AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A bibliometric analysis using machine learning to track paradigm shifts and analytical advances in forest ecology and forestry journal publications from 2010 to 2022

Jin Zhaoa,bLiyu LiaJian LiuaYimei YanaQian WangaChris NewmancYoubing Zhoua,b( )
College of Biological & Pharmaceutical Sciences, China Three Gorges University, Daxue Road 8, Yichang 443002, China
Hubei International Scientific & Technological Cooperation Center of Ecological Conservation & Management in Three Gorges Area, China Three Gorges University, Daxue Road 8, Yichang 443002, China
Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
Show Author Information

Abstract

Forest habitats are critical for biodiversity, ecosystem services, human livelihoods, and well-being. Capacity to conduct theoretical and applied forest ecology research addressing direct (e.g., deforestation) and indirect (e.g., climate change) anthropogenic pressures has benefited considerably from new field- and statistical-techniques. We used machine learning and bibliometric structural topic modelling to identify 20 latent topics comprising four principal fields from a corpus of 16,952 forest ecology/forestry articles published in eight ecology and five forestry journals between 2010 and 2022. Articles published per year increased from 820 in 2010 to 2,354 in 2021, shifting toward more applied topics. Publications from China and some countries in North America and Europe dominated, with relatively fewer articles from some countries in West and Central Africa and West Asia, despite globally important forest resources. Most study sites were in some countries in North America, Central Asia, and South America, and Australia. Articles utilizing R statistical software predominated, increasing from 29.5% in 2010 to 71.4% in 2022. The most frequently used packages included lme4, vegan, nlme, MuMIn, ggplot2, car, MASS, mgcv, multcomp and raster. R was more often used in forest ecology than applied forestry articles. R software offers advantages in script and workflow-sharing compared to other statistical packages. Our findings demonstrate that the disciplines of forest ecology/forestry are expanding both in number and scope, aided by more sophisticated statistical tools, to tackle the challenges of redressing forest habitat loss and the socio-economic impacts of deforestation.

References

 

Amano, T., González-Varo, J.P., Sutherland, W.J., 2016. Languages are still a major barrier to global science. PLoS Biol. 14, e2000933. https://doi.org/10.1371/journal.pbio.2000933.

 

Amaral, J., Ribeyre, Z., Vigneaud, J., Sow, M.D., Fichot, R., Messier, C., Pinto, G., Nolet, P., Maury, S., 2020. Advances and promises of epigenetics for forest trees. Forests 11, 976. https://doi.org/10.3390/f11090976.

 

Andrew, N.R., Evans, M.J., Svejcar, L., Prendegast, K., Mata, L., Gibb, H., Stone, M.J., Barton, P.S., 2022. What's hot and what's not – identifying publication trends in insect ecology. Austral Ecol. 47, 5–16. https://doi.org/10.1111/aec.13052.

 

Aria, M., Cuccurullo, C., 2017. An R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975. https://doi.org/10.1016/j.joi.2017.08.007.

 
Ashton, M.J., Kelty, M.S., 2018. The Practice of Silviculture: Applied Forest Ecology. JohnWiley & Sons Inc., USA, p. 784.
 

Atkins, J.W., Stovall, A.E.L., Silva, C.A., 2022. Open-Source tools in R for forestry and forest ecology. For. Ecol. Manag. 503, 119813. https://doi.org/10.1016/j.foreco.2021.119813.

 

Audino, L.D., Murphy, S.J., Zambaldi, L., Louzada, J., Comita, L.S., 2017. Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape, and space. Ecol. Appl. 27, 1731–1745. https://doi.org/10.1002/eap.1562.

 

Aznar-Sánchez, J.A., Belmonte-Ureña, L.J., López-Serrano, M.J., Velasco-Muñoz, J.F., 2018. Forest ecosystem services: an analysis of worldwide research. Forests 9, 453. https://doi.org/10.3390/f9080453.

 
Bai, L., Millwater, J., Hudson, P., 2009. Building research capacity: changing roles ofuniversities and academics. In: Jeffery, P. (Ed. ), Proceedings of the AustralianAssociation for Research in Education (AARE) 2008 International Education ResearchConference. Australian Association for Research in Education, Brisbane, pp. 1–13. https://www.aare.edu.au/data/publications/2008/bai08493.pdf. (Accessed 13December 2023).
 
Bakker, J.D., 2023. An introduction to R – Applied multivariate statistics in R. https://uw.pressbooks.pub/appliedmultivariatestatistics. (Accessed 13 December 2023).
 

