Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Natural disturbances have significantly intensified across European forests, with bark beetle outbreaks being the most rapidly escalating disturbance type. Since 2018, the Czech Republic (Central Europe) has become a Europe's disturbance epicentre due to the unprecedented outbreak of spruce bark beetle Ips typographus in the forests dominated by Norway spruce Picea abies. Here we provide novel insights into the impacts and dynamics of this disturbance from 2016 to 2022. The investigation is based on annual forest change maps developed by the classification of optical and Synthetic Aperture Radar satellite imagery. We identified seven major outbreak foci across the country, where the outbreaks culminated between 2018 and 2021. Most of the outbreak waves exhibited a symmetric shape, characterized by a three-year build-up phase, a single culmination year, and the subsequent decline. The substantial proportion of spruce remaining in the outbreak areas after the culmination point implies that resource depletion is an improbable cause for the outbreak's retreat. In the year of retreat, the proportion of spruce in the forest ranged between 26% and 36% in most of the outbreak areas. The disturbance dynamics manifested a transition from the emergence of new tree mortality spots in the early outbreak phase to their short-range expansion, suggesting density-dependent changes in bark beetle dispersal during the studied period. The core disturbance zone, pinpointed in 2022, covered an area of 9,000 km2 and experienced a 38% loss in forest cover. Within this area, forest fragmentation increased significantly, leading to a greater forest patch complexity and reduced connectivity among the patches. The presented findings can serve as a glimpse into the future for other European regions, revealing the potential impacts of natural disturbances amplified by climate change.
Asada, R., Hurmekoski, E., Hoeben, A.D., Patacca, M., Stern, T., Toppinen, A., 2023. Resilient forest-based value chains? Econometric analysis of roundwood prices in five European countries in the era of natural disturbances. For. Policy Econ. 153, 102975. https://doi.org/10.1016/j.forpol.2023.102975.
Baier, P., Pennerstorfer, J., Schopf, A., 2007. PHENIPS-A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For. Ecol. Manag. 249, 171–186. https://doi.org/10.1016/j.foreco.2007.05.020.
Bentz, B.J., Jönsson, A.M., Schroeder, M., Weed, A., Wilcke, R.A.I., Larsson, K., 2019. Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra- and inter-continental establishment in a changing climate. Front. For. Glob. Chang. 2, 1. https://doi.org/10.3389/ffgc.2019.00001.
Biedermann, P.H.W., Müller, J., Grégoire, J.C., Gruppe, A., Hagge, J., Hammerbacher, A., Hofstetter, R.W., Kandasamy, D., Kolarik, M., Kostovcik, M., Krokene, P., Sallé, A., Six, D.L., Turrini, T., Vanderpool, D., Wingfield, M.J., Bässler, C., 2019. Bark beetle population dynamics in the Anthropocene: Challenges and solutions. Trends Ecol. Evol. 34, 914-924. https://doi.org/10.1016/j.tree.2019.06.002.
Bosch, M., 2019. PyLandStats: an open-source Pythonic library to compute landscape metrics. PLoS One 14 (12), e0225734. https://doi.org/10.1371/journal.pone.0225734.
Brázdil, R., Zahradník, P., Szabó, P., Chromá, K., Dobrovolný, P., Dolák, L., Trnka, M., Řehoř, J., Suchánková, S., 2022. Meteorological and climatological triggers of notable past and present bark beetle outbreaks in the Czech Republic. Clim. Past 18, 2155-2180. https://doi.org/10.5194/cp-18-2155-2022.
Buras, A., Rammig, A., Zang, C.S., 2020. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655-1672. https://doi.org/10.5194/bg-17-1655-2020.
DeVries, B., Verbesselt, J., Kooistra, L., Herold, M., 2015. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 161, 107-121. https://doi.org/10.1016/j.rse.2015.02.012.
