AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (635 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Corn phytochemicals and their health benefits

Siyuan ShengTong LiRuiHai Liu( )
Department of Food Science, Cornell University, Ithaca, NY, 14850-7201, United States
Show Author Information

Abstract

Whole grain has a wide range of phytochemicals exhibiting health benefits of lowering risk of chronic diseases. As commonly consumed grain product, corn has unique profiles of nutrients and phytochemicals when compared with other whole grains. Corn nutrients and phytochemicals include vitamins (A, B, E, and K), minerals (Mg, P, and K), phenolic acids (ferulic acid, coumaric acid, and syringic acid), carotenoids and flavonoids (anthocyanins), and dietary fiber. More and more scientific evidences have shown that regular consumption of whole grain corn lowers the risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and obesity and improves digestive health. Further studies on bioactive compounds of corn related to health are needed.

References

[1]
C.W. Smith, J. Betrán, E.C.A. Runge, Corn: Origin, History, Technology, and Production, John Wiley, Hoboken, N.J.; [Chichester], 2004.
[2]

P.C. Mangelsdorf, The mystery of corn, Sci. Am. 183 (1950) 20-25.

[3]

P. Ranum, J.P. Peña-Rosas, M.N. Garcia-Casal, Global maize production, utilization, and consumption, Ann. N. Y. Acad. Sci. 1312 (2014) 105-112.

[4]
G. Lucier, R.L. Dettmann, Vegetables and melons situation and outlook yearbook, in: U. Economic Reseach Service (Ed.)Washington DC, 2008.
[5]

J.W. Anderson, T.J. Hanna, X. Peng, R.J. Kryscio, Whole grain foods and heart disease risk, J. Am. Coll. Nutr. 19 (2000) 291S-299S.

[6]

S. Liu, M.J. Stampfer, F.B. Hu, E. Giovannucci, E. Rimm, J.E. Manson, C.H. Hennekens, W.C. Willett, Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study, Am. J. Clin. Nutr. 70 (1999) 412-419.

[7]

P. Tighe, G. Duthie, N. Vaughan, J. Brittenden, W.G. Simpson, S. Duthie, W. Mutch, K. Wahle, G. Horgan, F. Thies, Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial, Am. J. Clin. Nutr. 92 (2010) 733-740.

[8]

P.B. Mellen, T.F. Walsh, D.M. Herrington, Whole grain intake and cardiovascular disease: a meta-analysis, Nutr. Metab. Cardiovasc. Dis. 18 (2008) 283-290.

[9]

T.T. Fung, F.B. Hu, M.A. Pereira, S. Liu, M.J. Stampfer, G.A. Colditz, W.C. Willett, Whole-grain intake and the risk of type 2 diabetes: a prospective study in men, Am. J. Clin. Nutr. 76 (2002) 535-540.

[10]

P. Xi, R.H. Liu, Whole food approach for type 2 diabetes prevention, Mol. Nutr. Food Res. 60 (2016) 1819-1836.

[11]

E.Q. Ye, S.A. Chacko, E.L. Chou, M. Kugizaki, S. Liu, Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain, J. Nutr. 142 (2012) 1304-1313.

[12]

J. Montonen, P. Knekt, R. Jarvinen, A. Aromaa, A. Reunanen, Whole-grain and fiber intake and the incidence of type 2 diabetes, Am. J. Clin. Nutr. 77 (2003) 622-629.

[13]

S.M. Liu, W.C. Willett, J.E. Manson, F.B. Hu, B. Rosner, G. Colditz, Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women, Am. J. Clin. Nutr. 78 (2003) 920-927.

[14]

K.J. Melanson, T.J. Angelopoulos, V.T. Nguyen, M. Martini, L. Zukley, J. Lowndes, T.J. Dube, J.J. Fiutem, B.W. Yount, J.M. Rippe, Consumption of whole-grain cereals during weight loss: effects on dietary quality, dietary fiber, magnesium, vitamin B-6, and obesity, J. Am. Diet. Assoc. 106 (2006) 1380-1388.

