AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

N-fixing tree species promote the chemical stability of soil organic carbon in subtropical plantations through increasing the relative contribution of plant-derived lipids

Xiaodan Yea,bJunwei LuancHui WangbYu ZhangcYi WangcShirong Liub( )
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
Show Author Information

Abstract

Biodiversity experiments have shown that soil organic carbon (SOC) is not only a function of plant diversity, but is also closely related to the nitrogen (N) -fixing plants. However, the effect of N-fixing trees on SOC chemical stability is still little known, especially with the compounding effects of tree species diversity. An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness (i.e., one, two, four and six tree species) and with/without N-fixing trees on SOC chemical stability, as indicated by the ratio of easily oxidized organic carbon to SOC (EOC/SOC). Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability. The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC. Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC, while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols, especially in the occurrence of N-fixing trees. The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance, promoting the selective retention of certain key components of hydrolysable plant lipids, thus enhancing SOC chemical stability. These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability, and therefore, preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.

References

 

Adhikari, D., Poulson, S.R., Sumaila, S., Dynes, J.J., McBeth, J.M., Yang, Y., 2016. Asynchronous reductive release of iron and organic carbon from hematite-humic acid complexes. Chem. Geol. 430, 13–20. https://doi.org/10.1016/j.chemgeo.2016.03.013.

 

Almeida, L.F.J., Hurtarte, L.C.C., Souza, I.F., Soares, E.M.B., Vergütz, L., Silva, I.R., 2018. Soil organic matter formation as affected by eucalypt litter biochemistry-Evidence from an incubation study. Geoderma 312, 121–129. https://doi.org/10.1016/j.geoderma.2017.10.004.

 

Angst, G., John, S., Mueller, C.W., Kögel-Knabner, I., Rethemeyer, J., 2016. Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Sci. Rep. 6, 29478. https://doi.org/10.1038/srep29478.

 

Angst, G., Mueller, K.E., Kögel-Knabner, I., Freeman, K.H., Mueller, C.W., 2017. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry 132, 307–324. https://doi.org/10.1007/s10533-017-0304-2.

 

Angst, G., Mueller, K.E., Eissenstat, D.M., Trumbore, S., Freeman, K.H., Hobbie, S.E., Chorover, J., Oleksyn, J., Reich, P.B., Mueller, C.W., 2018. Soil organic carbon stability in forests: distinct effects of tree species identity and traits. Global Change Biol. 25, 1529–1546. https://doi.org/10.1111/gcb.14548.

 

Brock, O., Kooijman, A., Nierop, K.G.J., Muys, B., Vancampenhout, K., Jansen, B., 2019. Disentangling the effects of parent material and litter input chemistry on molecular soil organic matter composition in converted forests in Western Europe. Org. Geochem. 134, 66–76. https://doi.org/10.1016/j.orggeochem.2019.05.006.

 

Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., Tang, Z., Tang, X., Zhou, G., Xie, Z., Zhou, D., Shuangguan, Z., Huang, J., He, J.S., Wang, Y., Sheng, J., Tang, L., Li, X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J., Chapin III, F.S., Bai, Y., 2018. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 115, 4027–4032. https://doi.org/10.1073/pnas.1700298114.

 

Chen, C., Chen, H.Y.H., Chen, X., Huang, Z., 2019. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332. https://doi.org/10.1038/s41467-019-09258-y.

 

Chen, S., Feng, X., Lin, Q., Liu, C., Cheng, K., Zhang, X., Bian, R., Liu, X., Wang, Y., Drosos, M., Zheng, J., 2022. Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a karst terrain. Soil Biol. Biochem. 166, 108553. https://doi.org/10.1016/j.soilbio.2022.108553.

 

Clemente, J.S., Simpson, M.J., Simpson, A.J., Yanni, S.F., Whalen, J.K., 2013. Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems. Geoderma 192, 86–96. https://doi.org/10.1016/j.geoderma.2012.08.007.

 

Curti, L., Moore, O.W., Babakhani, P., Xiao, K.Q., Woulds, C.K., Bray, A.W., Fisher, B.J., Kazemian, M., Kaulich, B., Peacock, C.L., 2021. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Comm. Earth Environ. 2, 229. https://doi.org/10.1038/s43247-021-00301-9.