Balmford, A., Beresford, J., Green, J., Naidoo, R., Walpole, M., Manica, A., 2009. A global perspective on trends in nature-based tourism. PLoS Biol. 7, e1000144. https://doi.org/10.1371/journal.pbio.1000144.

 

Beland, M., Parker, G., Sparrow, B., Harding, D., Chasmer, L., Phinn, S., Antonarakis, A., Strahler, A., 2019. On promoting the use of lidar systems in forest ecosystem research. For. Ecol. Manag. 450, 117484. https://doi.org/10.1016/j.foreco.2019.117484.

 
BGCI, 2023. GlobalTreeSearch. Botanic Gardens Conservation International, Richmond, UK. https://tools.bgci.org/global_tree_search.php. (Accessed 13 December 2023).
 

Bojovic, S., Matic, R., Popovic, Z., Smiljanic, M., Stefanovic, M., Vidakovic, V., 2014. An overview of forestry journals in the period 2006-2010 as basis for ascertaining research trends. Scientometrics 98, 1331–1346. https://doi.org/10.1007/s11192-013-1171-9.

 

Bont, L.G., Fraefel, M., Frutig, F., Holm, S., Ginzler, C., Fischer, C., 2022. Improving forest management by implementing best suitable timber harvesting methods. J. Environ. Manag. 302, 114099. https://doi.org/10.1016/j.jenvman.2021.114099.

 

Börner, J., Schulz, D., Wunder, S., Pfaff, A., 2020. The effectiveness of forest conservation policies and programs. Annu. Rev. Resour. Econ. 12, 45–64. https://doi.org/10.1146/annurev-resource-110119-025703.

 

Brancalion, P.H.S., Holl, K.D., 2020. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361. https://doi.org/10.1111/1365-2664.13725.

 

Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P.O.B., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I.D., van der Plas, F., Jactel, H., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2.

 

Buck, S., 2015. Solving reproducibility. Science 348, 1403. https://doi.org/10.1126/science.aac8041.

 
Burley, J., 2002. Forest biological diversity: an overview. Unasylva 209, 3–9. https://www.fao.org/3/y3582e/y3582e.pdf. (Accessed 13 December 2023).
 

Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S., 2016. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954. https://doi.org/10.1038/srep23954.

 
Coreteam, R., 2021. R: A Language and Environment for Statistical Computing. RFoundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.(Accessed 25 December 2023).
 
Crawley, M.J., 2012. The R Book. John Wiley & Sons, Ltd., USA https://doi.org/10.1002/9781118448908.
 

Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., Tuanmu, M.-N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S.J., Wiser, S.K., Huber, M.O., Hengeveld, G.M., Nabuurs, G.-J., Tikhonova, E., Borchardt, P., Li, C.-F., Powrie, L.W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A.C., Umunay, P.M., Piao, S.L., Rowe, C.W., Ashton, M.S., Crane, P.R., Bradford, M.A., 2015. Mapping tree density at a global scale. Nature 525, 201–205. https://doi.org/10.1038/nature14967.

 

Derebe, B., Alemu, A., Asfaw, Z., 2023. Contribution of nontimber forest products earn to livelihood in rural households and the type of use: a systematic review. Int. J. For. Res. 2023, 9643290. https://doi.org/10.1155/2023/9643290.

 

Dhir, A., Tsai, C.-C., 2017. Understanding the relationship between intensity and gratifications of Facebook use among adolescents and young adults. Telematics Inf. 34, 350–364. https://doi.org/10.1016/j.tele.2016.08.017.

 

Di Sacco, A., Hardwick, K.A., Blakesley, D., Brancalion, P.H., Breman, E., Rebola, L.C., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw, K., Smith, P., Smith, R.J., Antonelli, A., 2021. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Chang. Biol. 27, 1328–1348. https://doi.org/10.1111/gcb.15498.

 

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M., 2021. How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070.

 
FAO and UNEP, 2020. The State of the World's Forests 2020. Forests, Biodiversity andPeople. FAO and UNEP, Rome. https://doi.org/10.4060/ca8642en.
 

Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragão, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X., Zaehle, S., 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340. https://doi.org/10.5194/essd-12-3269-2020.

 

Grattapaglia, D., Silva-Junior, O.B., Resende, R.T., Cappa, E.P., Müller, B.S., Tan, B., Isik, F., Ratcliffe, B., El-Kassaby, Y.A., 2018. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 9, 1693. https://doi.org/10.3389/fpls.2018.01693.