[15]

R.H. Liu, Whole grain phytochemicals and health, J. Cereal Sci. 46 (2007) 207-219.

[16]

J. Slavin, Whole grains and human health, Nutr. Res. Rev. 17 (2004) 99-110.

[17]

D.R. Jacobs Jr., L. Marquart, J. Slavin, L.H. Kushi, Whole-grain intake and cancer: an expanded review and meta-analysis, Nutr. Cancer 30 (1998) 85-96.

[18]

D.R. Jacobs Jr., J. Slavin, L. Marquart, Whole grain intake and cancer: a review of the literature, Nutr. Cancer 24 (1995) 221-229.

[19]

C.M. Kasum, D.R. Jacobs Jr., K. Nicodemus, A.R. Folsom, Dietary risk factors for upper aerodigestive tract cancers, Int. J. Cancer 99 (2002) 267-272.

[20]

K.K. Nicodemus, D.R. Jacobs Jr., A.R. Folsom, Whole and refined grain intake and risk of incident postmenopausal breast cancer (United States), Cancer Causes Control 12 (2001) 917-925.

[21]

A. Schatzkin, T. Mouw, Y. Park, A.F. Subar, V. Kipnis, A. Hollenbeck, M.F. Leitzmann, F.E. Thompson, Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study, Am. J. Clin. Nutr. 85 (2007) 1353-1360.

[22]

N. Mourouti, M.D. Kontogianni, C. Papavagelis, T. Psaltopoulou, M.G. Kapetanstrataki, P. Plytzanopoulou, T. Vassilakou, N. Malamos, A. Linos, D.B. Panagiotakos, Whole grain consumption and breast cancer: a case-control study in women, J. Am. Coll. Nutr. 35 (2016) 143-149.

[23]

J.G. Muir, E.G.W. Yeow, J. Keogh, C. Pizzey, A.R. Bird, K. Sharpe, K. O'Dea, F.A. Macrae, Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone, Am. J. Clin. Nutr. 79 (2004) 1020-1028.

[24]

J.A. Higgins, D.R. Higbee, W.T. Donahoo, I.L. Brown, M.L. Bell, D.H. Bessesen, Resistant starch consumption promotes lipid oxidation, Nutr. Metab. 1 (2004) 8.

[25]

J.H. Cummings, E.R. Beatty, S.M. Kingman, S.A. Bingham, H.N. Englyst, Digestion and physiological properties of resistant starch in the human large bowel, Br. J. Nutr. 75 (1996) 733-747.

[26]

R.H. Liu, Health-promoting components of fruits and vegetables in the diet, Adv. Nutr. 4 (2013) 384S-392S.

[27]

R.H. Liu, Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals, Am. J. Clin. Nutr. 78 (2003) 517S-520S.

[28]

J. Sun, Y.F. Chu, X. Wu, R.H. Liu, Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50 (2002) 7449-7454.

[29]

N. Okarter, R.H. Liu, Health benefits of whole grain phytochemicals, Crit. Rev. Food Sci. Nutr. 50 (2010) 193-208.

[30]

K.K. Adom, R.H. Liu, Antioxidant activity of grains, J. Agric. Food Chem. 50 (2002) 6182-6187.

[31]

X.Y. Zhao, C. Zhang, C. Guigas, Y. Ma, M. Corrales, B. Tauscher, X.S. Hu, Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China, Eur. Food Res. Technol. 228 (2009) 759-765.

[32]

C.E. Scott, A.L. Eldridge, Comparison of carotenoid content in fresh, frozen and canned corn, J. Food Anal. 18 (2005) 551-559.

[33]

C. de la Parra, S.O.S. Saldivar, R.H. Liu, Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips, J. Agric. Food Chem. 55 (2007) 4177-4183.

