, Y.I. Jin, et al., Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce, LWT-Food Sci. Technol. 79 (2017) 518–524, http://dx.doi.org/10.1016/j.lwt.2016.08.040.

[5]

A. Septembre-Malaterre, F. Remize, P. Poucheret, Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation, Food Res. Int. Ott. Ont. 104 (2018) 86–99, http://dx.doi.org/10.1016/j.foodres.2017.09.031.

[6]

Z. Wang, Y. Shao, Effects of microbial diversity on nitrite concentration in pao cai, a naturally fermented cabbage product from China, Food Microbiol. 72 (2018) 185–192, http://dx.doi.org/10.1016/j.fm.2017.12.003.

[7]

Z. Jun, W. Shuaishuai, Z. Lihua, et al., Culture-dependent and -independent analysis of bacterial community structure in Jiangshui, a traditional Chinese fermented vegetable food, LWT-Food Sci. Technol. 96 (2018) 244–250, http://dx.doi.org/10.1016/j.lwt.2018.05.038.

[8]

Z.H. Cao, J.M. Green-Johnson, N.D. Buckley, et al., Bioactivity of soy-based fermented foods: a review, Biotechnol. Adv. 37 (2019) 223–238, http://dx.doi.org/10.1016/j.biotechadv.2018.12.001.

[9]

H.E. Verón, H.D. Di Risio, M.I. Isla, et al., Isolation and selection of potential probiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina, LWT-Food Sci. Technol. 84 (2017) 231–240, http://dx.doi.org/10.1016/j.lwt.2017.05.058.

[10]

H.E. Verón, P. Gauffin Cano, E. Fabersani, et al., Cactus pear (Opuntia ficus-indica) juice fermented with autochthonous Lactobacillus plantarum S-811, Food Funct. 10 (2019) 1085–1097, http://dx.doi.org/10.1039/C8FO01591K.

[11]
R. Di Cagno, P. Filannino, M. Gobbetti, Fermented foods: fermented vegetables and other products, in: Encycl. Food Health, Elsevier, 2016, pp. 668–674, http://dx.doi.org/10.1016/B978-0-12-384947-2.00284-1.
DOI
[12]

R. Di Cagno, R. Coda, M. De Angelis, et al., Exploitation of vegetables and fruits through lactic acid fermentation, Food Microbiol. 33 (2013) 1–10, http://dx.doi.org/10.1016/j.fm.2012.09.003.

[13]

E. Vera-Pingitore, M.E. Jimenez, A. Dallagnol, et al., Screening and characterization of potential probiotic and starter bacteria for plant fermentations, LWT-Food Sci. Technol. 71 (2016) 288–294, http://dx.doi.org/10.1016/j.lwt.2016.03.046.

[14]

B. Vitali, G. Minervini, C.G. Rizzello, et al., Novel probiotic candidates for humans isolated from raw fruits and vegetables, Food Microbiol. 31 (2012) 116–125, http://dx.doi.org/10.1016/j.fm.2011.12.027.

[15]

S.D. Todorov, J.G. Leblanc, B.D.G.M. Franco, Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya, World J. Microbiol. Biotechnol. 28 (2012) 973–984, http://dx.doi.org/10.1007/s11274-011-0895-z.

[16]

S. Torres, E. Fabersani, A. Marquez, et al., Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics, Eur. J. Nutr. 58 (2019) 27–43, http://dx.doi.org/10.1007/s00394-018-1790-2.

[17]

J. Beganovic, B. Kos, A. Lebo ´ s Pavunc, et al., Traditionally produced ˇ sauerkraut as source of autochthonous functional starter cultures, Microbiol. Res. 169 (2014) 623–632, http://dx.doi.org/10.1016/j.micres.2013.09.015.

[18]

S.K. Panda, S.K. Behera, X. Witness Qaku, et al., Quality enhancement of prickly pears (Opuntia sp. ) juice through probiotic fermentation using Lactobacillus fermentum - ATCC 9338, LWT-Food Sci. Technol. 75 (2017) 453–459, http://dx.doi.org/10.1016/j.lwt.2016.09.026.

[19]

H. Lee, H. Yoon, Y. Ji, et al., Functional properties of Lactobacillus strains isolated from kimchi, Int. J. Food Microbiol. 145 (2011) 155–161, http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.003.

[20]

N. La Anh, Health-promoting microbes in traditional Vietnamese fermented foods: a review, Food Sci. Hum. Wellness. 4 (2015) 147–161, http://dx.doi.org/10.1016/j.fshw.2015.08.004.