 

Grilli, G., Sacchelli, S., 2020. Health benefits derived from forest: a review. Int. J. Environ. Res. Publ. Health 17, 6125. https://doi.org/10.3390/ijerph17176125.

 

Hackenberger, B.K., 2020. R software: unfriendly but probably the best. Croat. Med. J. 61, 66–68. https://doi.org/10.3325/cmj.2020.61.66.

 

Hanula, J.L., Ulyshen, M.D., Horn, S., 2016. Conserving pollinators in North American forests: a review. Nat. Area J. 36, 427–439. https://doi.org/10.3375/043.036.0409.

 

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 2021. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240. https://doi.org/10.1038/s41558-020-00976-6.

 

Hesselbarth, M.H.K., Nowosad, J., Signer, J., Graham, L.J., 2021. Open-source tools in R for landscape ecology. Curr. Landsc. Ecol. Rep. 6, 97–111. https://doi.org/10.1007/s40823-021-00067-y.

 
Huffaker, C.B., Messenger, P.S., 2012. Theory and Practice of Biological Control.Academic Press, NY. https://doi.org/10.1016/B978-0-12-360350-0.X5001-6.
 
IUCN, 2019a. The IUCN red list of threatened species. Version 2019-2. http://www.iucnredlist.org. (Accessed 2 June 2023).
 
IUCN, 2019b. Enhancing progress towards Aichi Target 11. https://www.iucn.org/news/protected-areas/201905/enhancing-progress-towards-aichi-target-11. (Accessed 28December 2022).
 

Kaur, L., Mittal, R., 2020. Forest conservation for livelihood security. Int. Arch. Appl. Sci. Technol. 11, 61–67. https://doi.org/10.15515/iaast.0976-4828.11.4.6167.

 

Keenan, R.J., 2015. Climate change impacts and adaptation in forest management: a review. Ann. For. Sci. 72, 145–167. https://doi.org/10.1007/s13595-014-0446-5.

 

Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N.E., Kattge, J., Coomes, D.A., 2012. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol. Lett. 15, 831–840. https://doi.org/10.1111/j.1461-0248.2012.01803.x.

 

Lai, J.S., Lortie, C.J., Muenchen, R.A., Yang, J., Ma, K.P., 2019. Evaluating the popularity of R in ecology. Ecosphere 10, e02567. https://doi.org/10.1002/ecs2.2567.

 

Lechner, A.M., Foody, G.M., Boyd, D.S., 2020. Applications in remote sensing to forest ecology and management. One Earth 2, 405–412. https://doi.org/10.1016/j.oneear.2020.05.001.

 

Lei, J.S., Guo, X., Zeng, Y.F., Zhou, J.Z., Gao, Q., Yang, Y.F., 2021. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403. https://doi.org/10.1038/s41467-020-20616-z.

 

Libman, A., Obydenkovay, A., 2014. Governance of commons in a large nondemocratic country: the Case of Forestry in the Russian Federation. Publius J. Federalism 44, 298–323. https://doi.org/10.1093/publius/pjt065.

 

Litvaj, I., Ponisciakova, O., Stancekova, D., Svobodova, J., Mrazik, J., 2022. Decision-making procedures and their relation to knowledge management and quality management. Sustainability 14, 572. https://doi.org/10.3390/su14010572.

 

MacDicken, K.G., 2015. Global forest resources assessment 2015: what, why and how? For. Ecol. Manag. 352, 3–8. https://doi.org/10.1016/j.foreco.2015.02.006.

 

MacDicken, K.G., Sola, P., Hall, J.E., Sabogal, C., Tadoum, M., de Wasseige, C., 2015. Global progress toward sustainable forest management. For. Ecol. Manag. 352, 47–56. https://doi.org/10.1016/j.foreco.2015.02.005.

 

McCallen, E., Knott, J., Nunez-Mir, G., Taylor, B., Jo, I., Fei, S., 2019. Trends in ecology: shifts in ecological research themes over the past four decades. Front. Ecol. Environ. 17, 109–116. https://doi.org/10.1002/fee.199.

 

McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G.C., Jackson, R.B., Johnson, D.J., Kueppers, L., Lichstein, J.W., Ogle, K., Poulter, B., Pugh, T.A.M., Seidl, R., Turner, M.G., Uriarte, M., Walker, A.P., Xu, C., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463. https://doi.org/10.1126/science.aaz9463.

 
Mehtatalo, L., Lappi, J., 2020. Biometry for Forestry and Environmental Data: withExamples in R. CRC press, New York. https://doi.org/10.1201/9780429173462.
 