 

Cusack, D.F., Silver, W.L., Torn, M.S., Burton, S.D., Firestone, M.K., 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92, 621–632. https://doi.org/10.1890/10-0459.1.

 

Dai, G., Zhu, S., Cai, Y., Zhu, E., Jia, Y., Ji, C., Tang, Z., Fang, J., Feng, X., 2022. Plant-derived lipids play a crucial role in forest soil carbon accumulation. Soil Biol. Biochem. 168, 108645. https://doi.org/10.1016/j.soilbio.2022.108645.

 

Dawud, S.M., Raulund-Rasmussen, K., Domisch, T., Finér, L., Jaroszewicz, B., Vesterdal, L., 2016. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems 19, 645–660. https://doi.org/10.1007/s10021-016-9958-1.

 

Ding, X., Han, X., Liang, Y., Qiao, Y., Li, L., Li, N., 2012. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil Till. Res. 122, 36–41. https://doi.org/10.1016/j.still.2012.02.002.

 

Feng, X., Simpson, M.J., 2007. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Org. Geochem. 38, 1558–1570. https://doi.org/10.1016/j.orggeochem.2007.05.001.

 

Feng, X., Vonk, J.E., van Dongen, B.E., Gustafsson, O., Semiletov, I.P., Dudarev, O.V., Wang, Z., Montlucon, D.B., Wacker, L., Eglinton, T.I., 2013. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc. Natl. Acad. Sci. USA 110, 14168–14173. https://doi.org/10.1073/pnas.130703111.

 

Feng, X., Gustafsson, Ö., Holmes, R.M., Vonk, J.E., van Dongen, B.E., Semiletov, I.P., Dudarev, O.V., Yunker, M.B., Macdonald, R.W., Montlucon, D.B., Eglinton, T.I., 2015. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolysable components with plant wax lipids and lignin phenols. Biogeosciences 12, 4841–4860. https://doi.org/10.5194/bg-12-4841-2015.

 

Gei, M.G., Powers, J.S., 2013. Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? Soil Biol. Biochem. 57, 264–272. https://doi.org/10.1016/j.soilbio.2012.09.013.

 

Gill, A.L., Schilling, J., Hobbie, S.E., 2021. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter. Ecol. Lett. 24, 802–811. https://doi.org/10.1111/ele.13700.

 

Gong, C., Tan, Q., Liu, G., Xu, M., 2020. Mixed-species plantations enhance soil carbon stocks on the loess plateau of China. Plant Soil 464, 13–28. https://doi.org/10.1007/s11104-020-04559-4.

 

Hall, S.J., Ye, C., Weintraub, S.R., Hockaday, W.C., 2020. Molecular trade-offs in soil organic carbon composition at continental scale. Nat. Geosci. 13, 687–692. https://doi.org/10.1038/s41561-020-0634-x.

 

Hoogmoed, M., Cunningham, S.C., Baker, P.J., Beringer, J., Cavagnaro, T.R., 2014. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agric. Ecosyst. Environ. 188, 80–84. https://doi.org/10.1016/j.agee.2014.02.013.

 

Huang, Z., Davis, M.R., Condron, L.M., Clinton, P.W., 2011. Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol. Biochem. 43, 1341–1349. https://doi.org/10.1016/j.soilbio.2011.03.008.

 

Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A.N., Li, Y., Härdtle, W., Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.Y., Chesters, D., Ding, B.Y., Durka, W., Erfmeier, A., Fang, J., Fischer, M., Guo, L.D., Guo, D., Gutknecht, J.L.M., He, J.S., He, C.L., Hector, A., Hoenig, L., Hu, R.Y., Klein, A.M., Kuehn, P., Liang, Y., Li, S., Michalski, S., Scherer-Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.Z., Tang, Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, X.D., Zhang, J., Zhang, S., Zhang, N., Zhou, H.Z., Zhu, C.D., Zhu, L., Bruelheide, H., Ma, K., Niklaus, P.A., Schmid, B., 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362 (6410), 80–83. https://doi.org/10.1126/science.aat6405.