[21]
S. Chaluvadi, A.T. Hotchkiss, K.L. Yam, Gut Microbiota, Probiotics Prebiotics Synbiotics, Elsevier, 2016, pp. 515–523, http://dx.doi.org/10.1016/B978-0-12-802189-7.00036-8.
DOI
[22]

M. Sharma, G. Shukla, Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer, Front. Microbiol. 7 (2016), http://dx.doi.org/10.3389/fmicb.2016.01940.

[23]

B.A. Shenderov, Metabiotics: novel idea or natural development of probiotic conception, Microb. Ecol. Health Dis. 24 (2013) 20399, http://dx.doi.org/10.3402/mehd.v24i0.20399.

[24]

D. Compare, A. Rocco, P. Coccoli, et al., Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome, BMC Gastroenterol. 17 (2017) 53, http://dx.doi.org/10.1186/s12876-017-0605-x.

[25]

Y. Haileselassie, M. Navis, N. Vu, et al., Postbiotic modulation of retinoic acid imprinted mucosal-like dendritic cells by probiotic Lactobacillus reuteri 17938 in vitro, Front. Immunol. 7 (2016) 96, http://dx.doi.org/10.3389/fimmu.2016.00096.

[26]

S.R. Konstantinov, E.J. Kuipers, M.P. Peppelenbosch, Functional genomic analyses of the gut microbiota for CRC screening, Nat. Rev. Gastroenterol. Hepatol. 10 (2013) 741–745, http://dx.doi.org/10.1038/nrgastro.2013.178.

[27]

K. Tsilingiri, M. Rescigno, Postbiotics: what else? Benef. Microbes 4 (2013) 101–107, http://dx.doi.org/10.3920/BM2012.0046.

[28]

C. Klemashevich, C. Wu, D. Howsmon, et al., Rational identification of diet-derived postbiotics for improving intestinal microbiota function, Curr. Opin. Biotechnol. 26 (2014) 85–90, http://dx.doi.org/10.1016/j.copbio.2013.10.006.

[29]

G.V. de Melo Pereira, B. de Oliveira Coelho, A.I. Magalhães Júnior, et al., How to select a probiotic? A review and update of methods and criteria, Biotechnol. Adv. 36 (2018) 2060–2076, http://dx.doi.org/10.1016/j.biotechadv.2018.09.003.

[30]

Z. Zalán, A. Halász, Á. Baráth, et al., Fermented red beet juice, Handb. Plant-Based Fermented Food Beverage Technol. (2012), http://dx.doi.org/10.1201/b12055-24.

[31]

L. Ruiz Rodríguez, E. Vera Pingitore, G. Rollan, et al., Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough, Lett. Appl. Microbiol. 63 (2016) 147–154, http://dx.doi.org/10.1111/lam.12604.

[32]

A. Fessard, E. Bourdon, B. Payet, et al., Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves, Can. J. Microbiol. 62 (2016) 550–561, http://dx.doi.org/10.1139/cjm-2015-0624.

[33]

A. Mamhoud, L. Nionelli, T. Bouzaine, et al., Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation, Int. J. Food Microbiol. 225 (2016) 9–19, http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.004.

[34]

G.D. Sáez, E.M. Hébert, L. Saavedra, et al., Molecular identification and technological characterization of lactic acid bacteria isolated from fermented kidney beans flours (Phaseolus vulgaris L. and P. coccineus) in northwestern Argentina, Food Res. Int. 102 (2017) 605–615, http://dx.doi.org/10.1016/j.foodres.2017.09.042.

[35]

S.L. Carrizo, C.E. Montes de Oca, M.E. Hébert, et al., Lacticacid bacteria from Andean grain Amaranth: a source of vitamins and functional value enzymes, J. Mol. Microbiol. Biotechnol. 27 (2017) 289–298, http://dx.doi.org/10.1159/000480542.

[36]

T. Kawahara, H. Otani, Stimulatory effect of lactic acid bacteria from commercially available Nozawana-zuke pickle on cytokine expression by mouse spleen cells, Biosci. Biotechnol. Biochem. 70 (2006) 411–417, http://dx.doi.org/10.1271/bbb.70.411.

[37]

J.H. Chang, Y.Y. Shim, S.K. Cha, et al., Probiotic characteristics of lactic acid bacteria isolated from kimchi, J. Appl. Microbiol. 109 (2010) 220–230, http://dx.doi.org/10.1111/j.1365-2672.2009.04648.x.

[38]

R. Di Cagno, G. Minervini, C.G. Rizzello, et al., Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies, Food Microbiol. 28 (2011) 1062–1071, http://dx.doi.org/10.1016/j.fm.2011.02.011.

