Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality. However, the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear, especially for natural mixed forests. In this study, our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data. We evaluated the effects of seven management scenarios (combinations of various cutting methods and intensities) on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China, under four climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5, and constant climate). Provisioning, regulating, cultural, and supporting services were described by timber production, carbon storage, carbon sequestration, tree species diversity, deadwood volume, and the number of large living trees. Our findings indicated that timber production was significantly influenced by management scenarios, while tree species diversity, deadwood volume, and large living trees were impacted by both climate and management separately. Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management. These findings emphasized the profound impact of forest management on ecosystem services, outweighing that of climate scenarios alone. We found no single management scenario maximized all six ecosystem service indicators. The upper story thinning by 5% intensity with 5-year interval (UST5) management strategy emerged with the highest multifunctionality, surpassing the lowest values by more than 20% across all climate scenarios. In conclusion, our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context. Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
Albrich, K., Rammer, W., Thom, D., Seidl, R., 2018. Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecol. Appl. 28, 1884–1896. https://doi.org/10.1002/eap.1785.
Ameray, A., Bergeron, Y., Valeria, O., Girona, M.M., Cavard, X., 2021. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep. 7, 245–266. https://doi.org/10.1007/s40725-021-00151-w.
Augustynczik, A.L.D., Gutsch, M., Basile, M., Suckow, F., Lasch, P., Yousefpour, R., Hanewinkel, M., 2020. Socially optimal forest management and biodiversity conservation in temperate forests under climate change. Ecol. Econ. 169, 106504. https://doi.org/10.1016/j.ecolecon.2019.106504.
Baeten, L., Bruelheide, H., van der Plas, F., Kambach, S., Ratcliffe, S., Jucker, T., Allan, E., Ampoorter, E., Barbaro, L., Bastias, C.C., Bauhus, J., Benavides, R., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E., Coomes, D.A., Dahlgren, J., Dawud, S.M., De Wandeler, H., Domisch, T., Finér, L., Fischer, M., Fotelli, M., Gessler, A., Grossiord, C., Guyot, V., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.X., Koricheva, J., Lehtonen, A., Müller, S., Muys, B., Nguyen, D., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Ruiz-Benito, P., Selvi, F., Stenlid, J., Valladares, F., Vesterdal, L., Verheyen, K., Wirth, C., Zavala, M.A., Scherer-Lorenzen, M., 2019. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744. https://doi.org/10.1111/1365-2664.13308.
Baskent, E.Z., Kaspar, J., 2022. Exploring the effects of management intensification on multiple ecosystem services in an ecosystem management context. For. Ecol. Manag. 518, 120299. https://doi.org/10.1016/j.foreco.2022.120299.
Blattert, C., Eyvindson, K., Hartikainen, M., Burgas, D., Potterf, M, Lukkarinen, J., Snäll, T., Toraño-Caicoya, A., Mönkkönen, M., 2022. Sectoral policies cause incoherence in forest management and ecosystem service provisioning. For. Policy Econ. 136, 102689. https://doi.org/10.1016/j.forpol.2022.102689.
Blattert, C., Lemm, R., Thees, O., Lexer, M.J., Hanewinkel, M., 2017. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 79, 391–409. https://doi.org/10.1016/j.ecolind.2017.04.025.
Blattert, C., Lemm, R., Thürig, E., Stadelmann, G., Brändli, U. -B., Temperli, C., 2020. Long-term impacts of increased timber harvests on ecosystem services and biodiversity: a scenario study based on national forest inventory data. Ecosyst. Serv. 45, 101150. https://doi.org/10.1016/j.ecoser.2020.101150.
Blicharska, M., Mikusinski, G., 2014. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567. https://doi.org/10.1111/cobi.12341.
Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P. O'B., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I.D., van der Plas, F., Jactel, H., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2.
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J., Griffin, J., Hector, A., Cardinale, B., Hooper, D., Dee, L., Duffy, J.E., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124. https://doi.org/10.1111/2041-210x.12143.