 

Jia, Y., Zhai, G., Zhu, S., Liu, X., Schmid, B., Wang, Z., Ma, K., Feng, X., 2021. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biol. Biochem. 161, 108375. https://doi.org/10.1016/j.soilbio.2021.108375.

 

Kleber, M., 2010. What is recalcitrant soil organic matter? Environ. Chem. 7, 320–332. https://doi.org/10.1071/EN10006.

 

Klotzbücher, T., Kalbitz, K., Cerli, C., Hernes, P.J., Kaiser, K., 2016. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soils 2, 325–335. https://doi.org/10.5194/soil-2-325-2016.

 

Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., Leinweber, P., 2008. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 171, 61–82. https://doi.org/10.1002/jpln.200700048.

 

Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., Richter, A., 2014. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiol. Ecol. 87, 142–152. https://doi.org/10.1111/1574-6941.12214.

 

Li, W.J., Li, J.H., Lu, J.F., Zhang, R.Y., Wang, G., 2010. Legume-grass species influence plant productivity and soil nitrogen during grassland succession in the eastern Tibet Plateau. Appl. Soil Ecol. 44, 164–169. https://doi.org/10.1016/j.apsoil.2009.12.001.

 

Li, J.H., Jiao, S.M., Gao, R.Q., Bardgett, R.D., 2012. Differential effects of legume species on the recovery of soil microbial communities, and carbon and nitrogen contents, in abandoned fields of the Loess Plateau, China. Environ. Manag. 50, 1193–1203. https://doi.org/10.1007/s00267-012-9958-7.

 

Li, X., Wang, H., Luan, J., Chang, S.X., Gao, B., Wang, Y., Liu, S., 2022. Functional diversity dominates positive species mixture effects on ecosystem multifunctionality in subtropical plantations. For. Ecosyst. 9, 100039. https://doi.org/10.1016/j.fecs.2022.100039.

 

Lin, L.H., Simpson, M.J., 2016. Enhanced extractability of cutin- and suberin-derived organic matter with demineralization implies physical protection over chemical recalcitrance in soil. Org. Geochem. 97, 111–121. https://doi.org/10.1016/j.orggeochem.2016.04.012.

 

Liu, H., Zhang, J., Ai, Z., Wu, Y., Xu, H., Li, Q., Xue, S., Liu, G., 2018. 16-year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem. Agric. Ecosyst. Environ. 265, 320–330. https://doi.org/10.1016/j.agee.2018.06.032.

 

Liu, X., Trogisch, S., He, J.S., Niklaus, P.A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K.A., Yang, B., Kühn, P., Scholten, T., Huang, Y., Wang, C., Staab, M., Leppert, K.N., Wirth, C., Schmid, B., Ma, K., 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Roy. Soc. B 285, 1471–2954. https://doi.org/10.1098/rspb.2018.1240.

 

Lorenz, K., Lal, R., Preston, C.M., Nierop, K.G., 2007. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro) molecules. Geoderma 142, 1–10. https://doi.org/10.1016/j.geoderma.2007.07.013.

 

Luo, Y., Li, Q., Wang, C., Li, B., Stomph, T.J., Yang, J., Tao, Q., Yuan, S., Tang, X., Ge, J., Yu, X., Peng, Y., Xu, Q., Zheng, G., 2019. Negative effects of urbanization on agricultural soil easily oxidizable organic carbon down the profile of the Chengdu Plain, China. Land Degrad. Dev. 31, 404–416. https://doi.org/10.1002/ldr.3458.

 

Ma, T., Zhu, S., Wang, Z., Chen, D., Dai, G., Feng, B., Su, X., Hu, H., Li, K., Han, W., Liang, C., Bai, Y., Feng, X., 2018. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480. https://doi.org/10.1038/s41467-018-05891-1.

 

Ma, T., Dai, G., Zhu, S., Chen, D., Chen, L., Lü, X., Wang, X., Zhu, J., Zhang, Y., Ma, W., He, J.S., Bai, Y., Han, X., Feng, X., 2019. Distribution and preservation of root- and shoot-derived carbon components in soils across the Chinese-Mongolian grasslands. J. Geophys. Res. Biogeosci. 124, 420–431. https://doi.org/10.1029/2018JG004915.