[34]

C.A. Romero-Bastida, M. Chávez Gutiérrez, L.A. Bello-Pérez, E. Abarca-Ramírez, G. Velazquez, G. Mendez-Montealvo, Rheological properties of nanocomposite-forming solutions and film based on montmorillonite and corn starch with different amylose content, Carbohydr. Polym. 188 (2018) 121-127.

[35]

Y.S. Moreno, G.S. Sanchez, D.R. Hernandez, N.R. Lobato, Characterization of anthocyanin extracts from maize kernels, J. Chromatogr. Sci. 43 (2005) 483-487.

[36]

R.H. Liu, Potential synergy of phytochemicals in cancer prevention: mechanism of action, J. Nutr. 134 (2004) 3479s-3485s.

[37]

S.M. Krebs-Smith, P.M. Guenther, A.F. Subar, S.I. Kirkpatrick, K.W. Dodd, Americans do not meet federal dietary recommendations, J. Nutr. 140 (2010) 1832-1838.

[38]

Y. Pang, S. Ahmed, Y. Xu, T. Beta, Z. Zhu, Y. Shao, J. Bao, Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice, Food Chem. 240 (2018) 212-221.

39

Y. Luo, Q. Wang, Bioactive Compounds in Corn, Cereals and Pulses, Wiley-Blackwell, 2012, pp. 85–103.

[40]

V. Dewanto, X.Z. Wu, R.H. Liu, Processed sweet corn has higher antioxidant activity, J. Agric. Food Chem. 50 (2002) 4959-4964.

[41]

R.H. Liu, Dietary bioactive compounds and their health implications, J. Food Sci. 78 (2013) A18-A25.

[42]

J.A. Maga, K. Lorenz, Taste threshold values for phenolic acids which can influence flavor properties of certain flours, grains and oilseeds, Cereal Science Today 18 (1973), 326-&.

[43]

A. Nesci, N. Gsponer, M. Etcheverry, Natural maize phenolic acids for control of aflatoxigenic fungi on maize, J. Food Sci. 72 (2007) M180-185.

[44]

C.J. Huang, J.F. Zayas, Phenolic-acid contributions to taste characteristics of corn germ protein flour products, J. Food Sci. 56 (1991), 1308-&.

[45]

F. Sosulski, K. Krygier, L. Hogge, Free, Esterified, and insoluble-bound phenolic-acids. 3. Composition of phenolic-acids in cereal and potato flours, J. Agric. Food Chem. 30 (1982) 337-340.

[46]

D. Luna-Vital, Q. Li, L. West, M. West, E.G. de Mejia, Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs, Food Chem. 232 (2017) 639-647.

[47]

F. Ramos-Escudero, A.M. Munoz, C. Alvarado-Ortiz, A. Alvarado, J.A. Yanez, Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs, J. Med. Food 15 (2012) 206-215.

[48]

E.S.M. Abdel-Aal, J.C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains, J. Agric. Food Chem. 54 (2006) 4696-4704.

[49]

T. Wu, X.Q. Guo, M. Zhang, L. Yang, R. Liu, J.J. Yin, Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice, Food Funct. 8 (2017) 3178-3186.

[50]

J. Li, M.K. Kang, J.K. Kim, J.L. Kim, S.W. Kang, S.S. Lim, Y.H. Kang, Purple corn anthocyanins retard diabetes-associated glomerulosclerosis in mesangial cells and db/db mice, Eur. J. Nutr. 51 (2012) 961-973.

[51]

D. Luna-Vital, M. Weiss, E. Gonzalez de Mejia, Anthocyanins from purple corn ameliorated tumor necrosis factor-alpha-Induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation, Mol. Nutr. Food Res. (2017) 61.

[52]

T. Tsuda, F. Horio, K. Uchida, H. Aoki, T. Osawa, Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice, J. Nutr. 133 (2003) 2125-2130.

[53]

M. Garavelli, F. Bernardi, M. Olivucci, M.A. Robb, DFT study of the reactions between singlet-oxygen and a carotenoid model, J. Am. Chem. Soc. 120 (1998) 10210-10222.