Caicoya, A.T., Vergarechea, M., Blattert, C., Klein, J., Eyvindson, K., Burgas, D., Snäll, T., Mönkkönen, M., Astrup, R., Fulvio, F.D., Forsell, N., Hartikainen, M., Uhl, E., Poschenrieder, W., Antón-Fernández, C., 2023. What drives forest multifunctionality in central and northern Europe? Exploring the interplay of management, climate, and policies. Ecosyst. Serv. 64, 101575. https://doi.org/10.1016/j.ecoser.2023.101575.
Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., DeFries, R.S., Díaz, S., Dietz, T., Duraiappah, A.K., Oteng-Yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., Sarukhan, J., Scholes, R.J., Whyte, A., 2009. Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. U.S.A. 106, 1305–1312. https://doi.org/10.1073/pnas.0808772106.
Chen, X.W., Li, B.L., 2004. Tree diversity change in remaining primary mixed-broadleaved Korean pine forest under climate change and human activities. Biodivers. Conserv. 13, 563–577. https://doi.org/10.1023/B:BIOC.0000009490.57334.0a.
Choi, Y., Lim, C. -H., Chung, H.I., Kim, Y., Cho, H.J., Hwang, J., Kraxner, F., Biging, G.S., Lee, W. -K., Chon, J., Jeon, S.W., 2021. Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: insights from the Republic of Korea. J. Environ. Manag. 288, 112400. https://doi.org/10.1016/j.jenvman.2021.112400.
Cox, P.M., Pearson, D., Booth, B.B., Friedlingstein, P., Huntingford, C., Jones, C.D., Luke, C.M., 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344. https://doi.org/10.1038/nature11882.
del Río, M., Pretzsch, H., Ruiz-Peinado, R., Jactel, H., Coll, L., Löf, M., Aldea, J., Ammer, C., Avdagić, A., Barbeito, I., Bielak, K., Bravo, F., Brazaitis, G., Cerný, J., Collet, C., Condés, S., Drössler, L., Fabrika, M., Heym, M., Holm, S. -O., Hylen, G., Jansons, A., Kurylyak, V., Lombardi, F., Matović, B., Metslaid, M., Motta, R., Nord-Larsen, T., Nothdurft, A., den Ouden, J., Pach, M., Pardos, M., Poeydebat, C., Ponette, Q., Pérot, T., Reventlow, D.O.J., Sitko, R., Sramek, V., Steckel, M., Svoboda, M., Verheyen, K., Vospernik, S., Wolff, B., Zlatanov, T., Bravo-Oviedo, A., 2022. Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. J. Appl. Ecol. 59, 2730–2741. https://doi.org/10.1111/1365-2664.14267.
Deng, W., Xiang, W., Ouyang, S., Hu, Y., Chen, L., Zeng, Y., Deng, X., Zhao, Z., Forrester, D.I., 2022. Spatially explicit optimization of the forest management tradeoff between timber production and carbon sequestration. Ecol. Indic. 142, 109193. https://doi.org/10.1016/j.ecolind.2022.109193.
Didion, M., Kupferschmid, A.D., Zingg, A., Fahse, L., Bugmann, H., 2009. Gaining local accuracy while not losing generality - extending the range of gap model applications. Can. J. For. Res. 39, 1092–1107. https://doi.org/10.1139/x09-041.
Du, X., Chen, X.Y., Zeng, W.S., Meng, J.H., 2021. A climate-sensitive transition matrix growth model for uneven-aged mixed-species oak forests in North China. Forestry 94, 258–277. https://doi.org/10.1093/forestry/cpaa035.
Du, X., Wang, X., Meng, J.H., 2023. A climate-sensitive transition matrix growth model for masson pine (Pinus massoniana Lamb.) natural forests in Hunan Province, south-central China. Forests 14, 1539. https://doi.org/10.3390/f14081539.
