AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Divergent changes in diversity and network complexity across different trophic-level organisms drive soil multifunctionality of fire-impacted subtropical forests

Luhong ZhouaShangshi LiubDebao LinaHang-Wei HucJi-Zheng Hea,c( )
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, 3010, Australia
Show Author Information

Abstract

Widespread forest fires pose significant challenges to the diverse communities of soil-dwelling organisms and the multiple ecosystem functions they support. However, whether the biodiversity and interactions of various taxonomic groups respond to fire consistently in terms of direction and extent, and their relative role in regulating post-fire soil functioning, remains largely unexplored. In this study, we investigated whether the diversity and co-occurrence networks of soil organisms across various trophic levels (including bacteria, fungi, protists, and invertebrates) in subtropical forests exhibit consistent responses to fire. Furthermore, we investigated their contribution to regulating soil multifunctionality, which is measured by a range of soil extracellular enzyme activities, available nutrients and reduced potential fungal plant pathogens. Our findings revealed that fire led to a decline in the richness of fungi, protists, and invertebrates, without significantly impacting bacterial richness. Fire also simplified the microbial co-occurrence networks while complexifying the invertebrate networks. Interestingly, soil multifunctionality tended to decrease with the richness of lower-trophic communities (i.e., bacteria), whereas it increased with that of high-trophic communities (i.e., protists and invertebrates). Moreover, fire indirectly influenced soil multifunctionality by altering biodiversity and network complexity, particularly pronounced in high-trophic communities. Overall, our results underscored the divergent vulnerability of biodiversity and networks to fires across taxa groups, highlighting the crucial role of biodiversity and interactions of higher trophic taxa groups in shaping the recovery and functionality of fire-affected soils.

References

 

Adkins, J., Docherty, K.M., Gutknecht, J.L.M., Miesel, J.R., 2020. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 15. https://doi.org/10.1016/j.scitotenv.2020.140957.

 

Adl, S.M., Bass, D., Lane, C.E., Lukes, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Le Gall, L., Lynn, D.H., Mann, D.G., Massana, R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, G., Youssef, N., Zlatogursky, V., Zhang, Q.Q., 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. https://doi.org/10.1111/jeu.12691.

 

Adl, S.M., Habura, A., Eglit, Y., 2014. Amplification primers of SSU rDNA for soil protists. Soil Biol. Biochem. 69, 328–342. https://doi.org/10.1016/j.soilbio.2013.10.024.

 

Aslani, F., Geisen, S., Ning, D., Tedersoo, L., Bahram, M., 2022. Towards revealing the global diversity and community assembly of soil eukaryotes. Ecol. Lett. 25, 65–76. https://doi.org/10.1111/ele.13904.

 

Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736. https://doi.org/10.1038/s41396-019-0383-2.

 

Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351. https://doi.org/10.1038/ismej.2011.119.

 

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855.

 

Brennan, K.E.C., Christie, F.J., York, A., 2009. Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates. Global Change Biol. 15, 2958–2971. https://doi.org/10.1111/j.1365-2486.2009.02011.x.

 

Bruns, T.D., Chung, J.A., Carver, A.A., Glassman, S.I., 2020. A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species. PLoS One 15, e0222691. https://doi.org/10.1371/journal.pone.0222691.

 

Buckingham, S., Murphy, N., Gibb, H., 2019. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 434, 279–288. https://doi.org/10.1016/j.foreco.2018.12.030.

 

Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Duffy, J.E., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124. https://doi.org/10.1111/2041-210X.12143.

 

Callahan, B., McMurdie, P., Rosen, M., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869.

 

Certini, G., Moya, D., Lucas-Borja, M.E., Mastrolonardo, G., 2021. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manag. 488, 118989. https://doi.org/10.1016/j.foreco.2021.118989.

 

Chen, W., Wang, J., Chen, X., Meng, Z.X., Xu, R., Duoji, D., Zhang, J.H., He, J., Wang, Z.A., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biol. Biochem. 172, 108766. https://doi.org/10.1016/j.soilbio.2022.108766.

 

Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, eaav0550. https://doi.org/10.1126/science.aav0550.

 

de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033. https://doi.org/10.1038/s41467-018-05516-7.

 

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016a. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541. https://doi.org/10.1038/ncomms10541.

 

Delgado-Baquerizo, M., Giaramida, L., Reich, P.B., Khachane, A.N., Hamonts, K., Edwards, C., Lawton, L.A., Singh, B.K., 2016b. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 104, 936–946. https://doi.org/10.1111/1365-2745.12585.