[39]

R. Di Cagno, G. Minervini, C.G. Rizzello, et al., Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies, Food Microbiol. 28 (2011) 1062–1071, http://dx.doi.org/10.1016/j.fm.2011.02.011.

[40]

K. Ramasamy, N.Z.A. Rahman, S.C. Chin, et al., Probiotic potential of lactic acid bacteria from fermented Malaysian food or milk products: probiotic from fermented food or milk products, Int. J. Food Sci. Technol. 47 (2012) 2175–2183, http://dx.doi.org/10.1111/j.1365-2621.2012.03085.x.

[41]
U. Pato, I.S. Surono, Bile and acid tolerance of lactic acid bacteria isolated from tempoyak and their probiotic potential, 9, 2013, pp. 14.
[42]

D. Wouters, N. Bernaert, N. Anno, et al., Application and validation of autochthonous lactic acid bacteria starter cultures for controlled leek fermentations and their influence on the antioxidant properties of leek, Int. J. Food Microbiol. 165 (2013) 121–133, http://dx.doi.org/10.1016/j.ijfoodmicro.2013.04.016.

[43]

M. Appukutty, K. Ramasamy, S. Rajan, et al., Effect of orally administered soy milk fermented with Lactobacillus plantarum LAB12 and physical exercise on murine immune responses, Benef. Microbes 6 (2015) 491–496, http://dx.doi.org/10.3920/BM2014.0129.

[44]

L. Nuraida, A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods, Food Sci. Hum. Wellness. 4 (2015) 47–55, http://dx.doi.org/10.1016/j.fshw.2015.06.001.

[45]

R. Di Cagno, P. Filannino, O. Vincentini, et al., Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L. ) fruit puree, Food Microbiol. 59 (2016) 176–189, http://dx.doi.org/10.1016/j.fm.2016.06.009.

[46]

R. Di Cagno, P. Filannino, M. Gobbetti, Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice, Int. J. Food Microbiol. 248 (2017) 56–62, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.014.

[47]

A.L. Freire, C.L. Ramos, P.N. da Costa Souza, et al., Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast, Int. J. Food Microbiol. 248 (2017) 39–46, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.02.011.

[48]

T. Oliveira, E. Ramalhosa, L. Nunes, et al., Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal, Innov. Food Sci. Emerg. Technol. 44 (2017) 167–172, http://dx.doi.org/10.1016/j.ifset.2017.06.003.

[49]

H.A. Sakandar, K. Usman, M. Imran, Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir), LWT-Food Sci. Technol. 91 (2018) 271–277, http://dx.doi.org/10.1016/j.lwt.2018.01.023.

[50]

R. Coda, R. Di Cagno, M.O. Edema, et al., Exploitation of Acha (Digitaria exiliis) and Iburu (Digitaria iburua) flours: chemical characterization and their use for sourdough fermentation, Food Microbiol. 27 (2010) 1043–1050, http://dx.doi.org/10.1016/j.fm.2010.07.006.

[51]

T. Lefeber, M. Janssens, F. Moens, et al., Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria, Appl. Environ. Microbiol. 77 (2011) 6694–6698, http://dx.doi.org/10.1128/AEM.00594-11.

[52]

T. Lefeber, Z. Papalexandratou, W. Gobert, et al., On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof, Food Microbiol. 30 (2012) 379–392, http://dx.doi.org/10.1016/j.fm.2011.12.021.

[53]

S. Visintin, V. Alessandria, A. Valente, et al., Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa, Int. J. Food Microbiol. 216 (2016) 69–78, http://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.004.

[54]

S. Visintin, L. Ramos, N. Batista, et al., Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation, Int. J. Food Microbiol. 257 (2017) 31–40, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.004.

[55]

R. Di Cagno, R.F. Surico, S. Siragusa, et al., Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, french beans or marrows, Int. J. Food Microbiol. 127 (2008) 220–228, http://dx.doi.org/10.1016/j.ijfoodmicro.2008.07.010.

[56]

A. Fessard, A. Kapoor, J. Patche, et al., Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas, Microorganisms 5 (2017) 23, http://dx.doi.org/10.3390/microorganisms5020023.

[57]

C.G. Rizzello, A. Lorusso, M. Montemurro, et al., Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread, Food Microbiol. 56 (2016) 1–13, http://dx.doi.org/10.1016/j.fm.2015.11.018.

[58]

C.G. Rizzello, A. Lorusso, V. Russo, et al., Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria, Int. J. Food Microbiol. 241 (2017) 252–261, http://dx.doi.org/10.1016/j.ijfoodmicro.2016.10.035.