Eggers, J., Lindner, M., Zudin, S., Zaehle, S., Liski, J., 2008. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st Century. Global Change Biol. 14, 2288–2303. https://doi.org/10.1111/j.1365-2486.2008.01653.x.
Ferraz, S.F.B., Lima, W.D., Rodrigues, C.B., 2013. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 301, 58–66. https://doi.org/10.1016/j.foreco.2012.10.015.
Gao, W.Q., Lei, X. -D., Liang, M. -W., Larjavaara, M., Li, Y. -T., Gao, D. -L., Zhang, H. -R., 2021. Biodiversity increased both productivity and its spatial stability in temperate forests in northeastern China. Sci. Total Environ. 780, 146674. https://doi.org/10.1016/j.scitotenv.2021.146674.
Gong, J., Zhang, J., Zhang, Y., Zhu, Y., Jin, T., Xu, C., 2021. Do forest landscape pattern planning and optimization play a role in enhancing soil conservation services in mountain areas of western China? Chin. Geogr. Sci. 31, 848–866. https://doi.org/10.1007/s11769-021-1230-8.
Graf, M., Lettenmaier, L., Müller, J., Hagge, J., 2022. Saproxylic beetles trace deadwood and differentiate between deadwood niches before their arrival on potential hosts. Insect Conserv. Divers. 15, 48–60. https://doi.org/10.1111/icad.12534.
Gregor, K., Knoke, T., Krause, A., Reyer, C.P.O., Lindeskog, M., Papastefanou, P., Smith, B., Lansø, A. -S., Rammig, A., 2022. Trade-offs for climate-smart forestry in Europe under uncertain future climate. Earth's Future 10, e2022EF002796. https://doi.org/10.1029/2022ef002796.
Grotti, M., Chianucci, F., Puletti, N., Fardusi, M.J., Castaldi, C., Corona, P., 2019. Spatio-temporal variability in structure and diversity in a semi-natural mixed oak-hornbeam floodplain forest. Ecol. Indic. 104, 576–587. https://doi.org/10.1016/j.ecolind.2019.04.014.
Gurung, L.J., Miller, K.K., Venn, S., Bryan, B.A., 2021. Contributions of non-timber forest products to people in mountain ecosystems and impacts of recent climate change. Ecosyst. People. 17, 447–463. https://doi.org/10.1080/26395916.2021.1957021.
Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., Reyer, C.P.O., 2018. Balancing trade-offs between ecosystem services in Germany's forests under climate change. Environ. Res. Lett. 13, 045012. https://doi.org/10.1088/1748-9326/aab4e5.
Hallberg-Sramek, I., Nordström, E. -M., Priebe, J., Reimerson, E., Mårald, E., Nordin, A., 2023. Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services. Ecosyst. Serv. 60, 101512. https://doi.org/10.1016/j.ecoser.2023.101512.
Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D., Allen, C.D., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat. Commun. 13, 1761. https://doi.org/10.1038/s41467-022-29289-2.
Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190. https://doi.org/10.1038/nature05947.
Hengl, T., de Jesus, J.M., Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748. https://doi.org/10.1371/journal.pone.0169748.
Holmberg, M., Aalto, T., Akujärvi, A., Arslan, A., Bergström, I., Böttcher, K., Lahtinen, I., Mäkelä, A., Markkanen, T., Minunno, F., Peltoniemi, M., Rankinen, K., Vihervaara, P., Forsius, M., 2019. Ecosystem services related to carbon cycling - modeling present and future impacts in Boreal forests. Front. Plant Sci. 10, 343. https://doi.org/10.3389/fpls.2019.00343.
Huang, C., Li, S., He, H.S., Liang, Y., Xu, W., Wu, M.M., Wu, Z., Huang, C., Chen, F., 2023. Effects of forest management practices on carbon dynamics of China's boreal forests under changing climates. J. Environ. Manag. 335, 117497. https://doi.org/10.1016/j.jenvman.2023.117497.