 

Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, J.R., Young, A., Singh, B.K., Bissett, A., 2018. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99, 583–596. https://doi.org/10.1002/ecy.2137.

 

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220. https://doi.org/10.1038/s41559-019-1084-y.

 

Dove, N.C., Hart, S.C., 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65. https://doi.org/10.4996/fireecology.130237746.

 

Fan, K., Weisenhorn, P., Gilbert, J.A., Chu, H.Y., 2018. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 125, 251–260. https://doi.org/10.1016/j.soilbio.2018.07.022.

 

Felipe-Lucia, M.R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., Boeddinghaus, R.S., Bonkowski, M., Buscot, F., Fiore-Donno, A.M., Franki, K., Goldmann, K., Gossner, M.M., Hölzel, N., Jochum, M., Kandeler, E., Klaus, V.H., Kleinebecker, T., Leimer, S., Manning, P., Oelmann, Y., Saiz, H., Schall, P., Schloter, M., Schöning, I., Schrumpf, M., Solly, E.F., Stempfhuber, B., Weisser, W.W., Wilcke, W., Wubet, T., Allan, E., 2020. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A. 117, 28140–28149. https://doi.org/10.1073/pnas.2016210117.

 

Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323. https://doi.org/10.1093/femsre/fuy006.

 

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2012. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160.

 

Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature 448, 188–191. https://doi.org/10.1038/nature05947.

 

Hernandez, D.J., David, A.S., Menges, E.S., Searcy, C.A., Afkhami, M.E., 2021. Environmental stress destabilizes microbial networks. ISME J. 15, 1722–1734. https://doi.org/10.1038/s41396-020-00882-x.

 

Holden, S.R., Gutierrez, A., Treseder, K.K., 2013. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46. https://doi.org/10.1007/s10021-012-9594-3.

 

Huffman, M.S., Madritch, M.D., 2018. Soil microbial response following wildfires in thermic oak-pine forests. Biol. Fertil. Soils 54, 985–997. https://doi.org/10.1007/s00374-018-1322-5.

 

Jiao, S., Lu, Y., Wei, G., 2022. Soil multi-trophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biol. 28, 140–153. https://doi.org/10.1111/gcb.15917.

 

Jordán, F., 2009. Keystone species and food webs. Philos. Trans. R. Soc. B 364, 1733–1741. https://doi.org/10.1098/rstb.2008.0335.

 

Kerfahi, D., Guo, Y., Dong, K., Wang, Q.K., Adams, J.M., 2024. pH is the major predictor of soil microbial network complexity in Chinese forests along a latitudinal gradient. Catena 234, 107595. https://doi.org/10.1016/j.catena.2023.107595.

 

Kong, W., Wei, X., Wu, Y., Shao, M.G., Zhang, Q., Sadowsky, M.J., Ishii, S., Reich, P.B., Wei, G.H., Jiao, S., Qiu, L.P., Liu, L.L., 2022. Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region. Global Change Biol. 28, 6086–6101. https://doi.org/10.1111/gcb.16334.

 

Liu, C., Li, C., Jiang, Y., Zeng, R., Yao, M., Li, X., 2023. A guide for comparing microbial co-occurrence networks. iMeta 2, e71. https://doi.org/10.1002/imt2.71.

 

Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O'Connor, M.I., Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., Parfrey, L.W., 2018. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943. https://doi.org/10.1038/s41559-018-0519-1.

 

Lucas-Borja, M.E., Jing, X., Van Stan II, J.T., Plaza-Alvarez, P.A., Gonzalez-Romero, J., Peña, E., Moya, D., Zema, D.A., de las Heras, J., 2022. Changes in soil functionality eight years after fire and post-fire hillslope stabilisation in Mediterranean forest ecosystems. Geoderma 409, 115603. https://doi.org/10.1016/j.geoderma.2021.115603.

 

Luo, S., Png, G.K., Ostle, N.J., Zhou, H.K., Hou, X.Y., Luo, C.L., Quinton, J.N., Schaffner, U., Sweeney, C., Wang, D.J., Wu, J.H., Wu, Y.W., Bardgett, R.D., 2023. Grassland degradation-induced declines in soil fungal complexity reduce fungal community stability and ecosystem multifunctionality. Soil Biol. Biochem. 176, 108865. https://doi.org/10.1016/j.soilbio.2022.108865.