[54]

K.H. van Het Hof, C.E. West, J.A. Weststrate, J.G. Hautvast, Dietary factors that affect the bioavailability of carotenoids, J. Nutr. 130 (2000) 503-506.

[55]

W. Van Zeben, T.F. Hendriks, The absorption of carotene from cooked carrots, Int. Z. Vitaminforsch. 19 (1947) 265.

[56]

S.R. Goltz, T.N. Sapper, M.L. Failla, W.W. Campbell, M.G. Ferruzzi, Carotenoid bioavailability from raw vegetables and a moderate amount of oil in human subjects is greatest when the majority of daily vegetables are consumed at one meal, Nutr. Res. 33 (2013) 358-366.

[57]
World Health Organization, Control of Vitamin A Deficiency and Xerophthalmia, 1982.
[58]

G.W. Tang, Bioconversion of dietary provitamin A carotenoids to vitamin A in humans, Am. J. Clin. Nutr. 91 (2010) 1468s-1473s.

[59]

K.J. Scott, D. Rodriquez-Amaya, Pro-vitamin A carotenoid conversion factors: retinol equivalents - fact or fiction? Food Chem. 69 (2000) 125-127.

[60]

J.E. Roberts, J. Dennison, The photobiology of lutein and zeaxanthin in the eye, J. Ophthalmol. 2015 (2015) 687173.

[61]

E.E. Moros, D. Darnoko, M. Cheryan, E.G. Perkins, J. Jerrell, Analysis of xanthophylls in corn by HPLC, J. Agric. Food Chem. 50 (2002) 5787-5790.

[62]

K. Husain, D. Coppola, S.M. Sebti, M.P. Malafa, Abstract 3839: Vitamin E delta-tocotrienol targets human colon cancer stem cells and inhibits colon cancer metastasis and induces apoptosis, Cancer Res. 76 (2016), 3839–3839

[63]

H.Y. Peh, W.S.D. Tan, W. Liao, W.S.F. Wong, Vitamin E therapy beyond cancer: tocopherol versus tocotrienol, Pharmacol. Ther. 162 (2016) 152-169.

[64]

W. -Y. Wong, L.C. Ward, C.W. Fong, W.N. Yap, L. Brown, Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats, Eur. J. Nutr. 56 (2017) 133-150.

[65]

N. Ramanathan, E. Tan, L.J. Loh, B.S. Soh, W.N. Yap, Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities, Nutr. Metab. 15 (2018) 6.

[66]
A.C. Ross, Modern Nutrition in Health and Disease, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2014, pp. 1616, pp. xxiv.
[67]

G. Panfili, A. Fratianni, M. Irano, Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals, J. Agric. Food Chem. 51 (2003) 3940-3944.

[68]

G.W. Grams, C.W. Blessin, G.E. Inglett, Distribution of tocopherols within the corn kernel, J. Am. Oil Chem. Soc. 47 (1970) 337-339.

[69]

C. Grunwald, Plant sterols, Annu. Rev. Plant Physiol. Plant Mol. Biol. 26 (1975) 209-236.

[70]
W.R. Nes, Multiple roles for plant sterols, in: P.K. Stumpf, J.B. Mudd, W.D. Nes (Eds.), The Metabolism, Structure, and Function of Plant Lipids, Springer, New York, Boston, MA, 1987, pp. 3–9.
[71]

T. Verleyen, M. Forcades, R. Verhe, K. Dewettinck, A. Huyghebaert, W. De Greyt, Analysis of free and esterified sterols in vegetable oils, J. Am. Oil Chem. Soc. 79 (2002) 117-122.

[72]

V. Piironen, D.G. Lindsay, T.A. Miettinen, J. Toivo, A.M. Lampi, Plant sterols: biosynthesis, biological function and their importance to human nutrition, J. Sci. Food Agric. 80 (2000) 939-966.

[73]

J.L. Weihrauch, J.M. Gardner, Sterol content of foods of plant origin, J. Am. Diet. Assoc. 73 (1978) 39-47.