[59]

G. Rocchetti, F. Miragoli, C. Zacconi, et al., Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds, Food Res. Int. 119 (2019) 886–894, http://dx.doi.org/10.1016/j.foodres.2018.10.073.

[60]

J.H. Ye, L.Y. Huang, N.S. Terefe, et al., Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria, Food Chem. 286 (2019) 616–623, http://dx.doi.org/10.1016/j.foodchem.2019.02.030.

[61]

G.L. Wheeler, C.M. Grant, Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae, Physiol. Plant. 120 (2004) 12–20, http://dx.doi.org/10.1111/j.0031-9317.2004.0193.x.

[62]

C.G. Rizzello, T. Mueller, R. Coda, et al., Synthesis of 2-methoxy benzoquinone and 2, 6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ, Microb. Cell Factories. 12 (2013) 105, http://dx.doi.org/10.1186/1475-2859-12-105.

[63]

F.A. Mazlan, M.S.M. Annuar, Y. Sharifuddin, Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential, Peer J. 3 (2015) e1376, http://dx.doi.org/10.7717/peerj.1376.

[64]

W.K.A. da Costa, L.R. Brandão, M.E. Martino, et al., Qualification of tropical fruit-derived Lactobacillus plantarum strains as potential probiotics acting on blood glucose and total cholesterol levels in Wistar rats, Food Res. Int. (2018), http://dx.doi.org/10.1016/j.foodres.2018.08.035.

[65]

H.H. Chiu, C.C. Tsai, H.Y. Hsih, et al., Screening from pickled vegetables the potential probiotic strains of lactic acid bacteria able to inhibit the Salmonella invasion in mice, J. Appl. Microbiol. 104 (2) (2007) 605–612, http://dx.doi.org/10.1111/j.1365-2672.2007.03573.x.

[66]

Z. Yu, X. Zhang, S. Li, et al., Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut, World J. Microbiol. Biotechnol. 29 (2013) 489–498, http://dx.doi.org/10.1007/s11274-012-1202-3.

[67]

J. Feng, P. Liu, X. Yang, et al., Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables, World J. Microbiol. Biotechnol. 31 (2015) 1947–1954, http://dx.doi.org/10.1007/s11274-015-1939-6.

[68]

K.W. Lee, J.M. Shim, S.K. Park, et al., Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable, LWT-Food Sci. Technol. 71 (2016) 130–137, http://dx.doi.org/10.1016/j.lwt.2016.03.029.

[69]

K.H. Lee, Y.J. Bong, H.A. Lee, et al., Probiotic effects of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from kimchi, J. Korean Soc. Food Sci. Nutr. 45 (2016) 12–19, http://dx.doi.org/10.3746/jkfn.2016.45.1.012.

[70]

S.H. Son, H.L. Jeon, S.J. Yang, et al., Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity, Food Sci. Biotechnol. 27 (2017) 123–129, http://dx.doi.org/10.1007/s10068-017-0212-1.

[71]

H.J. Jang, M.W. Song, N.K. Lee, et al., Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi, J. Food Sci. Technol. 55 (2018) 3174–3180, http://dx.doi.org/10.1007/s13197-018-3245-4.

[72]

B. Kusumawati, S. Jenie, Setyahadi, et al., Selection of indigenous lactic acid bacteria as probiotic strain to reduce cholesterol, J. Mikrobiol. Indones. 8 (2003) 39–43.

[73]

E.A. Choi, H.C. Chang, Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi, LWT-Food Sci. Technol. 62 (2015) 210–217, http://dx.doi.org/10.1016/j.lwt.2015.01.019.

[74]

T. Liu, K. Zhou, S. Yin, et al., Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan pickle, Int. J. Biol. Macromol. 134 (2019) 516–526, http://dx.doi.org/10.1016/j.ijbiomac.2019.05.010.

[75]

N.K. Lee, K.J. Han, S.H. Son, et al., Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi, LWT-Food Sci. Technol. 64 (2015) 1036–1041, http://dx.doi.org/10.1016/j.lwt.2015.07.019.

[76]

A. Benítez-Cabello, B. Calero-Delgado, F. Rodríguez-Gómez, et al., Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms, Front. Microbiol. 10 (2019), http://dx.doi.org/10.3389/fmicb.2019.00836.

[77]

M. Gobbetti, M. De Angelis, R. Di Cagno, et al., Novel insights on the functional/nutritional features of the sourdough fermentation, Int. J. Food Microbiol. 302 (2019) 103–113, http://dx.doi.org/10.1016/j.ijfoodmicro.2018.05.018.

[78]

M. Aponte, G. Blaiotta, F. La Croce, et al., Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation, Food Microbiol. 30 (2012) 8–16, http://dx.doi.org/10.1016/j.fm.2011.10.005.