 

Ma, L., Ju, Z., Fang, Y., Vancov, T., Gao, Q., Wu, D., Zhang, A., Wang, Y., Hu, C., Wu, W., Du, Z., 2022. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biol. Biochem. 170, 108693. https://doi.org/10.1016/j.soilbio.2022.108693.

 

Ma, T., Yang, Z., Shi, B., Gao, W., Li, Y., Zhu, J., He, J.S., 2023. Phosphorus supply suppressed microbial necromass but stimulated plant lignin phenols accumulation in soils of alpine grassland on the Tibetan Plateau. Geoderma 431, 116376. https://doi.org/10.1016/j.geoderma.2023.116376.

 

Moore, J.A.M., Anthony, M.A., Pec, G.J., Trocha, L.K., Trzebny, A., Geyer, K.M., van Diepen, L.T.A., Frey, S.D., 2021. Fungal community structure and function shifts with atmospheric nitrogen deposition. Global Change Biol. 27, 1349–1364. https://doi.org/10.1038/s41467-018-05891-1.

 

Naafs, D.F.W., van Bergen, P.F., Boogert, S.J., de Leeuw, J.W., 2004. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season. Soil Biol. Biochem. 36, 297–308. https://doi.org/10.1016/j.soilbio.2003.10.005.

 

Nierop, K.G., Naafs, D.F., Verstraten, J.M., 2003. Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradient. Org. Geochem. 34, 719–729. https://doi.org/10.1016/S0146-6380(03)00042-1.

 

Osei, R., Titeux, H., Bielak, K., Bravo, F., Collet, C., Cools, C., Cornelis, J.T., Heym, M., Korboulewsky, N., Löf, M., Muys, B., Najib, Y., Nothdurft, A., Pach, M., Pretzsch, H., Rio, M., Ruiz-Peinado, R., Ponette, Q., 2021. Tree species identity drives soil organic carbon storage more than species mixing in major two-species mixtures (pine, oak, beech) in Europe. For. Ecol. Manag. 481, 118752. https://doi.org/10.1016/j.foreco.2020.118752.

 

Otto, A., Simpson, M.J., 2006. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org. Geochem. 37, 385–407. https://doi.org/10.1016/j.orggeochem.2005.12.011.

 

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Roberson, G.P., Smith, P., 2016. Climate-smart soils. Nature 532, 49–57. https://doi.org/10.1038/nature17174.

 

Pisani, O., Hills, K.M., Courtier-Murias, D., Simpson, A.J., Mellor, N.J., Paul, E.A., Morris, S.J., Simpson, M.J., 2013. Molecular level analysis of long term vegetative shifts and relationships to soil organic matter composition. Org. Geochem. 62, 7–16. https://doi.org/10.1016/j.orggeochem.2013.06.010.

 

Pisani, O., Frey, S.D., Simpson, A.J., Simpson, M.J., 2015. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry 123, 391–409. https://doi.org/10.1007/s10533-015-0073-8.

 

Pisani, O., Lin, L.H., Lun, O.O.Y., Lajtha, K., Nadelhoffer, K.J., Simpson, A.J., Simpson, M.J., 2016. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks. Biogeochemistry 127, 1–14. https://doi.org/10.1007/s10533-015-0171-7.

 

Qian, Z., Gu, R., Gao, K., Li, D., 2023. High plant species diversity enhances lignin accumulation in a subtropical forest of southwest China. Sci. Total Environ. 865, 161113. https://doi.org/10.1016/j.scitotenv.2022.161113.

 

Ramirez, K.S., Craine, J.M., Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biol. 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x.

 

Rasse, D.P., Rumpel, C., Dignac, M.F., 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356. https://doi.org/10.1007/s11104-004-0907-y.

 

Román Dobarco, M., Jacobson, A.R., Van Miegroet, H., 2020. Chemical composition of soil organic carbon from mixed aspen-conifer forests characterized with fourier transform infrared spectroscopy. Eur. J. Soil Sci. 72, 1410–1430. https://doi.org/10.1111/ejss.13065.