[74]

S. Harrabi, A. St-Amand, F. Sakouhi, K. Sebei, H. Kallel, P.M. Mayer, S. Boukhchina, Phytostanols and phytosterols distributions in corn kernel, Food Chem. 111 (2008) 115-120.

[75]

H.F. Hendriks, J.A. Weststrate, T. van Vliet, G.W. Meijer, Spreads enriched with three different levels of vegetable oil sterols and the degree of cholesterol lowering in normocholesterolaemic and mildly hypercholesterolaemic subjects, Eur. J. Clin. Nutr. 53 (1999) 319-327.

[76]

M. Nissinen, H. Gylling, M. Vuoristo, T.A. Miettinen, Micellar distribution of cholesterol and phytosterols after duodenal plant stanol ester infusion, Am. J. Physiol. Gastrointest. Liver Physiol. 282 (2002) G1009-1015.

[77]

R. Chaiittianan, K. Sutthanut, A. Rattanathongkom, Purple corn silk: a potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes, J. Ethnopharmacol. 201 (2017) 9-16.

[78]

I.L. Brown, K.J. Mcnaught, E. Moloney, Hi-maize(Tm) - new directions in starch technology and nutrition, Food Australia 47 (1995) 272-275.

[79]

T. Namba, H.X. Xu, S. Kadota, M. Hattori, T. Takahashi, Y. Kojima, Inhibition of ige formation in mice by glycoproteins from corn silk, Phytother. Res. 7 (1993) 227-230.

[80]

G. Zhang, B.R. Hamaker, The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods, Crit. Rev. Food Sci. Nutr. 57 (2017) 3807-3817.

[81]

M.M. Murphy, J.S. Douglass, A. Birkett, Resistant starch intakes in the United States, J. Am. Diet. Assoc. 108 (2008) 67-78.

[82]

P. Alphonse, R. Aluko, A review on the anti-carcinogenic and anti-metastatic effects of flax seed lignan secolariciresinol diglucoside (SDG), Phytomedicine 2015 (2) (2015) 6.

[83]

A. Durazzo, M. Zaccaria, A. Polito, G. Maiani, M. Carcea, Lignan content in cereals, buckwheat and derived foods, Foods 2 (2013) 53-63.

[84]
World Health Organization, Cardiovascular Diseases (CVDs), Fact Sheet, Geneva, Switzerland, 2017.
[85]

P.L.B. Holloender, A.B. Ross, M. Kristensen, Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies, Am. J. Clin. Nutr. 102 (2015) 556-572.

[86]

S.M. Grundy, J.I. Cleeman, C.N.B. Merz, H.B. Brewer, L.T. Clark, D.B. Hunninghake, R.C. Pasternak, S.C. Smith, N.J. Stone, C.C.N. Cholesterol, Implications of recent clinical trials for the national cholesterol education program adult treatment panel Ⅲ guidelines, Circulation 110 (2004) 227-239.

[87]

M.S. Campbell, B.S. Fleenor, Whole grain consumption is negatively correlated with obesity-associated aortic stiffness: a hypothesis, Nutrition 45 (2018) 32-36.

[88]

H. Wu, A.J. Flint, Q. Qi, R.M. van Dam, L.A. Sampson, E.B. Rimm, M.D. Holmes, W.C. Willett, F.B. Hu, Q. Sun, Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women, JAMA Intern. Med. 175 (2015) 373-384.

[89]

G.C. Chen, X. Tong, J.Y. Xu, S.F. Han, Z.X. Wan, J.B. Qin, L.Q. Qin, Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies, Am. J. Clin. Nutr. 104 (2016) 164-172.

[90]

D. Aune, N. Keum, E. Giovannucci, L.T. Fadnes, P. Boffetta, D.C. Greenwood, S. Tonstad, L.J. Vatten, E. Riboli, T. Norat, Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies, BMJ-Brit. Med. J. (2016) 353.