[79]

C. Porru, F. Rodríguez-Gómez, A. Benítez-Cabello, et al., Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations, Food Microbiol. 69 (2018) 33–42, http://dx.doi.org/10.1016/j.fm.2017.07.010.

[80]

M. Iorizzo, S.J. Lombardi, V. Macciola, et al., Technological potential of Lactobacillus strains isolated from fermented green olives: in vitro studies with emphasis on oleuropein-degrading capability, Sci. World J. 2016 (2016) 1–11, http://dx.doi.org/10.1155/2016/1917592.

[81]

C. Botta, T. Langerholc, A. Cencič, et al., In vitro selection and characterization of new probiotic candidates from table olive microbiota, PLoS One 9 (2014), e94457, http://dx.doi.org/10.1371/journal.pone.0094457.

[82]

B. Guantario, P. Zinno, E. Schifano, et al., In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives, Front. Microbiol. 9 (2018), http://dx.doi.org/10.3389/fmicb.2018.00595.

[83]

I. D'Antuono, A. Bruno, V. Linsalata, et al., Fermented Apulian table olives: effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility, Food Chem. 248 (2018) 137–145, http://dx.doi.org/10.1016/j.foodchem.2017.12.032.

[84]

G. Saxami, A. Karapetsas, E. Lamprianidou, et al., Two potential probiotic Lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines, J. Funct. Foods 24 (2016) 461–471, http://dx.doi.org/10.1016/j.jff.2016.04.036.

[85]
L. De Vuyst, S. Van Kerrebroeck, F. Leroy, Chapter two - microbial ecology and process technology of sourdough fermentation, in: S. Sariaslani, G.M. Gadd (Eds. ), Adv. Appl. Microbiol., Academic Press, 2017, pp. 49–160, http://dx.doi.org/10.1016/bs.aambs.2017.02.003.
DOI
[86]

O.R. Ogunremi, K. Banwo, A.I. Sanni, Starter-culture to improve the quality of cereal-based fermented foods: trends in selection and application, Curr. Opin. Food Sci. 13 (2017) 38–43, http://dx.doi.org/10.1016/j.cofs.2017.02. 003.

[87]

M.E. Ortiz, J. Bleckwedel, R.R. Raya, et al., Biotechnological and in situ food production of polyols by lactic acid bacteria, Appl. Microbiol. Biotechnol. 97 (2013) 4713–4726, http://dx.doi.org/10.1007/s00253-013-4884-z.

[88]

E. Pontonio, L. Nionelli, J.A. Curiel, et al., Iranian wheat flours from rural and industrial mills: exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads, Food Microbiol. 47 (2015) 99–110, http://dx.doi.org/10.1016/j.fm.2014.10.011.

[89]

S.L. Carrizo, C.E. Montes de Oca, J.E. Laiño, et al., Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins, Food Res. Int. 89 (2016) 488–494, http://dx.doi.org/10.1016/j.foodres.2016.08.013.

[90]

F. Manini, M.C. Casiraghi, K. Poutanen, et al., Characterization of lactic acid bacteria isolated from wheat bran sourdough, LWT-Food Sci. Technol. 66 (2016) 275–283, http://dx.doi.org/10.1016/j.lwt.2015.10.045.

[91]

M. Palla, M. Agnolucci, A. Calzone, et al., Exploitation of autochthonous Tuscan sourdough yeasts as potential starters, Int. J. Food Microbiol. 302 (2019) 59–68, http://dx.doi.org/10.1016/j.ijfoodmicro.2018.08.004.

[92]

M. De Angelis, R. Coda, M. Silano, et al., Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour, J. Cereal Sci. 43 (2006) 301–314, http://dx.doi.org/10.1016/j.jcs.2005.12.008.

[93]

R. Di Cagno, M. De Angelis, P. Lavermicocca, et al., Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance, Appl. Environ. Microbiol. 68 (2002) 623–633, http://dx.doi.org/10.1128/aem.68.2.623-633.2002.

[94]

R. Di Cagno, M. De Angelis, S. Auricchio, et al., Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients, Appl. Environ. Microbiol. 70 (2004) 1088–1096, http://dx.doi.org/10.1128/aem.70.2.1088-1096.2004.

[95]

R. di Cagno, M. de Angelis, G. Alfonsi, et al., Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance, J. Agric. Food Chem. 53 (2005) 4393–4402, http://dx.doi.org/10.1021/jf048341+.

[96]

K.A. Scherf, Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease, Curr. Opin. Food Sci. 25 (2019) 35–41, http://dx.doi.org/10.1016/j.cofs.2019.02.003.