 

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceiçao, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X.W., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romao, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D.L., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218. https://doi.org/10.1126/science.1215442.

 

McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman, J.K., Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A., Balch, J.K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M.L., Coen, J., Crandall, R., Daniels, L., Enright, N., Gross, W.S., Harvey, B.J., Hatten, J.A., Hermann, S., Hewitt, R.E., Kobziar, L.N., Landesmann, J.B., Loranty, M.M., Maezumi, S.Y., Mearns, L., Moritz, M., Myers, J.A., Pausas, J.G., Pellegrini, A.F.A., Platt, W.J., Roozeboom, J., Safford, H., Santos, F., Scheller, R.M., Sherriff, R.L., Smith, K.G., Smith, M.D., Watts, A.C., 2020. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069. https://doi.org/10.1111/1365-2745.13403.

 

Mo, Y., Peng, F., Gao, X., Xiao, P., Logares, R., Jeppesen, E., Ren, K.X., Xue, Y.Y., Yang, J., 2021. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128. https://doi.org/10.1186/s40168-021-01079-w.

 

Nelson, A.R., Narrowe, A.B., Rhoades, C.C., Fegel, T.S., Daly, R.A., Roth, H.K., Chu, R.K., Amundson, K.K., Young, R.B., Steindorff, A.S., Mondo, S.J., Grigoriev, I., Salamov, A., Borch, T., Wilkins, M.J., 2022. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430. https://doi.org/10.1038/s41564-022-01203-y.

 

Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006.

 

Nilsson, R.H., Larsson, K., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Koljalg, U., Abarenkov, K., 2018. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022.

 

Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L., Fierer, N., 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787. https://www.science.org/doi/10.1126/sciadv.aax8787.

 

Osono, T., Takeda, H., 2006. Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98, 172–179. https://www.jstor.org/stable/3762317.

 

Pellegrini, A.F.A., Hobbie, S.E., Reich, P.B., Jumpponen, A., Brookshire, E.N.J., Caprio, A.C., Coetsee, C., Jackson, R.B., 2020. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409. https://doi.org/10.1002/ecm.1409.

 

Pérez-Valera, E., Goberna, M., Faust, K., Raes, J., Garcia, C., Verdu, M., 2017. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks. Environ. Microbiol. 19, 317–327. https://doi.org/10.1111/1462-2920.13609.

 

Pérez-Valera, E., Verdú, M., Navarro-Cano, J.A., Goberna, M., 2020. Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biol. Biochem. 149, 107948. https://doi.org/10.1016/j.soilbio.2020.107948.

 

Pressler, Y., Moore, J.C., Cotrufo, M.F., 2019. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327. https://doi.org/10.1111/oik.05738.

 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219.

 

Schimel, J.P., Schaeffer, S.M., 2012. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348. https://doi.org/10.3389/fmicb.2012.00348.

 

Singer, D., Seppey, C.V.W., Lentendu, G., Dunthorn, M., Bass, D., Belbahri, L., Blandenier, Q., Debroas, D., de Groot, G.A., de Vargas, C., Domaizon, I., Duckert, C., Izaguirre, I., Koenig, I., Mataloni, G., Schiaffino, M.R., Mitchell, E.A.D., Geisen, S., Lara, E., 2021. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262. https://doi.org/10.1016/j.envint.2020.106262.

 

Su, W.Q., Tang, C., Lin, J., Yu, M.J., Dai, Z.M., Luo, Y., Li, Y., Xu, J.M., 2022. Recovery patterns of soil bacterial and fungal communities in Chinese boreal forests along a fire chronosequence. Sci. Total Environ. 805, 150372. https://doi.org/10.1016/j.scitotenv.2021.150372.

 

Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270. https://doi.org/10.1073/pnas.1320054111.

 

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841. https://doi.org/10.1038/s41467-019-12798-y.

 

Wan, X., Gao, Q., Zhao, J., Feng, J.J., van Nostrand, J.D., Yang, Y.F., Zhou, J.Z., 2020. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol. Biochem. 142, 107696. https://doi.org/10.1016/j.soilbio.2019.107696.

 

Wang, Y., Chen, P., Wang, F., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H., Zhu, Y.G., 2022. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environ. Int. 161, 107133. https://doi.org/10.1016/j.envint.2022.107133.

 

Wang, J., Shi, X., Lucas-Borja, M.E., Guo, Q.L., Mao, J.Y., Tan, Y.Y., Zhang, G.Y., 2023. Soil nematode abundances drive agroecosystem multifunctionality under short-term elevated CO2 and O3. Global Change Biol. 29, 1618–1627. https://doi.org/10.1111/gcb.16546.

