Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Forest net primary productivity (NPP) constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity, which is closely related to forest age. Despite its significance, the impact of forest age on NPP is often ignored in future NPP projections. Here, we mapped forest age in Hunan Province at a 30-m resolution utilizing a combination of Landsat time series stack (LTSS), national forest inventory (NFI) data, and the relationships between height and age. Subsequently, NPP was derived from NFI data and the relationships between NPP and age was built for various forest types. Then forest NPP was predicted based on the NPP-age relationships under three future scenarios, assessing the impact of forest age on NPP. Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios: under the age-only scenario, NPP peaks in 2041 (133.56 Tg C·yr−1), while NPP peaks three years later in 2044 (141.14 Tg C·yr−1) under the natural development scenario. The maximum afforestation scenario exhibits the most rapid increase in NPP, with peaking in 2049 (197.95 Tg C·yr−1). However, with the aging of the forest, NPP is projected to then decrease by 7.54%, 6.07%, and 7.47% in 2060, and 20.05%, 19.74%, and 28.38% in 2100, respectively, compared to their peaks under the three scenarios. This indicates that forest NPP will continue to decline soon. Controlling the age structure of forests through selective logging, afforestation and reforestation, and encouraging natural regeneration after disturbance could mitigate this declining trend in forest NPP, but implications of these measures on the full forest carbon balance remain to be studied. Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development, which will inform the achievement of carbon neutrality goals by 2060.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.
Aryal, D.R., De Jong, B.H.J., Sánchez-Silva, S., Haas-Ek, A., Esparza-Olguin, L., Ochoa-Gaona, S., Ghimire, R., Morales-Ruiz, D.E., 2024. Biomass recovery along a tropical forest succession: trends on tree diversity, wood traits and stand structure. For. Ecol. Manag. 555, 121709. https://doi.org/10.1016/j.foreco.2024.121709.
Baldocchi, D., Penuelas, J., 2019. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global Change Biol. 25, 1191–1197. https://doi.org/10.1111/gcb.14559.
Bernier, P., Schoene, D., 2009. Adapting forests and their management to climate change: an overiew. Unasylva 60, 5–11.
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gutter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., Carvalhais, N., 2021. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896. https://doi.org/10.5194/essd-13-4881-2021.
Bond-Lamberty, B., Wang, C.K., Gower, S.T., 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biol. 10, 473–487. https://doi.org/10.1111/j.1529-8817.2003.0742.x.
Bowyer, J.L., 2006. Forest plantations threatening or saving natural forests? IUCN/WWF Forest Conservation Newsletter 31, 8–9.
Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Ferraz, S.F.B., 2013. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 301, 43–50. https://doi.org/10.1016/j.foreco.2012.09.018.
Bryan, B.A., Gao, L., Ye, Y.Q., Sun, X.F., Connor, J.D., Crossman, N.D., Stafford-Smith, M., Wu, J.G., He, C.Y., Yu, D.Y., Liu, Z.F., Li, A., Huang, Q.X., Ren, H., Deng, X.Z., Zheng, H., Niu, J.M., Han, G.D., Hou, X.Y., 2018. China's response to a national land-system sustainability emergency. Nature 559, 193–204. https://doi.org/10.1038/s41586-018-0280-2.
Cai, W.X., He, N.P., Li, M.X., Xu, L., Wang, L.Z., Zhu, J.H., Zeng, N., Yan, P., Si, G.X., Zhang, X.Q., Cen, X.Y., Yu, G.R., Sun, O.J., 2022. Carbon sequestration of Chinese forests from 2010 to 2060 spatiotemporal dynamics and its regulatory strategies. Sci. Bull. 67, 836–843. https://doi.org/10.1016/j.scib.2021.12.012.
Camenzind, T., Hättenschwiler, S., Treseder, K.K., Lehmann, A., Rillig, M.C., 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21. https://doi.org/10.1002/ecm.1279.
Cao, H., Liu, J., Wang, G.Z., Yang, G., Luo, L., 2015. Identification of sand and dust storm source areas in Iran. J. Arid Land 7, 567–578. https://doi.org/10.1007/s40333-015-0127-8.
Carnus, J.M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A., Lamb, D., O'Hara, K., Walters, B., 2006. Planted forests and biodiversity. J. For. 104, 65–77. https://doi.org/10.1093/jof/104.2.65.
Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P.A., McGuire, A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., Pace, M.L., Ryan, M.G., Running, S.W., Sala, O.E., Schlesinger, W.H., Schulze, E.D., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9, 1041–1050. https://doi.org/10.1007/s10021-005-0105-7.
Chen, C., Riley, W.J., Prentice, I.C., Keenan, T.F., 2022. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. P. Natl. Acad. Sci. USA 119, e2115627119. https://doi.org/10.1073/pnas.2115627119.
Chen, J.M., 2021. Carbon neutrality: toward a sustainable future. Innovation 2, 100127. https://doi.org/10.1016/j.xinn.2021.100127.
Chen, J.M., Ju, W.M., Ciais, P., Viovy, N., Liu, R.G., Liu, Y., Lu, X.H., 2019a. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259. https://doi.org/10.1038/s41467-019-12257-8.
Chen, J.M., Ju, W.M., Cihlar, J., Price, D., Liu, J., Chen, W.J., Pan, J.J., Black, A., Barr, A., 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus B 55, 622–641. https://doi.org/10.1034/j.1600-0889.2003.00036.x.
Chen, L.C., Guan, X., Li, H.M., Wang, Q.K., Zhang, W.D., Yang, Q.P., Wang, S.L., 2019b. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 432, 656–666. https://doi.org/10.1016/j.foreco.2018.09.059.
Chen, W.J., Chen, J.M., Price, D.T., Cihlar, J., 2002. Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada. Can. J. For. Res. 32, 833–842. https://doi.org/10.1139/x01-165.
Clay, L., Motallebi, M., Song, B., 2019. An analysis of common forest management practices for carbon sequestration in South Carolina. Forests 10. https://doi.org/10.3390/f10110949.
Drake, J.E., Davis, S.C., Raetz, L.M., DeLucia, E.H., 2011. Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Global Change Biol. 17, 1522–1535. https://doi.org/10.1111/j.1365-2486.2010.02342.x.
Dybala, K.E., Steger, K., Walsh, R.G., Smart, D.R., Gardali, T., Seavy, N.E., 2019. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. J. Appl. Ecol. 56, 343–353. https://doi.org/10.1111/1365-2664.13272.
Ebrahimy, H., Aghighi, H., Azadbakht, M., Amani, M., Mahdavi, S., Matkan, A.A., 2021. Downscaling MODIS land surface temperature product using an adaptive random forest regression method and Google Earth engine for a 19-years spatiotemporal trend analysis over Iran. IEEE J-Stars 14, 2103–2112. https://doi.org/10.1109/jstars.2021.3051422.
Erbaugh, J.T., Pradhan, N., Adams, J., Oldekop, J.A., Agrawal, A., Brockington, D., Pritchard, R., Chhatre, A., 2020. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476. https://doi.org/10.1038/s41559-020-01282-2.
Feng, Y.H., Schmid, B., Loreau, M., Forrester, D., Fei, S.L., Zhu, J.X., Tang, Z.Y., Zhu, J.L., Hong, P.B., Ji, C.J., Shi, Y., Su, H.J., Xiong, X.Y., Xiao, J., Wang, S.P., Fang, J.Y., 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868. https://doi.org/10.1126/science.abm6363.
Ferreira, G.W.D., Rau, B.M., Aubrey, D.P., 2020. Herbicide, fertilization, and planting density effects on intensively managed loblolly pine early stand development. For. Ecol. Manag. 472, 118206. https://doi.org/10.1016/j.foreco.2020.118206.
Fisher, J.B., Badgley, G., Blyth, E., 2012. Global nutrient limitation in terrestrial vegetation. Global Biogeochem. Cycles 26, GB004252. https://doi.org/10.1029/2011gb004252.
Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B., 2017. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026.
Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Bates, N.R., Becker, M., Bellouin, N., Bopp, L., Chau, T.T.T., Chevallier, F., Chini, L.P., Cronin, M., Currie, K.I., Decharme, B., Djeutchouang, L.M., Dou, X.Y., Evans, W., Feely, R.A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Luijkx, I.T., Jain, A., Jones, S.D., Kato, E., Kennedy, D., Goldewijk, K.K., Knauer, J., Korsbakken, J.I., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lienert, S., Liu, J.J., Marland, G., McGuire, P.C., Melton, J.R., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T.M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A.J., Sweeney, C., Tanhua, T., Tans, P.P., Tian, H.Q., Tilbrook, B., Tubiello, F., van der Werf, G.R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W.P., Yue, C., Yue, X., Zaehle, S., Zeng, J.Y., 2022a. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005. https://doi.org/10.5194/essd-14-1917-2022.
Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I.T., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Alkama, R., Arneth, A., Arora, V.K., Bates, N.R., Becker, M., Bellouin, N., Bittig, H.C., Bopp, L., Chevallier, F., Chini, L.P., Cronin, M., Evans, W., Falk, S., Feely, R.A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jain, A.K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Goldewijk, K.K., Knauer, J., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J.J., Liu, Z., Marland, G., Mayot, N., McGrath, M.J., Metzl, N., Monacci, N.M., Munro, D.R., Nakaoka, S.I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P., Pan, N.Q., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T.M., Schwinger, J., Séférian, R., Shutler, J.D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P.P., Tian, X.J., Tian, H.Q., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., Walker, A.P., Wanninkhof, R., Whitehead, C., Wranne, A.W., Wright, R., Yuan, W.P., Yue, C., Yue, X., Zaehle, S., Zeng, J.Y., Zheng, B., 2022b. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900. https://doi.org/10.5194/essd-14-4811-2022.
Gang, C.C., Zhao, W., Zhao, T., Zhang, Y., Gao, X.R., Wen, Z.M., 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 645, 827–836. https://doi.org/10.1016/j.scitotenv.2018.07.161.
Gao, B.L., Taylor, A.R., Searle, E.B., Kumar, P., Ma, Z.L., Hume, A.M., Chen, H.Y.H., 2018. Carbon storage declines in old boreal forests irrespective of succession pathway. Ecosystems 21, 1168–1182. https://doi.org/10.1007/s10021-017-0210-4.
Gough, C.M., Vogel, C.S., Schmid, H.P., Curtis, P.S., 2008. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58, 609–622. https://doi.org/10.1641/b580708.
Goulden, M.L., McMillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W., Bond-Lamberty, B.P., 2011. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol. 17, 855–871. https://doi.org/10.1111/j.1365-2486.2010.02274.x.
Gundersen, P., Thybring, E.E., Nord-Larsen, T., Vesterdal, L., Nadelhoffer, K.J., Johannsen, V.K., 2021. Old-growth forest carbon sinks overestimated. Nature 591, E21–E23. https://doi.org/10.1038/s41586-021-03266-z.
Guo, D., Song, X.N., Hu, R.H., Cai, S.H., Zhu, X.M., Hao, Y.B., 2021. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 775, 145644. https://doi.org/10.1016/j.scitotenv.2021.145644.
Hartley, M.J., 2002. Rationale and methods for conserving biodiversity in plantation forests. For. Ecol. Manag. 155, 81–95. https://doi.org/10.1016/s0378-1127(01)00549-7.
He, L.M., Chen, J.M., Pan, Y.D., Birdsey, R., Kattge, J., 2012. Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochem. Cycles 26, GB3009. https://doi.org/10.1029/2010gb003942.
Houghton, R.A., Hall, F., Goetz, S.J., 2009. Importance of biomass in the global carbon cycle. J. Geophys. Res-Biogeo. 114, G00E03. https://doi.org/10.1029/2009jg000935.
Hua, F.Y., Bruijnzeel, L.A., Meli, P., Martin, P.A., Zhang, J., Nakagawa, S., Miao, X.R., Wang, W.Y., McEvoy, C., Peña-Arancibia, J.L., Brancalion, P.H.S., Smith, P., Edwards, D.P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844. https://doi.org/10.1126/science.abl4649.
Huang, Y., Sun, W.J., Qin, Z.C., Zhang, W., Yu, Y.Q., Li, T.T., Zhang, Q., Wang, G.C., Yu, L.F., Wang, Y.J., Ding, F., Zhang, P., 2022. The role of China's terrestrial carbon sequestration 2010-2060 in offsetting energy-related CO2 emissions. Natl. Sci. Rev. 9, nwac057. https://doi.org/10.1093/nsr/nwac057.
Jackson, R.B., Jobbágy, E.G., Avissar, R., Roy, S.B., Barrett, D.J., Cook, C.W., Farley, K.A., le Maitre, D.C., McCarl, B.A., Murray, B.C., 2005. Trading water for carbon with biological sequestration. Science 310, 1944–1947. https://doi.org/10.1126/science.1119282.