[97]

A. Lorusso, R. Coda, M. Montemurro, et al., Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages, Foods 7 (2018) 51, http://dx.doi.org/10.3390/foods7040051.

[98]

H. Aoki, I. Uda, K. Tagami, et al., The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus, Biosci. Biotechnol. Biochem. 67 (2003) 1018–1023, http://dx.doi.org/10.1271/bbb.67.1018.

[99]

M.R. Park, S. Oh, S.J. Son, et al., Bacillus licheniformis isolated from traditional Korean food resources enhances the longevity of Caenorhabditis elegans through serotonin signaling, J. Agric. Food Chem. 63 (2015) 10227–10233, http://dx.doi.org/10.1021/acs.jafc.5b03730.

[100]

B. Kim, J. Kwon, M.S. Kim, et al., Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice, PLoS One 13 (2018), e0210120, http://dx.doi.org/10.1371/journal.pone.0210120.

[101]

Y. Okada, Y. Tsuzuki, H. Furuhashi, et al., Tu1855 - a novel probiotic yeast isolated from Japanese "Miso" exerts a therapeutic effect on DSS induced colitis possibly mediated by IL-10 producing Cd11C + Dendritic cells, Gastroenterology 154 (2018), http://dx.doi.org/10.1016/S0016-5085(18)33481-4, S-1039.

[102]

R. Di Cagno, R.F. Surico, A. Paradiso, et al., Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices, Int. J. Food Microbiol. 128 (2009) 473–483, http://dx.doi.org/10.1016/j.ijfoodmicro.2008.10.017.

[103]

R. Di Cagno, R.F. Surico, G. Minervini, et al., Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L. ) to be stored at room temperature, Int. J. Food Microbiol. 130 (2009) 108–116, http://dx.doi.org/10.1016/j.ijfoodmicro.2009.01.019.

[104]

R. Di Cagno, G. Cardinali, G. Minervini, et al., Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr. ) and use of autochthonous starters for minimally processing, Food Microbiol. 27 (2010) 381–389, http://dx.doi.org/10.1016/j.fm.2009.11.012.

[105]

R. Di Cagno, R.F. Surico, G. Minervini, et al., Exploitation of sweet cherry (Prunus avium L. ) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria, Food Microbiol. 28 (2011) 900–909, http://dx.doi.org/10.1016/j.fm.2010.12.008.

[106]

R. Coda, A. Lanera, A. Trani, et al., Yogurt-like beverages made of a mixture of cereals, soy and grape must: microbiology, texture, nutritional and sensory properties, Int. J. Food Microbiol. 155 (2012) 120–127, http://dx.doi.org/10.1016/j.ijfoodmicro.2012.01.016.

[107]

G.V. de M. Pereira, M.G. da C.P. Miguel, C.L. Ramos, et al., Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture, Appl. Environ. Microbiol. 78 (2012) 5395–5405, http://dx.doi.org/10.1128/AEM.01144-12.

[108]

V. Ahmad, A.N. Muhammad Zafar Iqbal, M. Haseeb, et al., Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste, Anaerobe 27 (2014) 87–95, http://dx.doi.org/10.1016/j.anaerobe.2014.04.001.

[109]

E. Salvucci, J.G. LeBlanc, G. Pérez, Technological properties of lactic acid bacteria isolated from raw cereal material, LWT-Food Sci. Technol. 70 (2016) 185–191, http://dx.doi.org/10.1016/j.lwt.2016.02.043.

[110]

E.F. Garcia, W.A. Luciano, D.E. Xavier, et al., Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains, Front. Microbiol. 7 (2016), http://dx.doi.org/10.3389/fmicb.2016.01371.

[111]

H.D. Ouattara, H.G. Ouattara, M. Droux, et al., Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: species diversity and citrate lyase production, Int. J. Food Microbiol. 256 (2017) 11–19, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.05.008.

[112]

R. Di Cagno, P. Filannino, I. Cavoski, et al., Bioprocessing technology to exploit organic palm date (Phoenix dactylifera L. cultivar Siwi) fruit as a functional dietary supplement, J. Funct. Foods 31 (2017) 9–19, http://dx.doi.org/10.1016/j.jff.2017.01.033.

[113]

E. Jiménez, A. Yépez, A. Pérez-Cataluña, et al., Exploring diversity and biotechnological potential of lactic acid bacteria from tocosh - traditional Peruvian fermented potatoes - by high throughput sequencing (HTS) and culturing, LWT-Food Sci. Technol. 87 (2018) 567–574, http://dx.doi.org/10.1016/j.lwt.2017.09.033.