 

Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91. https://doi.org/10.4155/cmt.13.77.

 

Shen, D., Ye, C., Hu, Z., Chen, X., Guo, H., Li, J., Du, G., Adl, S., Liu, M., 2018. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan Alpine Meadow. Soil Biol. Biochem. 126, 11–21. https://doi.org/10.1016/j.soilbio.2018.08.008.

 

Sheng, M., Chen, S., Liu, C.Q., Fu, Q., Zhang, D., Hu, W., Deng, J., Wu, L., Li, P., Yan, Z., Zhu, Y.G., Fu, P., 2023. Spatial and molecular variations in forest topsoil dissolved organic matter as revealed by FT-ICR mass spectrometry. Sci. Total Environ. 895, 165099. https://doi.org/10.1016/j.scitotenv.2023.165099.

 

Simpson, M.J., Otto, A., Feng, X.J., 2008. Comparison of solid-state carbon-13C nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci. Soc. Am. J. 72, 268–276. https://doi.org/10.2136/sssaj2007.0045.

 

Sjögersten, S., Caul, S., Daniell, T.J., Jurd, A.P.S., O'Sullivan, O.S., Stapleton, C.S., Titman, J.J., 2016. Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol. Biochem. 98, 42–53. https://doi.org/10.1016/j.soilbio.2016.03.016.

 

Spielvogel, S., Prietzel, J., Leide, J., Riedel, M., Zemke, J., Kögel-Knabner, I., 2014. Distribution of cutin and suberin biomarkers under forest trees with different root systems. Plant Soil 381, 95–110. https://doi.org/10.1007/s11104-014-2103-z.

 

Thevenot, M., Dignac, M.F., Rumpel, C., 2010. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211. https://doi.org/10.1016/j.soilbio.2010.03.017.

 

Thomas, D.C., Zak, D.R., Filley, T.R., 2012. Chronic N deposition does not apparently alter the biochemical composition of forest floor and soil organic matter. Soil Biol. Biochem. 54, 7–13. https://doi.org/10.1016/j.soilbio.2012.05.010.

 

vandenEnden, L., Frey, S.D., Nadelhoffer, K.J., LeMoine, J.M., Lajtha, K., Simpson, M.J., 2018. Molecular-level changes in soil organic matter composition after 10 years of litter, root and nitrogen manipulation in a temperate forest. Biogeochemistry 141, 183–197. https://doi.org/10.1007/s10533-018-0512-4.

 

vandenEnden, L., Anthony, M.A., Frey, S.D., Simpson, M.J., 2021. Biogeochemical evolution of soil organic matter composition after a decade of warming and nitrogen addition. Biogeochemistry 156, 161–175. https://doi.org/10.1007/s10533-021-00837-0.

 

Wan, P., Zhao, X., Ou, Z., He, R., Wang, P., Cao, A., 2023. Forest management practices change topsoil carbon pools and their stability. Sci. Total Environ. 902, 166093. https://doi.org/10.1016/j.scitotenv.2023.166093.

 

Wang, J.J., Bowden, R.D., Lajtha, K., Washko, S.E., Wurzbacher, S.J., Simpson, M.J., 2019. Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry 142, 299–313. https://doi.org/10.1007/s10533-018-00535-4.

 

Wang, M., Yang, J., Gao, H., Xu, W., Dong, M., Shen, G., Xu, J., Xu, X., Xue, J., Xu, C.Y., Zhou, X., 2020. Interspecific plant competition increases soil labile organic carbon and nitrogen contents. For. Ecol. Manag. 462, 117991. https://doi.org/10.1016/j.foreco.2020.117991.

 

Wang, J., Shi, X., Zheng, C., Suter, H., Huang, Z., 2021. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci. Total Environ. 755, 142449. https://doi.org/10.1016/j.scitotenv.2020.142449.

 

Wang, X., Sheng, L., Li, Y., Jiang, H., Lv, Z., Qi, W., Luo, W., 2022. Soil labile organic carbon indicating seasonal dynamics of soil organic carbon in northeast peatland. Ecol. Indic. 138, 108847. https://doi.org/10.1016/j.ecolind.2022.108847.