Irauschek, F., Rammer, W., Lexer, M.J., 2017. Evaluating multifunctionality and adaptive capacity of mountain forest management alternatives under climate change in the Eastern Alps. Eur. J. For. Res. 136, 1051–1069. https://doi.org/10.1007/s10342-017-1051-6.
Iwachido, Y., Kaneko, M., Sasaki, T., 2023. Mixed coastal forests are less vulnerable to tsunami impacts than monoculture forests. Nat. Hazards 120, 1101–1112. https://doi.org/10.1007/s11069-023-06248-8.
Jönsson, M., Snäll, T., 2020. Ecosystem service multifunctionality of low-productivity forests and implications for conservation and management. J. Appl. Ecol. 57, 695–706. https://doi.org/10.1111/1365-2664.13569.
Kim, T., Langpap, C., 2015. Incentives for carbon sequestration using forest management. Environ. Resour. Econ. 62, 491–520. https://doi.org/10.1007/s10640-014-9827-3.
Kirilenko, A.P., Sedjo, R.A., 2007. Climate change impacts on forestry. Proc. Natl. Acad. Sci. U.S.A. 104, 19697–19702. https://doi.org/10.1073/pnas.0701424104.
Lan, J., Lei, X.D., He, X., Gao, W.Q., Guo, H., 2023. Stand density, climate and biodiversity jointly regulate the multifunctionality of natural forest ecosystems in northeast China. Eur. J. For. Res. 142, 493–507. https://doi.org/10.1007/s10342-023-01537-0.
Lan, T.Y., Gu, J.C., Wen, Z.H., 2021. Spatial distribution characteristics of carbon storage density in typical mixed fir and broadleaf forests. Energy Rep. 7, 7315–7322. https://doi.org/10.1016/j.egyr.2021.10.094.
Lasch, P., Badeck, F.W., Suckow, F., Lindner, M., Mohr, P., 2005. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For. Ecol. Manag. 207, 59–74. https://doi.org/10.1016/j.foreco.2004.10.034.
Lassauce, A., Paillet, Y., Jactel, H., Bouget, C., 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol. Indic. 11, 1027–1039. https://doi.org/10.1016/j.ecolind.2011.02.004.
Lei, X.D., Wang, W.F., Peng, C.H., 2009. Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can. J. For. Res. 39, 1835–1847. https://doi.org/10.1139/x09-089.
Li, Y., Brando, P.M., Morton, D.C., Lawrence, D.M., Yang, H., Randerson, J.T., 2022. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 13, 1964. https://doi.org/10.1038/s41467-022-29601-0.
Li, T., Luo, P., Xiong, Q., Yang, H., Gu, X., Qiu, Y., Lin, B., Liu, Y., Lai, C., 2021. Spatial heterogeneity of tree diversity response to climate warming in montane forests. Ecol. Evol. 11, 931–941. https://doi.org/10.1002/ece3.7106.
Li, R.X., Weiskittel, A.R., Kershaw, J.A., 2011. Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian Forest Region of North America. Can. J. For. Res. 41, 2077–2089. https://doi.org/10.1139/x11-117.
Liang, J.J., 2010. Dynamics and management of Alaska boreal forest: an all-aged multi-species matrix growth model. For. Ecol. Manag. 260, 491–501. https://doi.org/10.1016/j.foreco.2010.04.040.
Liang, J.J., Buongiorno, J., Monserud, R.A., 2005. Growth and yield of all-aged Douglas-fir-western hemlock forest stands: a matrix model with stand diversity effects. Can. J. For. Res. 35, 2368–2381. https://doi.org/10.1139/x05-137.
Liang, J.J., Buongiorno, J., Monserud, R.A., Kruger, E.L., Zhou, M., 2007. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For. Ecol. Manag. 243, 116–127. https://doi.org/10.1016/j.foreco.2007.02.028.
Liang, J.J., Picard, N., 2013. Matrix model of forest dynamics: an overview and outlook. For. Sci. 59, 359–378. https://doi.org/10.5849/forsci.11-123.