Mori, A.S., Lertzman, K.P., Gustafsson, L., 2017. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27. https://doi.org/10.1111/1365-2664.12669.

 

Nakagawa, S., Santos, E.S.A., 2012. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274. https://doi.org/10.1007/s10682-012-9555-5.

 

Nummelin, T., Hanninen, R., Kniivila, M., 2021. Exploring forest sector research subjects and trends from 2000 to 2019 using topic modeling. Curr. For. Rep. 7, 267–281. https://doi.org/10.1007/s40725-021-00152-9.

 

Ødegaard, F., 2000. How many species of arthropods? Erwin's estimate revised. Biol. J. Linn. Soc. Lond. 71, 583–597. https://doi.org/10.1111/j.1095-8312.2000.tb01279.x.

 

Oh, B., Lee, K.J., Zaslawski, C., Yeung, A., Rosenthal, D., Larkey, L., Back, M., 2017. Health and well-being benefits of spending time in forests: systematic review. Environ. Health Prev. Med. 22, 71. https://doi.org/10.1186/s12199-017-0677-9.

 
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M. -H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., 2020. vegan: community ecologypackage. R package version 2.6–6.1. https://CRAN.R-project.org/packagevegan. (Accessed 25 December 2023).
 
Olagunju, T.E., 2015. Impacts of human-induced deforestation, forest degradation and fragmentation on food security. New York Sci. J. 8, 4–16. http://www.sciencepub.net/newyork. (Accessed 25 December 2023).
 
Oyana, T.J., 2020. Spatial Analysis with R: Statistics, Visualization, and ComputationalMethods. CRC press, New York. https://doi.org/10.1201/9781003021643.
 
Pandey, A.K., Tripathi, Y.C., Kumar, A., 2016. Non timber forest products (NTFPs) for sustained livelihood: challenges and strategies. Res. J. For. 10, 1–7. https://scialert.net/fulltext/?doi=rjf.2016.1.7. (Accessed 25 December 2023).
 
Peng, R.D., 2022. R Programming for Data Science. Leanpub, Victoria, BC, Canada, pp. 86–181. https://bookdown.org/rdpeng/rprogdatascience/. (Accessed 25December 2023).
 

Pham, B.T., Jaafari, A., Avand, M., Al-Ansari, N., Dinh Du, T., Yen, H.P.H., Phong, T.V., Nguyen, D.H., Van Le, H., Mafi-Gholami, D., Prakash, I., Thuy, H.T., Tuyen, T.T., 2020. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry 12, 1022. https://doi.org/10.3390/sym12061022.

 

Polasky, S., Crepin, A.S., Biggs, R., Carpenter, S.R., Folke, C., Peterson, G., Scheffer, M., Barrett, S., Daily, G., Ehrlich, P., Howarth, R.B., Hughes, T., Levin, S.A., Shogren, J.F., Troell, M., Walker, B., Xepapadeas, A., 2020. Corridors of clarity: four principles to overcome uncertainty paralysis in the Anthropocene. Bioscience 70, 1139–1144. https://doi.org/10.1093/biosci/biaa115.

 

Rezende, C.L., Scarano, F.R., Assad, E.D., Joly, C.A., Metzger, J.P., Strassburg, B.B.N., Tabarelli, M., Fonseca, G.A., Mittermeier, R.A., 2018. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214. https://doi.org/10.1016/j.pecon.2018.10.002.

 

Roberts, M.E., Stewart, B.M., Tingley, D., 2019. stm: an R package for structural topic models. J. Stat. Softw. 91, 1–40. https://doi.org/10.18637/jss.v091.i02.

 
Sanyal, B.C., Varghese, N.V., 2006. Research Capacity of the Higher Education Sector inDeveloping Countries. UNESCO Forum on Higher Education, Research andKnowledge, Paris. https://unesdoc.unesco.org/ark:/48223/pf0000153116/PDF/153116eng.pdf.multi. (Accessed 25 December 2023).
 

Saravanan, G., Dominic, J., 2014. A Ten-year bibliometric analysis of research trends in three leading ecology journals during 2003-2012. J. Inf. Sci. Theory Pract. 2, 40–54. https://doi.org/10.1633/JISTaP.2014.2.3.4.

 

Sheppard, J.P., Chamberlain, J., Agundez, D., Bhattacharya, P., Chirwa, P.W., Gontcharov, A., Sagona, W.C.J., Shen, H., Tadesse, W., Mutke, S., 2020. Sustainable forest management beyond the timber-oriented status quo: transitioning to co-production of timber and non-wood forest products-A global perspective. Curr. For. Rep. 6, 26–40. https://doi.org/10.1007/s40725-019-00107-1.