Kalliokoski, T., Bäck, J., Boy, M., Kulmala, M., Kuusinen, N., Mäkelä, A., Minkkinen, K., Minunno, F., Paasonen, P., Peltoniemi, M., Taipale, D., Valsta, L., Vanhatalo, A., Zhou, L.X., Zhou, P.T., Berninger, F., 2020. Mitigation impact of different harvest scenarios of Finnish forests that account for albedo, aerosols, and trade-offs of carbon sequestration and avoided emissions. Front. For. Glob. Change 3, 562044. https://doi.org/10.3389/ffgc.2020.562044.
Keenan, R.J., 2015. Climate change impacts and adaptation in forest management: a review. Ann. For. Sci. 72, 145–167. https://doi.org/10.1007/s13595-014-0446-5.
Kelly, A.E., Goulden, M.L., 2008. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826. https://doi.org/10.1073/pnas.0802891105.
Kennedy, R.E., Yang, Z.G., Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008.
Kennedy, R.E., Yang, Z.Q., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W.B., Healey, S., 2018. Implementation of the LandTrendr algorithm on Google earth engine. Rem. Sens. 10, 691. https://doi.org/10.3390/rs10050691.
Lennox, G.D., Gardner, T.A., Thomson, J.R., Ferreira, J., Berenguer, E., Lees, A.C., Mac Nally, R., Aragao, L.E.O.C., Ferraz, S.F.B., Louzada, J., Moura, N.G., Oliveira, V.H.F., Pardini, R., Solar, R.R.C., Vaz-de Mello, F.Z., Vieira, I.C.G., Barlow, J., 2018. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biol. 24, 5680–5694. https://doi.org/10.1111/gcb.14443.
Li, C.C., Wang, J., Hu, L.Y., Yu, L., Clinton, N., Huang, H.B., Yang, J., Gong, P., 2014. A circa 2010 thirty meter resolution forest map for China. Rem. Sens. 6, 5325–5343. https://doi.org/10.3390/rs6065325.
Li, P., Shang, R., Chen, J.M., Xu, M., Lin, X., Yu, G., He, N., Xu, L., 2024. Evaluation of five models for constructing forest NPP-age relationships in China based on 3121 field survey samples. Biogeosciences 21, 625–639. https://doi.org/10.5194/bg-21-625-2024.
Li, T., Li, M.Y., Ren, F., Tian, L., 2022. Estimation and spatio-temporal change analysis of NPP in subtropical forests: a case study of Shaoguan, Guangdong, China. Rem. Sens. 14, 2541. https://doi.org/10.3390/rs14112541.
Liang, S., Zhao, X., Yuan, W., Liu, S., Cheng, X., Xiao, Z., Zhang, X.T., Liu, Q., Cheng, J., Tang, H.R., 2013. A long-term Global Land Surface Satellite (GLASS) dataset for environmental studies. Int. J. Digit. Earth 5, 5–33. https://doi.org/10.1080/17538947.2013.805262.
Liang, S.L., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z.Q., Yao, Y.J., Yuan, W.P., Zhang, X.T., Zhao, X., Zhou, J., 2021a. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc. 102, E323–E337. https://doi.org/10.1175/bams-d-18-0341.1.
Liang, X., Guan, Q.F., Clarke, K.C., Liu, S.S., Wang, B.Y., Yao, Y., 2021b. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Comput. Environ. Urban 85, 101569. https://doi.org/10.1016/j.compenvurbsys.2020.101569.
Liu, C.L.C., Kuchma, O., Krutovsky, K.V., 2018. Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 15, e00419. https://doi.org/10.1016/j.gecco.2018.e00419.
Liu, Z., Deng, Z., He, G., Wang, H.L., Zhang, X., Lin, J., Qi, Y., Liang, X., 2022. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155. https://doi.org/10.1038/s43017-021-00244-x.
Lu, F., Hu, H.F., Sun, W.J., Zhu, J.J., Liu, G.B., Zhou, W.M., et al., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 115, 4039–4044. https://doi.org/10.1073/pnas.1700294115.
Lu, N., Tian, H.Q., Fu, B.J., Yu, H.Q., Piao, S.L., Chen, S.Y., Zhang, Q.F., Shi, P.L., Liu, X.P., Wu, X., Zhang, L., Wei, X.H., Dai, L.M., Zhang, K.R., Sun, Y.R., Xue, S., Zhang, W.J., Xiong, D.P., Deng, L., Liu, B.J., Zhou, L., Zhang, C., Zheng, X., Cao, J.S., Huang, Y., He, N.P., Zhou, G.Y., Bai, Y.F., Xie, Z.Q., Tang, Z.Y., Wu, B.F., Fang, J.Y., Liu, G.H., Yu, G.R., 2022. Biophysical and economic constraints on China's natural climate solutions. Nat. Clim. Change 12, 847–853. https://doi.org/10.1038/s41558-022-01432-3.