[114]

X. Xu, D. Luo, Y. Bao, et al., Characterization of diversity and probiotic efficiency of the autochthonous lactic acid bacteria in the fermentation of selected raw fruit and vegetable juices, Front. Microbiol. 9 (2018), http://dx.doi.org/10.3389/fmicb.2018.02539.

[115]

R. Di Cagno, P. Filannino, V. Cantatore, et al., Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread, Food Microbiol. 82 (2019) 218–230, http://dx.doi.org/10.1016/j.fm.2019.02.007.

[116]

A. Fessard, F. Remize, Genetic and technological characterization of lactic acid bacteria isolated from tropically grown fruits and vegetables, Int. J. Food Microbiol. 301 (2019) 61–72, http://dx.doi.org/10.1016/j.ijfoodmicro.2019.05.003.

[117]

M. Banić, K. Uroić, A. Leboš Pavunc, et al., Characterization of S-layer proteins of potential probiotic starter culture Lactobacillus brevis SF9B isolated from sauerkraut, LWT-Food Sci. Technol. 93 (2018) 257–267, http://dx.doi.org/10.1016/j.lwt.2018.03.054.

[118]

T. Touret, M. Oliveira, T. Semedo-Lemsaddek, Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations, PLoS One 13 (2018), e0203501, http://dx.doi.org/10.1371/journal.pone.0203501.

[119]

J.Y. Jung, S.H. Lee, H.J. Lee, et al., Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation, Int. J. Food Microbiol. 153 (2012) 378–387, http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.030.

[120]

A. Bevilacqua, C. Altieri, M.R. Corbo, et al., Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures, J. Food Sci. 75 (2010) M536–M544, http://dx.doi.org/10.1111/j.1750-3841.2010.01793.x.

[121]

H. Abriouel, N. Benomar, R. Lucas, et al., Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives, Int. J. Food ˜Microbiol. 144 (2011) 487–496, http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.006.

[122]

H. Abriouel, B. Pérez Montoro, C.S. Casimiro-Soriguer, et al., Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence, Front. Microbiol. 8 (2017), http://dx.doi.org/10.3389/fmicb.2017.00891.

[123]

A.A. Argyri, G. Zoumpopoulou, K.A.G. Karatzas, et al., Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests, Food Microbiol. 33 (2013) 282–291, http://dx.doi.org/10.1016/j.fm.2012.10.005.

[124]

B.P. Montoro, N. Benomar, L. Lavilla Lerma, et al., Fermented Aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains, Front. Microbiol. 7 (2016), http://dx.doi.org/10.3389/fmicb.2016.01583.

[125]

M. Tufariello, M. Durante, F.A. Ramires, et al., New process for production of fermented black table olives using selected autochthonous microbial resources, Front. Microbiol. 6 (2015), http://dx.doi.org/10.3389/fmicb.2015.01007.

[126]

H. Ho, M. Wills, Identification of a potential probiotic strain, Lactobacillus gaseri ha4, from naturally fermented food, Proc. Natl. Biotechnol. Conf. 2 (2013) 157–161.

[127]

L. Nionelli, N. Curri, J.A. Curiel, et al., Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation, Food Microbiol. 44 (2014) 96–107, http://dx.doi.org/10.1016/j.fm.2014.05.011.

[128]

L. Nionelli, E. Pontonio, M. Gobbetti, et al., Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation, Int. J. Food Microbiol. 266 (2018) 173–182, http://dx.doi.org/10.1016/j.ijfoodmicro.2017.12.002.

[129]

L. Ruiz Rodríguez, E. Vera Pingitore, G. Rollan, et al., Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs, J. Appl. Microbiol. 120 (2016) 1289–1301, http://dx.doi.org/10.1111/jam.13104.

[130]

M. Verni, C. Wang, M. Montemurro, et al., Exploring the microbiota of Faba bean: functional characterization of lactic acid bacteria, Front. Microbiol. 8 (2017), http://dx.doi.org/10.3389/fmicb.2017.02461.

[131]

A.Y. Bustos, C.L. Gerez, L.G. Mohtar Mohtar, et al., Lactic acid fermentation improved textural behaviour, phenolic compounds and antioxidant activity of Chia '(Salvia hispanica L. ) dough, Food Technol. Biotechnol. 55 (2017) 381–389, http://dx.doi.org/10.17113/ftb.55.03.17.5133.

[132]

G.D. Sáez, L. Saavedra, E.M. Hebert, et al., Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina, LWT-Food Sci. Technol. 93 (2018) 249–256, http://dx.doi.org/10.1016/j.lwt.2018.03.040.