Dobor, L., Hlásny, T., Rammer, W., Zimová, S., Barka, I., Seidl, R., 2019. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J. Appl. Ecol. 57, 67-76. https://doi.org/10.1111/1365-2664.13518.
Getis, A., Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.
Gilles, A., Lisein, J., Cansell, J., Latte, N., Piedallu, C., Claessens, H., 2024. Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands. Environ. Monit. Assess. 196, 226. https://doi.org/10.1007/s10661-024-12372-0.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031.
Hallas, T., Steyrer, G., Laaha, G., Hoch, G., 2024. Two unprecedented outbreaks of the European spruce bark beetle, Ips typographus L. (Col., Scolytinae) in Austria since 2015: Different causes and different impacts on forests. Centr. Eur. For. J. 70, https://doi.org/10.2478/forj-2024-0014.
Hartmann, H., Moura, C.F., Anderegg, W.R.L., Ruehr, N.K., Salmon, Y., Allen, C.D., Arndt, S.K., Breshears, D.D., Davi, H., Galbraith, D., Ruthrof, K.X., Wunder, J., Adams, H.D., Bloemen, J., Cailleret, M., Cobb, R., Gessler, A., Grams, T.E.E., Jansen, S., Kautz, M., Lloret, F., O'Brien, M., 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15-28. https://doi.org/10.1111/nph.15048.
Havašová, M., Ferenčík, J., Jakuš, R., 2017. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 391, 349-361. https://doi.org/10.1016/j.foreco.2017.01.009.
Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K.F., Schelhaas, M.-J., Svoboda, M., Viiri, H., Seidl, R., 2021a. Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Curr. For. Rep. 7, 138-165. https://doi.org/10.1007/s40725-021-00142-x.
Hlásny, T., Turčáni, M., 2013. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann. For. Sci. 70, 481-491. https://doi.org/10.1007/s13595-013-0279-7.
Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021b. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 490, 119075. https://doi.org/10.1016/j.foreco.2021.119075.
Holuša, J., Liška, J., 2022. Hypothesis of spruce forests decline and dying in Silesia. Zpr. Lesn. Výzk. 47, 9-15.
Honkaniemi, J., Rammer, W., Seidl, R., 2020. Norway spruce at the trailing edge: the effect of landscape configuration and composition on climate resilience. Landsc. Ecol. 35, 591-606. https://doi.org/10.1007/s10980-019-00964-y.
Huang, J., Hammerbacher, A., Weinhold, A., Reichelt, M., Gleixner, G., Behrendt, T., van Dam, N.M., Sala, A., Gershenzon, J., Trumbore, S., Hartmann, H., 2019. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. New Phytol. 222, 144-158. https://doi.org/10.1111/nph.15522.
Huang, J., Kautz, M., Trowbridge, A.M., Hammerbacher, A., Raffa, K.F., Adams, H.D., Goodsman, D.W., Xu, C., Meddens, A.J.H., Kandasamy, D., Gershenzon, J., Seidl, R., Hartmann, H., 2020. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225, 26-36. https://doi.org/10.1111/nph.16173.
Jactel, H., Koricheva, J., Castagneyrol, B., 2019. Responses of forest insect pests to climate change: not so simple. Curr. Opin. Insect Sci. 35, 103-108. https://doi.org/10.1016/j.cois.2019.07.010.
Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., Mack, M.C., Meentemeyer, R.K., Metz, M.R., Perry, G.L.W., Schoennagel, T., Turner, M.G., 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369-378. https://doi.org/10.1002/fee.1311.
Kärvemo, S., Huo, L., Öhrn, P., Lindberg, E., Persson, H.J., 2023. Different triggers, different stories: Bark-beetle infestation patterns after storm and drought-induced outbreaks. For. Ecol. Manag. 545, 121255. https://doi.org/10.1016/j.foreco.2023.121255.
Kautz, M., Dworschak, K., Gruppe, A., Schopf, R., 2011. Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. For. Ecol. Manag. 262, 598-608. https://doi.org/10.1016/j.foreco.2011.04.023.