Liang, J.J., Zhou, M., 2010. A geospatial model of forest dynamics with controlled trend surface. Ecol. Model. 221, 2339–2352. https://doi.org/10.1016/j.ecolmodel.2010.06.016.
Liang, J.J., Zhou, M., Verbyla, D.L., Zhang, L.J., Springsteen, A.L., Malone, T., 2011. Mapping forest dynamics under climate change: a matrix model. For. Ecol. Manag. 262, 2250–2262. https://doi.org/10.1016/j.foreco.2011.08.017.
Lin, C.R., Buongiorno, J., Vasievich, M., 1996. A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood stands. Ecol. Model. 91, 193–211. https://doi.org/10.1016/0304-3800(95)00190-5.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A., 2001. Ecology and biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808. https://doi.org/10.1126/science.1064088.
Ma, W., Liang, J.J., Cumming, J.R., Lee, E., Welsh, A.B., Watson, J.V., Zhou, M., 2016. Fundamental shifts of central hardwood forests under climate change. Ecol. Model. 332, 28–41. https://doi.org/10.1016/j.ecolmodel.2016.03.021.
Ma, W., Woodall, C.W., Domke, G.M., D'Amato, A.W., Walters, B.F., 2018. Stand age versus tree diameter as a driver of forest carbon inventory simulations in the northeastern U.S. Can. J. For. Res. 48, 1135–1147. https://doi.org/10.1139/cjfr-2018-0019.
Ma, W., Zhou, M., 2018. Assessments of harvesting regimes in Central Hardwood Forests under climate and fire uncertainty. For. Sci. 64, 57–73. https://doi.org/10.5849/fs-2016-102.
Ma, W., Zhou, X.P., Liang, J.J., Zhou, M., 2019. Coastal Alaska forests under climate change: what to expect? For. Ecol. Manag. 448, 432–444. https://doi.org/10.1016/j.foreco.2019.06.030.
Ma, W., Lin, G., Liang, J.J., 2020. Estimating dynamics of central hardwood forests using random. For. Ecol. Model. 419, 108947. https://doi.org/10.1016/j.ecolmodel.2020.108947.
Magry, M.A., Cahill, D., Rookes, J., Narula, S.A., 2023. Climate change impacts on non-timber forest products: NTFP-dependent community responses from India. Clim. Dev. 15, 738–751. https://doi.org/10.1080/17565529.2022.2152639.
Mahony, C.R., Wang, T.L., Hamann, A., Cannon, A.J., 2022. A global climate model ensemble for downscaled monthly climate normals over North America. Int. J. Climatol. 42, 5871–5891. https://doi.org/10.1002/joc.7566.
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436. https://doi.org/10.1038/s41559-017-0461-7.
Mashizi, A.K., Sharafatmandrad, M., 2023. Dry forests conservation: a comprehensive approach linking ecosystem services to ecological drivers and sustainable management. Glob. Ecol. Conserv. 47, e02652. https://doi.org/10.1016/j.gecco.2023.e02652.
Mendoza, G.A., Setyarso, A., 1986. A transition matrix forest growth model for evaluating alternative harvesting schemes in Indonesia. For. Ecol. Manag. 15, 219–228. https://doi.org/10.1016/0378-1127(86)90068-x.
Mina, M., Bugmann, H., Cordonnier, T., Irauschek, F., Klopcic, M., Pardos, M., Cailleret, M., 2017. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 54, 389–401. https://doi.org/10.1111/1365-2664.12772.
Miyake, Y., Kohsaka, R., 2023. Climate change adaptation in non-timber forest products: how resilient are small Shiitake Producers? J. Sustain. For. 42, 922–946. https://doi.org/10.1080/10549811.2022.2123822.
Morán-Ordóñez, A., Ameztegui, A., De Cáceres, M., de-Miguel, S., Lefèvre, F., Brotons, L., Coll, L., 2020. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 45, 101174. https://doi.org/10.1016/j.ecoser.2020.101174.