[133]

X.Q. Zeng, D.D. Pan, Y.X. Guo, The probiotic properties of Lactobacillus buchneri P2, J. Appl. Microbiol. (2009), http://dx.doi.org/10.1111/j.1365-2672.2009.04608.x.

[134]

M. Yang, R. Jiang, M. Liu, et al., Study of the probiotic properties of lactic acid bacteria isolated from Chinese traditional fermented pickles: probiotic property of lab from pickle, J. Food Process. Preserv. 41 (2017), e12954, http://dx.doi.org/10.1111/jfpp.12954.

[135]

A. Liu, G. Liu, C. Huang, et al., The bacterial diversity of ripened Guang'yuan Suancai and in vitro evaluation of potential probiotic lactic acid bacteria isolated from Suancai, LWT - Food Sci. Technol. 85 (2017) 175–180, http://dx.doi.org/10.1016/j.lwt.2017.07.021.

[136]

X. Li, J. Li, M. Li, et al., Screening and functional properties of cholesterol-degrading lactic acid bacteria from Jiangshui, Wei Sheng Wu Xue Bao 55 (2015) 1001–1009.

[137]

J. Yang, Y. Ji, H. Park, et al., Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel. ), Int. J. Food Microbiol. 191 (2014) 164–171, http://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.016.

[138]

S. Kindoli, H.A. Lee, J.H. Kim, Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang, J. Microbiol. Biotechnol. 22 (2012) 1092–1100.

[139]

M.J. Cho, J.Y. Lee, J.H. Kim, Microbial and physiochemical properties of Cheonggukjang fermented using Bacillus strains with antibacterial or antifungal activities, Food Sci. Biotechnol. 23 (2014) 1525–1532, http://dx.doi.org/10.1007/s10068-014-0208-z.

[140]

H.L. Jeon, S.J. Yang, S.H. Son, et al., Evaluation of probiotic Bacillus subtilis P229 isolated from cheonggukjang and its application in soybean fermentation, LWT-Food Sci. Technol. 97 (2018) 94–99, http://dx.doi.org/10.1016/j.lwt.2018.06.054.

[141]

K. Jampaphaeng, L. Cocolin, S. Maneerat, Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong), Ann. Microbiol. 67 (2017) 25–36, http://dx.doi.org/10.1007/s13213-016-1233-3.

[142]

S. Talebi, A. Makhdoumi, M. Bahreini, et al., Three novel Bacillus strains from a traditional lacto-fermented pickle as potential probiotics, PubMed NCBI 125 (2018) 888–896.

[143]

F.A. Oguntoyinbo, A.I. Sanni, C.M.A.P. Franz, et al., In vitro fermentation studies for selection and evaluation of Bacillus strains as starter cultures for the production of okpehe, a traditional African fermented condiment, Int. J. Food Microbiol. 113 (2007) 208–218, http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.006.

[144]

J.Y. Hong, S.H. Son, S.P. Hong, et al., Production of β-glucan, glutathione, and glutathione derivatives by probiotic Saccharomyces cerevisiae isolated from cucumber jangajji, LWT-Food Sci. Technol. 100 (2019) 114–118, http://dx.doi.org/10.1016/j.lwt.2018.10.048.

[145]
T. Borah, B. Gogoi, A. Khataniar, et al., Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam, 2019 (accessed August 5, 2019) https://pubag.nal.usda.gov/catalog/6287480.
DOI
[146]

J.C. Amorim, R.H. Piccoli, W.F. Duarte, Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages, Food Res. Int. 107 (2018) 518–527, http://dx.doi.org/10.1016/j.foodres.2018.02.054.

[147]
S. Paramithiotis, G. Papoutsis, E.H. Drosinos, Lactic acid fermentation of fruits and vegetables: an overview, lactic acid fermentation of fruits and vegetables, Spiros Paramithiotis, CRC Press, Taylor & Francis Group, Boca Raton. FL, 2017, pp. 1–12.
DOI
[148]
P. Russo, G. Caggianiello, M.P. Arena, et al., Lactic acid bacteria of fermented fruits and vegetables, lactic acid fermentation of fruits and vegetables, Spiros Paramithiotis, CRC Press, Taylor & Francis Group, Boca Raton. FL, 2017, pp. 19–32.
[149]

J. Szutowska, Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review, European Food Research and Technology (2020), http://dx.doi.org/10.1007/s00217-019-03425-7.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 August 2019
Revised: 10 February 2020
Accepted: 27 February 2020
Published: 28 February 2020
Issue date: June 2020

Copyright

© 2020 "Society information". Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Acknowledgements

Acknowledgment

The present review was supported by the grant PICT-2017-4436 from Agencia Nacional de Promoción Científica y Tecnológica.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return