Lucier, A., Ayres, M., Karnosky, D., Thompson, I., Loehle, C., Percy, K., Sohngen, B., 2009. Forest responses and vulnerabilities to recent climate change. IUFRO World Series 22, 29–52.
Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455, 213–215. https://doi.org/10.1038/nature07276.
Mallapaty, S., 2020. How China could be carbon neutral by mid-century. Nature 586, 482–483. https://doi.org/10.1038/d41586-020-02927-9.
Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., Lim, T.K., 2006. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote S. 3, 68–72. https://doi.org/10.1109/lgrs.2005.857030.
Moghaddam, E.R., 2014. Growth, development and yield in pure and mixed forest stands. Int. J. Adv. Biol. Biomed. Res. 2, 2725–2730.
Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T.P., Smith, P., 2018. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biol. 24, 5895–5908. https://doi.org/10.1111/gcb.14459.
Munsi, M., Areendran, G., Joshi, P.K., 2012. Modeling spatio-temporal change patterns of forest cover: a case study from the Himalayan foothills (India). Reg. Environ. Change 12, 619–632. https://doi.org/10.1007/s10113-011-0272-3.
Nguyen, H., Firn, J., Lamb, D., Herbohn, J., 2014. Wood density: a tool to find complementary species for the design of mixed species plantations. For. Ecol. Manag. 334, 106–113. https://doi.org/10.1016/j.foreco.2014.08.022.
Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.
Payne, N.J., Cameron, D.A., Leblanc, J.D., Morrison, I.K., 2019. Carbon storage and net primary productivity in Canadian boreal mixedwood stands. J. For. Res. 30, 1667–1678. https://doi.org/10.1007/s11676-019-00886-0.
Peng, B., Zhou, Z., Cai, W., Li, M., Xu, L., He, N., 2023. Maximum potential of vegetation carbon sink in Chinese forests. Sci. Total Environ. 905, 167325. https://doi.org/10.1016/j.scitotenv.2023.167325.
Peñuelas, J., Ciais, P., Canadel, l J.G., Janssens, I.A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S.L., Vautard, R., Sardans, J., 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445. https://doi.org/10.1038/s41559-017-0274-8.
Piao, S.L., Friedlingstein, P., Ciais, P., Viovy, N., Demarty, J., 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochem. Cycles 21, GB002888. https://doi.org/10.1029/2006gb002888.
Piao, S.L., He, Y., Wang, X.H., Chen, F.H., 2022a. Estimation of China's terrestrial ecosystem carbon sink: methods, progress and prospects. Sci. China Earth Sci. 65, 641–651. https://doi.org/10.1007/s11430-021-9892-6.
Piao, S.L., Yue, C., Ding, J.Z., Guo, Z.T., 2022b. Perspectives on the role of terrestrial ecosystems in the 'carbon neutrality' strategy. Sci. China Earth Sci. 65, 1178–1186. https://doi.org/10.1007/s11430-022-9926-6.
Pilli, R., Grassi, G., Kurz, W.A., Fiorese, G., Cescatti, A., 2017. The European forest sector: past and future carbon budget and fluxes under different management scenarios. Biogeosciences 14, 2387–2405. https://doi.org/10.5194/bg-14-2387-2017.
Potapov, P., Li, X.Y., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., Hofton, M., 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165. https://doi.org/10.1016/j.rse.2020.112165.
Pretzsch, H., Schütze, G., 2016. Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur. J. For. Res. 135, 1–22. https://doi.org/10.1007/s10342-015-0913-z.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M., 2013. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350.
Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S., Egorov, A., 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024.
Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27, 213–262. https://doi.org/10.1016/s0065-2504(08)60009-4.
Shang, R., Chen, J.M., Xu, M.Z., Lin, X.D., Li, P., Yu, G.R., He, N.P., Xu, L., Gong, P., Liu, L.Y., Liu, H., Jiao, W.Z., 2023. China's current forest age structure will lead to weakened carbon sinks in the near future. Innovation 4, 100515. https://doi.org/10.1016/j.xinn.2023.100515.