Nguyen, H.D., Youn, Y.C., Bui, D.T., Nguyen, T.H.Y., Dinh, D.T., Ho, Q.T., 2023. Optimal forest management for carbon sequestration, timber, and bioenergy production in Vietnam using an extended full-cycle carbon accounting method. Environ. Sci. Pollut. Res. 30, 101192–101207. https://doi.org/10.1007/s11356-023-29439-z.
Oettel, J., Zolles, A., Gschwantner, T., Lapin, K., Kindermann, G., Schweinzer, K.M., Gossner, M.M., Essl, F., 2023. Dynamics of standing deadwood in Austrian forests under varying forest management and climatic conditions. J. Appl. Ecol. 60, 696–713. https://doi.org/10.1111/1365-2664.14359.
Orois, S.S., Soalleiro, R.R., 2002. Modelling the growth and management of mixed uneven-aged maritime pine-broadleaved species forests in Galicia, north-western Spain. Scand. J. For. Res. 17, 538–547. https://doi.org/10.1080/02827580260417198.
Paletto, A., De Meo, I., Cantiani, P., Ferretti, F., 2014. Effects of forest management on the amount of deadwood in Mediterranean oak ecosystems. Ann. For. Sci. 71, 791–800. https://doi.org/10.1007/s13595-014-0377-1.
Pan, T., Lei, Y., Shen, L.Z., Zhu, X.C., Xu, M., Zhang, J., 2021. Analysis of ecosystem characteristics and ecological benefit of coniferous and broad-leaved mixed Forest. J. Mountain Agric. Biol. 40, 8 (in Chinese).
Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the World's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.
Peura, M., Burgas, D., Eyvindson, K., Repo, A., Mönkkönen, M., 2018. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biol. Conserv. 217, 104–112. https://doi.org/10.1016/j.biocon.2017.10.018.
Piponiot, C., Rödig, E., Putz, F.E., Rutishauser, E., Sist, P., Ascarrunz, N., Blanc, L., Derroire, G., Descroix, L., Guedes, M.C., Coronado, E.H., Huth, A., Kanashiro, M., Licona, J.C., Mazzei, L., d'Oliveira, M.V.N., Peña-Claros, M., Rodney, K., Shenkin, A., de Souza, C.R., Vidal, E., West, T.A.P., Worter, V., Hérault, B., 2019. Can timber provision from Amazonian production forests be sustainable? Environ. Res. Lett. 14, 064014. https://doi.org/10.1088/1748-9326/ab195e.
Poudel, B.C., Sathre, R., Gustavsson, L., Bergh, J., Lundström, A., Hyvönen, R., 2011. Effects of climate change on biomass production and substitution in north-central Sweden. Biomass Bioenergy 35, 4340–4355. https://doi.org/10.1016/j.biombioe.2011.08.005.
Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A., 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712. https://doi.org/10.1051/forest/2010037.
Rodrigues, A.R., Botequim, B., Tavares, C., Pécurto, P., Borges, J.G., 2020. Addressing soil protection concerns in forest ecosystem management under climate change. For. Ecosyst. 7, 34. https://doi.org/10.1186/s40663-020-00247-y.
Rosa, R., Soares, P., Tomé, M., 2018. Evaluating the economic potential of uneven-aged maritime pine forests. Ecol. Econ. 143, 210–217. https://doi.org/10.1016/j.ecolecon.2017.07.009.
Rounsevell, M.D.A., Dawson, T.P., Harrison, P.A., 2010. A conceptual framework to assess the effects of environmental change on ecosystem services. Biodivers. Conserv. 19, 2823–2842. https://doi.org/10.1007/s10531-010-9838-5.
Sanaei, A., Ali, A., Yuan, Z.Q., Liu, S.F., Lin, F., Fang, S., Ye, J., Hao, Z.Q., Loreau, M., Bai, E.D., Wang, X.G., 2021. Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Sci. Total Environ. 757, 143724. https://doi.org/10.1016/j.scitotenv.2020.143724.