 

Wang, Z., Li, T., Lu, C., Wang, C., Wu, H., Li, X., Cai, J., Feng, X., Liu, H., Zhang, Y., Han, X., Li, H., Jiang, Y., 2024. Mowing aggravates the adverse effects of nitrogen addition on soil acid neutralizing capacity in a meadow steppe. J. Environ. Manag. 362, 121293. https://doi.org/10.1016/j.jenvman.2024.121293.

 

Wu, G.L., Liu, Y., Tian, F.P., Shi, Z.H., 2016. Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degrad. Dev. 28, 1336–1344. https://doi.org/10.1002/ldr.2570.

 

Yang, J., Li, A., Yang, Y., Li, G., Zhang, F., 2020. Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth Sci. Rev. 205, 103199. https://doi.org/10.1016/j.earscirev.2020.103199.

 

Yang, S., Jansen, B., Absalah, S., Kalbitz, K., Cammeraat, E.L.H., 2020. Selective stabilization of soil fatty acids related to their carbon chain length and presence of double bonds in the Peruvian Andes. Geoderma 373, 114414. https://doi.org/10.1016/j.geoderma.2020.114414.

 

Yang, Y., Liu, S., Schindlbacher, A., Wang, J., Li, Z., Wang, H., Ming, A., Lu, L., Li, Z., 2021. Topsoil organic carbon increases but its stability declines after five years of reduced throughfall. Soil Biol. Biochem. 156, 108221. https://doi.org/10.1016/j.soilbio.2021.108221.

 

Ye, X., Luan, J., Wang, H., Zhang, Y., Wang, Y., Ma, J., Liu, S., 2022. Tree species richness and N-Fixing tree species enhance the chemical stability of soil organic carbon in subtropical plantations. Soil Biol. Biochem. 174, 108828. https://doi.org/10.1016/j.soilbio.2022.108828.

 

Ye, Y., Wang, H., Luan, J., Ma, J., Ming, A., Niu, B., Liu, C., Freedman, Z., Wang, J., Liu, S., 2023. Nitrogen-fixing tree species modulate species richness effects on soil aggregate-associated organic carbon fractions. For. Ecol. Manag. 546, 121315. https://doi.org/10.1016/j.foreco.2023.121315.

 

Zheng, L.T., Chen, H.Y.H., Yan, E.R., 2019. Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. J. Ecol. 107, 1852–1861. https://doi.org/10.1111/1365-2745.13142.

 

Zhou, G., Zhang, J., Qiu, X., Wei, F., Xu, X., 2018. Decomposing litter and associated microbial activity responses to nitrogen deposition in two subtropical forests containing nitrogen-fixing or non-nitrogen-fixing tree species. Sci. Rep. 8, 12934. https://doi.org/10.1038/s41598-018-30666-5.

 

Zhu, X., Chen, H., Zhang, W., Huang, J., Fu, S., Liu, Z., Mo, J., 2016. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-Fixing vs. non-N2-Fixing tree species. Plant Soil 399, 61–74. https://doi.org/10.1007/s11104-015-2676-1.

 

Zhu, S., Dai, G., Ma, T., Chen, L., Chen, D., Lü, X., Wang, X., Zhu, J., Zhang, Y., Bai, Y., Han, X., He, J.S., Feng, X., 2019. Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant Soil 439, 325–338. https://doi.org/10.1007/s11104-019-04035-8.

 

Zuo, H., Xu, W., Liu, Z., Smaill, S.J., Zhou, X., 2023. Long-term plant diversity increases soil extractable organic carbon and nitrogen contents in a subtropical forest. Sci. Total Environ. 878, 163118. https://doi.org/10.1016/j.scitotenv.2023.163118.

Forest Ecosystems
Article number: 100232
Cite this article:
Ye X, Luan J, Wang H, et al. N-fixing tree species promote the chemical stability of soil organic carbon in subtropical plantations through increasing the relative contribution of plant-derived lipids. Forest Ecosystems, 2024, 11(5): 100232. https://doi.org/10.1016/j.fecs.2024.100232

122

Views

2

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 19 April 2024
Revised: 29 July 2024
Accepted: 29 July 2024
Published: 02 August 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return