 

Whitman, T., Whitman, E., Woolet, J., Flannigan, M.D., Thompson, D.K., Parisien, M.A., 2019. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571. https://doi.org/10.1016/j.soilbio.2019.107571.

 

Wikars, L.-O., Schimmel, J., 2001. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 141, 189–200. https://doi.org/10.1016/S0378-1127(00)00328-5.

 

Wu, J., Barahona, M., Tan, Y., Deng, H., 2010. Natural connectivity of complex networks. Chin. Phys. Lett. 27, 078902.

 

Wu, B., Zhou, L., Liu, S., Liu, F.F., Saleem, M., Han, X.G., Shu, L.F., Yu, X.L., Hu, R.W., He, Z.L., Wang, C., 2022. Biogeography of soil protistan consumer and parasite is contrasting and linked to microbial nutrient mineralization in forest soils at a wide-scale. Soil Biol. Biochem. 165, 108513. https://doi.org/10.1016/j.soilbio.2021.108513.

 

Xun, W., Liu, Y., Li, W., Ren, Y., Xiong, W., Xu, Z.H., Zhang, N., Miao, Y.Z., Shen, Q.R., Zhang, R.F., 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35. https://doi.org/10.1186/s40168-020-00985-9.

 

Yang, Y., Dou, Y., Wang, B., Xue, Z.J., Wang, Y.Q., An, S.S., Chang, S., 2022. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta 2, e66. https://doi.org/10.1002/imt2.66.

 

Yang, M., Luo, X., Cai, Y., Mwangi, B.N., Khan, M.S., Haider, F.U., Huang, W.X., Cheng, X.L., Yang, Z.F., Zhou, H.E., Liu, S.Z., Zhang, Q.M., Luo, M.D., Ou, J.W., Xiong, S.Y., Li, Y.L., 2024. Effect of fire and post-fire management on soil microbial communities in a lower subtropical forest ecosystem after a mountain fire. J. Environ. Manag. 351, 119885. https://doi.org/10.1016/j.jenvman.2023.119885.

 

Zaitsev, A.S., Gongalsky, K.B., Persson, T., Bengtsson, J., 2014. Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Appl. Soil Ecol. 83, 101–108. https://doi.org/10.1016/j.apsoil.2014.01.007.

 

Zhang, J., Zhang, B., Liu, Y., Guo, Y.Q., Shi, P., Wei, G.H., 2018. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ. 644, 791–800. https://doi.org/10.1016/j.scitotenv.2018.07.016.

 

Zhang, C., Lei, S., Wu, H., Liao, L.R., Wang, X.T., Zhang, L., Liu, G.B., Wang, G.L., Fang, L.C., Song, Z., 2024. Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biol. Biochem. 191, 109366. https://doi.org/10.1016/j.soilbio.2024.109366.

 

Zhao, Z., He, J.-Z., Quan, Z., Wu, C.F., Sheng, R., Zhang, L.M., Geisen, S., 2020. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 148, 109366. https://doi.org/10.1016/j.soilbio.2020.107863.

 

Zhou, X., Sun, H., Sietio, O.M., Pumpanen, J., Heinonsalo, J., Köster, K., Berninger, F., 2020a. Wildfire effects on soil bacterial community and its potential functions in a permafrost region of Canada. Appl. Soil Ecol. 156, 103713. https://doi.org/10.1016/j.apsoil.2020.103713.

 

Zhou, Z., Wang, C., Luo, Y., 2020b. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072. https://doi.org/10.1038/s41467-020-16881-7.

 

Zhou, L., Liu, S., Gu, Y., Wu, L.F., Hu, H.W., He, J.Z., 2023. Fire decreases soil respiration and its components in terrestrial ecosystems. Funct. Ecol. 37, 3124–3135. https://doi.org/10.1111/1365-2435.14443.

Forest Ecosystems
Article number: 100227
Cite this article:
Zhou L, Liu S, Lin D, et al. Divergent changes in diversity and network complexity across different trophic-level organisms drive soil multifunctionality of fire-impacted subtropical forests. Forest Ecosystems, 2024, 11(5): 100227. https://doi.org/10.1016/j.fecs.2024.100227

106

Views

5

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 06 June 2024
Revised: 13 July 2024
Accepted: 13 July 2024
Published: 18 July 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return