Kautz, M., Schopf, R., Ohser, J., 2013. The “sun-effect”: Microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. For. Res. 132, 453-465. https://doi.org/10.1007/s10342-013-0685-2.
Kunca, A., Zúbrik, M., Galko, J., Vakula, J., Leontovyč, R., Konôpka, B., Nikolov, C., Gubka, A., Longauerová, V., Maľová, M., Rell, S., Lalík, M., 2019. Salvage felling in the Slovak Republic’s forests during the last twenty years (1998-2017). Cent. Eur. For. J. 65, 3-11. https://doi.org/10.2478/forj-2019-0007.
Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., 2004. Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Springer, Dordrecht.
Marini, L., Økland, B., Jönsson, A.M., Bentz, B., Carroll, A., Forster, B., Grégoire, J., Hurling, R., Nageleisen, L.M., Netherer, S., Ravn, H.P., Weed, A., Schroeder, M., 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426-1435. https://doi.org/10.1111/ecog.02769.
Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P., Mina, M., Aquilué, N., Fortin, M.J., Puettmann, K., 2019. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 21. https://doi.org/10.1186/s40663-019-0166-2.
Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, S., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus–An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agric. For. Meteorol. 242, 85-95. https://doi.org/10.1016/j.agrformet.2017.04.004.
Ministry of the Environment of the Czech Republic, 2022. Report on the Environment of the Czech Republic 2022, Czech.
Montagné-Huck, C., Brunette, M., 2018. Economic analysis of natural forest disturbances: A century of research. J. For. Econ. 32, 42-71. https://doi.org/10.1016/j.jfe.2018.03.002.
Morris, J.L., Cottrell, S., Fettig, C.J., DeRose, R.J., Mattor, K.M., Carter, V.A., Clear, J., Clement, J., Hansen, W.D., Hicke, J.A., Higuera, P.E., Seddon, A.W.R., Seppä, H., Sherriff, R.L., Stednick, J.D., Seybold, S.J., 2018. Bark beetles as agents of change in social-ecological systems. Front. Ecol. Environ. 16, S34-S43. https://doi.org/10.1002/fee.1754.
Müller, M., 2011. How natural disturbance triggers political conflict: Bark beetles and the meaning of landscape in the Bavarian Forest. Glob. Environ. Chang. 21, 935-946. https://doi.org/10.1016/j.gloenvcha.2011.05.004.
Netherer, S., Kandasamy, D., Jirosová, A., Kalinová, B., Schebeck, M., Schlyter, F., 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591-614. https://doi.org/10.1007/s10340-021-01341-y.
Netherer, S., Nopp-Mayr, U., 2005. Predisposition assessment systems (PAS) as supportive tools in forest management - rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For. Ecol. Manag. 207, 99-107. https://doi.org/10.1016/j.foreco.2004.10.020.
Netherer, S., Panassiti, B., Pennerstorfer, J., Matthews, B., 2019. Acute drought is an important driver of bark beetle infestation in Austrian norway spruce stands. Front. For. Glob. Chang. 2, 39. https://doi.org/10.3389/ffgc.2019.00039.
Økland, B., Bjørnstad, O.N., 2006. A resource-depletion model of forest insect outbreaks. Ecology 87, 283-290. https://doi.org/10.1890/05-0135.
Patacca, M., Lindner, M., Lucas-Borja, M.E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G., Nagel, T.A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M.Z., Socha, J., Thom, D., Vuletic, D., Zudin, S., Schelhaas, M., 2023. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 29, 1359-1376. https://doi.org/10.1111/gcb.16531.
Potterf, M., Nikolov, C., Kočická, E., Ferenčík, J., Mezei, P., Jakuš, R., 2019. Landscape-level spread of beetle infestations from windthrown- and beetle-killed trees in the non-intervention zone of the Tatra National Park, Slovakia (Central Europe). For. Ecol. Manag. 432, 489-500. https://doi.org/10.1016/j.foreco.2018.09.050.
Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., Romme, W.H., 2008. Cross-scale drivers of natural disturbances prone to Anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 58, 501-517. https://doi.org/10.1641/B580607.
Ripley, B.D., 1981. Spatial Statistics. Wiley, Hoboken. https://doi.org/10.1002/0471725218.
Rouault, G., Candau, J.-N., Lieutier, F., Nageleisen, L.-M., Martin, J.-C., Warzée, N., 2006. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 63, 613-624. https://doi.org/10.1051/forest:2006044.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E.E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86-103. https://doi.org/10.1016/j.baae.2020.04.003.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395-402. https://doi.org/10.1038/nclimate3303.
Senf, C., Pflugmacher, D., Hostert, P., Seidl, R., 2017a. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 130, 453-463. https://doi.org/10.1016/j.isprsjprs.2017.07.004.
Senf, C., Sebald, J., Seidl, R., 2021. Increasing canopy mortality affects the future demographic structure of Europe's forests. One Earth 4, 749-755. https://doi.org/10.1016/j.oneear.2021.04.008.
Senf, C., Seidl, R., 2021a. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18, 5223-5230. https://doi.org/10.5194/bg-18-5223-2021.
Senf, C., Seidl, R., 2021b. Storm and fire disturbances in Europe: Distribution and trends. Glob. Chang. Biol. 27, 3605-3619. https://doi.org/10.1111/gcb.15679.
Senf, C., Seidl, R., 2018. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob. Chang. Biol. 24, 1201-1211. https://doi.org/10.1111/gcb.13897.
Senf, C., Seidl, R., Hostert, P., 2017b. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49-60. https://doi.org/10.1016/j.jag.2017.04.004.
Skuhravý, V., 2002. Spruce Bark Beetle (Ips Typographus L.) and its Calamities. Agrospoj, Prague.
Sommerfeld, A., Senf, C., Buma, B., D'Amato, A.W., Després, T., Díaz-Hormazábal, I., Fraver, S., Frelich, L.E., Gutiérrez, Á.G., Hart, S.J., Harvey, B.J., He, H.S., Hlásny, T., Holz, A., Kitzberger, T., Kulakowski, D., Lindenmayer, D., Mori, A.S., Müller, J., Paritsis, J., Perry, G.L.W., Stephens, S.L., Svoboda, M., Turner, M.G., Veblen, T.T., Seidl, R., 2018. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355. https://doi.org/10.1038/s41467-018-06788-9.
Trombik, J., Hlásny, T., 2013. Free European data on forest distribution: Overview and evaluation. J. For. Sci. 59, 447-457. https://doi.org/10.17221/58/2013-jfs.
Turner, M.G., Seidl, R., 2023. Novel disturbance regimes and ecological responses. Annu. Rev. Ecol. Evol. Syst. 54, 63-83. https://doi.org/10.1146/annurev-ecolsys-110421-101120.
Weed, A.S., Ayres, M.P., Hicke, J.A., 2013. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441-470. https://doi.org/10.1890/13-0160.1.
Wermelinger, B., 2004. Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For. Ecol. Manag. 202, 67-82. https://doi.org/10.1016/j.foreco.2004.07.018.
Wichmann, L., Ravn, H.P., 2001. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. For. Ecol. Manag. 148, 31-39. https://doi.org/10.1016/S0378-1127(00)00477-1.
Zeng, H., Garcia-Gonzalo, J., Peltola, H., Kellomäki, S., 2010. The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann. For. Sci. 67, 111. https://doi.org/10.1051/forest/2009090.
Zimová, S., Dobor, L., Hlásny, T., Rammer, W., Seidl, R., 2020. Reducing rotation age to address increasing disturbances in Central Europe: potential and limitations. For. Ecol. Manag. 475, 118408. https://doi.org/10.1016/j.foreco.2020.118408.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).