Schaich, H., Milad, M., 2013. Forest biodiversity in a changing climate: which logic for conservation strategies? Biodivers. Conserv. 22, 1107–1114. https://doi.org/10.1007/s10531-013-0491-7.
Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Härdtle, W., He, J.S., Klein, A.M., Kühn, P., Liu, X.J., Ma, K.P., Niklaus, P.A., Pietsch, K.A., Purahong, W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z.Y., Trogisch, S., von Oheimb, G., Wirth, C., Wubet, T., Zhu, C.D., Bruelheide, H., 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989. https://doi.org/10.1038/s41467-018-05421-z.
Sedjo, R., Sohngen, B., 2012. Carbon sequestration in forests and soils. Ann. Rev. Res. Econ. 4, 126–143. https://doi.org/10.1146/annurev-resource-083110-115941.
Sheng, Q., Liu, Z.G., Dong, L.B., 2023. A climate-spatial matrix growth model for major tree species in Lesser Khingan Mountains and responses of forest dynamics change to different representative concentration path scenarios. Front. For. Glob. Change 6, 1309189. https://doi.org/10.3389/ffgc.2023.1309189.
Simioni, G., Ritson, P., Kirschbaum, M.U.F., McGrath, J., Dumbrell, I., Copeland, B., 2009. The carbon budget of Pinus radiata plantations in south-western Australia under four climate change scenarios. Tree Physiol. 29, 1081–1093. https://doi.org/10.1093/treephys/tpp049.
Simon, D.C., Ameztegui, A., 2023. Modelling the influence of thinning intensity and frequency on the future provision of ecosystem services in Mediterranean mountain pine forests. Eur. J. For. Res. 142, 521–535. https://doi.org/10.1007/s10342-023-01539-y.
Singh, M., Sinha, B., Bisaria, J., Thomas, T., Srivastava, P., 2022. Understanding synergies and tradeoffs between forests, water, and climate change. Wires Water 9, e1614. https://doi.org/10.1002/wat2.1614.
Slack, A.W., Kane, J.M., Knapp, E.E., Sherriff, R.L., 2017. Contrasting impacts of climate and competition on large sugar pine growth and defense in a fire-excluded forest of the Central Sierra Nevada. Forests 8, 244. https://doi.org/10.3390/f8070244.
Spathelf, P., Durlo, M.A., 2001. Transition matrix for modeling the dynamics of a subtropical seminatural forest in southern Brazil. For. Ecol. Manag. 151, 139–149. https://doi.org/10.1016/s0378-1127(00)00704-0.
Sundnes, F., Karlsson, M., Platjouw, F.M., Clarke, N., Kaste, O., Valinia, S., 2020. Climate mitigation and intensified forest management in Norway: to what extent are surface waters safeguarded? Ambio 49, 1736–1746. https://doi.org/10.1007/s13280-020-01357-1.
Thrippleton, T., Blattert, C., Bont, L.G., Mey, R., Zell, J., Thürig, E., Schweier, J., 2021. A multi-criteria decision support system for strategic planning at the Swiss forest enterprise level: coping with climate change and shifting demands in ecosystem service provisioning. Front. For. Glob. Change 4, 693020. https://doi.org/10.3389/ffgc.2021.693020.
Thrippleton, T., Temperli, C., Krumm, F., Mey, R., Zell, J., Stroheker, S., Gossner, M.M., Bebi, P., Thüerig, E., Schweier, J., 2023. Balancing disturbance risk and ecosystem service provisioning in Swiss mountain forests: an increasing challenge under climate change. Reg. Environ. Change 23, 29. https://doi.org/10.1007/s10113-022-02015-w.
Tobin, J., 1958. Estimation of relationships for limited dependent variables. Econometrica 26, 24–36.
Toïgo, M., Castagneyrol, B., Jactel, H., Morin, X., Meredieu, C., 2022. Effects of tree mixture on forest productivity: tree species addition versus substitution. Eur. J. For. Res. 141, 165–175. https://doi.org/10.1007/s10342-021-01432-6.