 

Sow, M.D., Allona, I., Ambroise, C., Conde, D., Fichot, R., Gribkova, S., Jorge, V., Le-Provost, G., Pâques, L., Plomion, C., Salse, J., Sanchez-Rodriguez, L., Segura, V., Tost, J., Maury, S., 2018. Epigenetics in forest trees: state of the art and potential implications for breeding and management in a context of climate change. Adv. Bot. Res. 88, 387–453. https://doi.org/10.1016/bs.abr.2018.09.003.

 

Storch, I., Penner, J., Asbeck, T., Basile, M., Bauhus, J., Braunisch, V., Dormann, C.F., Frey, J., Gärtner, S., Hanewinkel, M., Koch, B., Klein, A., Kuss, T., Pregernig, M., Pyttel, P., Reif, A., Scherer-Lorenzen, M., Segelbacher, G., Schraml, U., Staab, M., Winkel, G., Yousefpour, R., 2020. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach. Ecol. Evol. 10, 1489–1509. https://doi.org/10.1002/ece3.6003.

 
Vié, J.C., Hilton-Taylor, C., Stuart, S.N., 2009. Wildlife in a Changing World: an Analysisof the 2008 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland. https://www.iucn.org/content/wildlife-a-changing-world-analysis-2008-iucn-red-list-threatened-speciestm. (Accessed 25 December 2023).
 

Wakeling, S., Willett, P., Creaser, C., Fry, J., Pinfield, S., Spezi, V., 2016. Open-access mega-journals: a bibliometric profile. PLoS One 11, e0165359. https://doi.org/10.1371/journal.pone.0165359.

 

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845.

 

Westgate, M.J., Barton, P.S., Pierson, J.C., Lindenmayer, D.B., 2015. Text analysis tools for identification of emerging topics and research gaps in conservation science. Conserv. Biol. 29, 1606–1614. https://doi.org/10.1111/cobi.12605.

 
Wickham, H., Çetinkaya-Rundel, M., Grolemund, G., 2023. R for Data Science, second ed.https://r4ds.hadley.nz/. (Accessed 25 December 2023).
 
Willis, K.J., 2018. State of the World's Fungi 2018. Kew Publishing, Richmond, Surrey.
 

Xie, J.Q., Zhang, G.Q., Li, Y.L., Yan, X.Y., Zang, L.P., Liu, Q.F., Chen, D.M., Sui, M.Z., He, Y.J., 2023. A bibliometric analysis of forest gap research during 1980-2021. Sustainability 15, 1994. https://doi.org/10.3390/su15031994.

 

Zhang, J., Hu, J.B., Lian, J.Y., Fan, Z.J., Ouyang, X.J., Ye, W.H., 2016. Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol. Conserv. 198, 60–69. https://doi.org/10.1016/j.biocon.2016.03.027.

 

Zhang, M.F., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X.H., Ning, D.Y., Hou, Y.P., Liu, S.R., 2017. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J. Hydrol. 546, 44–59. https://doi.org/10.1016/j.jhydrol.2016.12.040.

 

Zhang, G.L., Wang, M., Liu, K., 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China. Int. J. Disaster Risk Sci. 10, 386–403. https://doi.org/10.1007/s13753-019-00233-1.

 

Zhang, L., Sun, P.S., Huettmann, F., Liu, S.R., 2022. Where should China practice forestry in a warming world? Glob. Chang. Biol. 28, 2461–2475. https://doi.org/10.1111/gcb.16065.

 

Zou, W.T., Jing, W.P., Chen, G.S., Lu, Y., Song, H.B., 2019. A survey of big data analytics for smart forestry. IEEE Access 7, 46621–46636. https://doi.org/10.1109/ACCESS.2019.2907999.

 
Hornik, K., The R Coreteam, 2022. "R FAQ. " The comprehensive R archive network. 2.13what is the R Foundation? Archived from the original on 28 December 2022.https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-the-R-Foundation_003f.(Accessed 28 December 2023).
Forest Ecosystems
Article number: 100233
Cite this article:
Zhao J, Li L, Liu J, et al. A bibliometric analysis using machine learning to track paradigm shifts and analytical advances in forest ecology and forestry journal publications from 2010 to 2022. Forest Ecosystems, 2024, 11(5): 100233. https://doi.org/10.1016/j.fecs.2024.100233

86

Views

4

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 February 2024
Revised: 28 July 2024
Accepted: 28 July 2024
Published: 02 August 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return