[91]

S.A. Kelly, L. Hartley, E. Loveman, J.L. Colquitt, H.M. Jones, L. Al-Khudairy, C. Clar, R. Germano, H.R. Lunn, G. Frost, K. Rees, Whole grain cereals for the primary or secondary prevention of cardiovascular disease, Cochrane Database Syst. Rev. 8 (2017) CD005051.

[92]
World Health Organization, Diabetes, 2017.
[93]

S. Yamini, P.R. Trumbo, Qualified health claim for whole-grain intake and risk of type 2 diabetes: an evidence-based review by the US Food and Drug Administration, Nutr. Rev. 74 (2016) 601-611.

[94]

G.Y. Koh, M.J. Rowling, Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus, Nutr. Rev. 75 (2017) 350-360.

[95]

Y. Granfeldt, A. Drews, I. Bjorck, Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans, J. Nutr. 125 (1995) 459-465.

[96]

K.M. Behall, D.J. Scholfield, I. Yuhaniak, J. Canary, Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects, Am. J. Clin. Nutr. 49 (1989) 337-344.

[97]

K.M. Behall, J.C. Howe, Effect of long-term consumption of amylose vs amylopectin starch on metabolic variables in human-subjects, Am. J. Clin. Nutr. 61 (1995) 334-340.

[98]

K.M. Behall, J. Hallfrisch, Plasma glucose and insulin reduction after consumption of breads varying in amylose content, Eur. J. Clin. Nutr. 56 (2002) 913-920.

[99]

K.C. Maki, C.L. Pelkman, E.T. Finocchiaro, K.M. Kelley, A.L. Lawless, A.L. Schild, T.M. Rains, Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men, J. Nutr. 142 (2012) 717-723.

[100]
World Health Organization, Obesity and Overweight, 2018.
[101]

H.J. Willis, A.L. Eldridge, J. Beiselgel, W. Thomas, J.L. Slavin, Greater satiety response with resistant starch and corn bran in human subjects, Nutr. Res. 29 (2009) 100-105.

[102]

R. Korczak, K. Lindeman, W. Thomas, J.L. Slavin, Bran fibers and satiety in women who do not exhibit restrained eating, Appetite 80 (2014) 257-263.

[103]

F. Brouns, B. Kettlitz, E. Arrigoni, Resistant starch and "the butyrate revolution", Trends Food Sci. Technol. 13 (2002) 251-261.

[104]
United states department of agriculture, agricultural research service, National Nutrient Database for Standard Reference Release 28 (2016).
[105]

P. Trumbo, S. Schlicker, A.A. Yates, M. Poos, Dietary reference intakes for energy, carbohydrate, Fiber, fat, fatty acids, cholesterol, protein and amino acids, J. Am. Diet. Assoc. 102 (2002) 1621-1630.

[106]

M.J. Keenan, J. Zhou, M. Hegsted, C. Pelkman, H.A. Durham, D.B. Coulon, R.J. Martin, Role of resistant starch in improving gut health, adiposity, and insulin resistance, Adv. Nutr. 6 (2015) 198-205.

[107]

W.K. Kim, M.K. Chung, N.E. Kang, M.H. Kim, O.J. Park, Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats, J. Nutr. Biochem. 14 (2003) 166-172.

[108]

D. Del Pozo-Insfran, C.H. Brenes, S.O.S. Saldivar, S.T. Talcott, Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products, Food Res. Int. 39 (2006) 696-703.

Food Science and Human Wellness
Pages 185-195
Cite this article:
Sheng S, Li T, Liu R. Corn phytochemicals and their health benefits. Food Science and Human Wellness, 2018, 7(3): 185-195. https://doi.org/10.1016/j.fshw.2018.09.003

934

Views

50

Downloads

154

Crossref

N/A

Web of Science

162

Scopus

0

CSCD

Altmetrics

Received: 18 July 2018
Accepted: 22 August 2018
Published: 05 September 2018
© 2018 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return