Triviño, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., Mönkkönen, M., 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosyst. Serv. 14, 179–189. https://doi.org/10.1016/j.ecoser.2015.02.003.
Triviño, M., Morán-Ordoñez, A., Eyvindson, K., Blattert, C., Burgas, D., Repo, A., Pohjanmies, T., Brotons, L., Snäll, T., Mönkkönen, M., 2023. Future supply of boreal forest ecosystem services is driven by management rather than by climate change. Global Change Biol. 29, 1484–1500. https://doi.org/10.1111/gcb.16566.
Usher, M.B., 1969. A matrix model for forest management. Biometrics 25, 309–315. https://doi.org/10.2307/2528791.
Verkeri, P.J., Lindner, M., Zanchi, G., Zudin, S., 2011. Assessing impacts of intensified biomass removal on deadwood in European forests. Ecol. Indic. 11, 27–35. https://doi.org/10.1016/j.ecolind.2009.04.004.
Wang, F., Dai, L., Shao, G., Gu, H., Hui, S., Xiong, X., Wang, H., 2004. Dynamic variation of diameter grade using non-linear programme—a case study on broadleaved and Korean pine mixed forest in Changbai Mountain. Chin. J. Ecol. 23, 101–105 (in Chinese).
Wang, T., Wang, G., Innes, J.L., Seely, B., Chen, B., 2017. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. 4, 448–458. https://doi.org/10.15302/J-FASE-2017172.
Wang, T.L., Hamann, A., Spittlehouse, D.L., Murdock, T.Q., 2012. ClimateWNA-high-resolution spatial climate data for Western North America. J. Appl. Meteorol. Climatol. 51, 16–29. https://doi.org/10.1175/jamc-d-11-043.1.
Wu, C.P., Jiang, B., Yuan, W.G., Shen, A.H., Yang, S.Z., Yao, S.H., Liu, J.J., 2020. On the management of large-diameter trees in China's forests. Forests 11, 111. https://doi.org/10.3390/f11010111.
Xiang, W., Lei, X., Hong, L., Sun, J., Wang, P., 2011. Matrix growth model and harvest scenario simulation for multiple uses of Larch-Spruce-Fir forests. Sci. Silvae Sin. 47, 77–87 (in Chinese).
Zarin, D.J., Schulze, M.D., Vidal, E., Lentini, M., 2007. Beyond reaping the first harvest: management objectives for timber production in the Brazilian Amazon. Conserv. Biol. 21, 916–925. https://doi.org/10.1111/j.1523-1739.2007.00670.x.
Zeng, Y., Wu, H.L., Ouyang, S., Chen, L., Fang, X., Peng, C.H., Liu, S.R., Xiao, W.F., Xiang, W.H., 2021. Ecosystem service multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management. Sci. Total Environ. 788, 147791. https://doi.org/10.1016/j.scitotenv.2021.147791.
Zhou, L., Wang, S.Q., Kindermann, G., Yu, G.R., Huang, M., Mickler, R., Kraxner, F., Shi, H., Gong, Y.Z., 2013. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO2 concentration. Chin. Geogr. Sci. 23, 519–536. https://doi.org/10.1007/s11769-013-0622-9.
Zhou, Q.J., Han, W.B., Zhao, C.M., Yang, W., Xie, Z.Q., 2019. Species composition and community structure of natural mixed needle- and broad-leaved forest in Shennongjia. Chin. J. Ecol. 38, 11–18 (in Chinese).
Zubizarreta-Gerendiain, A., Garcia-Gonzalo, J., Strandman, H., Jylhä, K., Peltola, H., 2016. Regional effects of alternative climate change and management scenarios on timber production, economic profitability, and carbon stocks in Norway spruce forests in Finland. Can. J. For. Res. 46, 274–283. https://doi.org/10.1139/cjfr-2015-0218.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).