Tang, J.W., Luyssaert, S., Richardson, A.D., Kutsch, W., Janssens, I.A., 2014. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. USA 111, 8856–8860. https://doi.org/10.1073/pnas.1320761111.
Tang, X.L., Zhao, X., Bai, Y.F., Tang, Z.Y., Wang, W.T., Zhao, Y.C., Wan, H.W., Xie, Z.Q., Shi, X.Z., Wu, B.F., Wang, G.X., Yan, J.H., Ma, K.P., Du, S., Li, S.G., Han, S.J., Ma, Y.X., Hu, H.F., He, N.P., Yang, Y.H., Han, W.X., He, H.L., Yu, G.R., Fang, J.Y., Zhou, G.Y., 2018. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 115, 4021–4026. https://doi.org/10.1073/pnas.1700291115.
Tao, Y., Tian, L., Wang, C., Dai, W., 2023. Dynamic simulation of land use and land cover and its effect on carbon storage in the Nanjing etropolitan circle under different development scenarios. Front. Ecol. Evol. 11, 1102015. https://doi.org/10.3389/fevo.2023.1102015.
Tian, L., Liao, L.T., Tao, Y., Wu, X.C., Li, M.Y., 2023. Forest age mapping using landsat time-series stacks data based on forest disturbance and empirical relationships between age and height. Rem. Sens. 15, 2862. https://doi.org/10.3390/rs15112862.
Tian, L., Tao, Y., Fu, W.X., Li, T., Ren, F., Li, M.Y., 2022. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong Province, China. Rem. Sens. 14, 2330. https://doi.org/10.3390/rs14102330.
Tong, X.W., Brandt, M., Yue, Y.M., Ciais, P., Jepsen, M.R., Penuelas, J., Wigneron, J.P., Xiao, X.M., Song, X.P., Horion, S., Rasmussen, K., Saatchi, S., Fan, L., Wang, K.L., Zhang, B., Chen, Z.C., Wang, Y.H., Li, X.J., Fensholt, R., 2020. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11. https://doi.org/10.1038/s41467-019-13798-8.
van der Sande, M.T., Powers, J.S., Kuyper, T.W., Norden, N., Salgado-Negret, B., de Almeida, J.S., Bongers, F., Delgado, D., Dent, D.H., Derroire, G., Santo, M.M.D., Dupuy, J.M., Fernandes, G.W., Finegan, B., Gavito, M.E., Hernández-Stefanoni, J.L., Jakovac, C.C., Jones, I.L., Veloso, M.D.M., Meave, J.A., Mora, F., Muñoz, R., Pérez-Cárdenas, N., Piotto, D., Alvarez-Dávila, E., Caceres-Siani, Y., Dalban-Pilon, C., Dourdain, A., Du, D.V., Villalobos, D.G., Nunes, Y.R.F., Sanchez-Azofeifa, A., Poorter, L., 2023. Soil resistance and recovery during neotropical forest succession. Philos. T. R. Soc. B. 378, 20210074. https://doi.org/10.1098/rstb.2021.0074.
Veldman, J.W., Overbeck, G.E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G.W., Durigan, G., Buisson, E., Putz, F.E., Bond, W.J., 2015. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018. https://doi.org/10.1093/biosci/biv118.
Vermote, E., Justice, C., Claverie, M., Franch, B., 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008.
Volkova, L., Roxburgh, S.H., Weston, C.J., Benyon, R.G., Sullivan, A.L., Polglase, P.J., 2018. Importance of disturbance history on net primary productivity in the world's most productive forests and implications for the global carbon cycle. Global Change Biol. 24, 4293–4303. https://doi.org/10.1111/gcb.14309.
Wang, B., Huang, J.Y., Yang, X.S., Zhang, B.A., Liu, M.C., 2010. Estimation of biomass, net primary production and net ecosystem production of China's forests based on the 1999-2003 National Forest Inventory. Scand. J. For. Res. 25, 544–553. https://doi.org/10.1080/02827581.2010.524891.
Wang, J.L., Li, Q.K., Fu, X.L., Dai, X.Q., Kou, L., Xu, M.J., Chen, S.F., Chen, F.S., Wang, H.M., 2019. Mechanisms driving ecosystem carbon sequestration in a Chinese fir plantation: nitrogen versus phosphorus fertilization. Eur. J. For. Res. 138, 863–873. https://doi.org/10.1007/s10342-019-01208-z.
Wang, S.H., Zhang, Y.G., Ju, W.M., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I.A., Wu, M.S., Berry, J.A., Campbell, E., Fernández-Martínez, M., Alkama, R., Sftch, S., Friedlingstein, P., Smith, W.K., Yuan, W.P., He, W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I., Wang, R., Zeng, N., Tian, H.Q., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd, V., Goll, D.S., Peñuelas, J., 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300. https://doi.org/10.1126/science.abb7772.
Wang, S.Q., Zhou, L., Chen, J.M., Ju, W.M., Feng, X.F., Wu, W.X., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. J. Environ. Manag. 92, 1651–1662. https://doi.org/10.1016/j.jenvman.2011.01.024.
Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S., Schaaf, C., Woodcock, C.E., Huntington, J.L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., Pekel, J.F., Strobl, P., Cook, B.D., 2022. Fifty years of Landsat science and impacts. Remote Sens. Environ. 280, 113195. https://doi.org/10.1016/j.rse.2022.113195.
Xia, X.S., Ren, P.Y., Wang, X.H., Liu, D., Chen, X.Z., Dan, L., He, B., He, H.L., Ju, W.M., Liang, M.Q., Lu, X.J., Peng, J., Qin, Z.C., Xia, J.Z., Zheng, B., Wei, J., Yue, X., Yu, G.R., Piao, S.L., Yuan, W.P., 2024. The carbon budget of China: 1980-2021. Sci. Bull. 69, 114–124. https://doi.org/10.1016/j.scib.2023.11.016.
Xiao, J.F., 2014. Satellite evidence for significant biophysical consequences of the "grain for green" program on the loess plateau in China. J. Geophys. Res-Biogeo. 119, 2261–2275. https://doi.org/10.1002/2014jg002820.
Xu, H., Yue, C., Zhang, Y., Liu, D., Piao, S., 2023. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. USA 120, e2304988120. https://doi.org/10.1073/pnas.2304988120.
Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13, 3907–3925. https://doi.org/10.5194/essd-13-3907-2021.
Yu, C., Wang, B., Liu, H., Yang, X.S., Xiu, Z.Z., 2014. Dynamic change of net production and mean net primary productivity of Chian's forests. For. Res. 27, 542–550. https://doi.org/10.13275/j.cnki.lykxyj.2014.04.016.
Yu, Z., Ciais, P., Piao, S.L., Houghton, R.A., Lu, C.Q., Tian, H.Q., Agathokleous, E., Kattel, G.R., Sitch, S., Goll, D., Yue, X., Walker, A., Friedlingstein, P., Jain, A.K., Liu, S.R., Zhou, G.Y., 2022. Forest expansion dominates China's land carbon sink since 1980. Nat. Commun. 13, 5374. https://doi.org/10.1038/s41467-022-32961-2.
Yu, Z., Dong, Y., Lu, C., Agathokleous, E., Zhang, L., Liu, S., Zhou, G.Y., 2023. China's forestation on marginal land was less efficient in carbon sequestration compared with non-marginal land. One Earth 11, 6. https://doi.org/10.1016/j.oneear.2023.11.006.
Zhang, C.H., Ju, W.M., Chen, J.M., Li, D.Q., Wang, X.Q., Fan, W.Y., Li, M.S., Zan, M., 2014. Mapping forest stand age in China using remotely sensed forest height and observation data. J. Geophys. Res-Biogeo. 119, 1163–1179. https://doi.org/10.1002/2013jg002515.
Zhang, S., Hao, X., Zhao, Z., Zhang, J., Fan, X., Li, X., 2023. Natural vegetation succession under climate change and the combined effects on net primary productivity. Earth's Future 11, e2023EF003903. https://doi.org/10.1029/2023EF003903.
Zhang, Y., Yao, Y.T., Wang, X.H., Liu, Y.W., Piao, S.L., 2017. Mapping spatial distribution of forest age in China. Earth Space Sci. 4, 108–116. https://doi.org/10.1002/2016ea000177.
Zhang, Y.C., Piao, S.L., Sun, Y., Rogers, B.M., Li, X.Y., Lian, X., Liu, Z.H., Chen, A.P., Peñuelas, J., 2022. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Change 12, 581–586. https://doi.org/10.1038/s41558-022-01374-w.
Zhu, K., Song, Y.L., Qin, C., 2019. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. USA 116, 3962–3964. https://doi.org/10.1073/pnas.1900797116.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).