AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon stock estimation in halophytic wooded savannas of Uruguay: An ecosystem approach

Andrés Baiettoa( )Andrés HirigoyenbCarolina ToranzaaFranco SchinatoaMaximiliano GonzálezcRafael Navarro Cerrillod
Forest Department, Faculty of Agronomy, University of the Republic, Montevideo, PO 12900, Uruguay
National Research Program of Forest Production, National Agriculture Research Institute, Tacuarembó, PO 97000, Uruguay
Soil and Water Department, Faculty of Agronomy, University of the Republic, Montevideo, PO 12900, Uruguay
Department of Forestry Engineering, University of Cordoba, Córdoba, PO 14014, Spain
Show Author Information

Abstract

Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory. The contribution of this biome to the soil organic carbon (SOC) and above-ground biomass (AGB) carbon (C) stock globally is significant. However, they are frequently subjected to land use changes, promoting increases in CO2 emissions. In Uruguay, subtropical wooded savannas cover around 100, 000 ​ha, of which approximately 28% is circumscribed to sodic soils (i.e., subtropical halophytic wooded savannas). Nevertheless, there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations. The study was conducted in 5 ​ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Río Uruguay. This work aimed to estimate the contribution of the main ecosystem components (e.g., soil, trees, shrubs, and herbaceous plants) to the C stock. Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter (BD) and total height (H). The fitted equations accounted for between 77% and 98% of the aerial biomass variance of Neltuma affinis and Vachellia caven. For shrubs (Baccharis sp.), the adjusted equation accounted for 86% of total aerial biomass. C stock for the entire system was 116.71 ​± ​11.07 ​Mg·ha−1, of which 90.7% was allocated in the soil, 8.3% in the trees, 0.8% in the herbaceous plants, and 0.2% in the shrubs. These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.

References

 

Abich, A., Mucheye, T., Tebikew, M., Gebremariam, Y., Alemu, A., 2019. Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. J. For. Res. 30, 1619-1632. https://doi.org/10.1007/s11676-018-0707-5.

 

Aneseyee, A.B., Soromessa, T., Elias, E., Feyisa, G.L., 2021. Allometric equations for selected Acacia species (Vachellia and Senegalia genera) of Ethiopia. Carbon Balance Manag. 16, 34. https://doi.org/10.1186/s13021-021-00196-1.

 

Balima, L.H., Nacoulma, B.M.I., Bayen, P., Kouamé, F.N., Thiombiano, A., 2020. Agricultural land use reduces plant biodiversity and carbon storage in tropical West African savanna ecosystems: Implications for sustainability. Glob. Ecol. Conserv. 21, e00875. https://doi.org/10.1016/j.gecco.2019.e00875.

 
Betancourt, A., 2021. Evaluación del riesgo de los principales ecosistemas boscosos de Uruguay. Master Thesis, Universidad de la Republica, Faculty of Science, Uruguay.
 

Bi, H., Turner, J., Lambert, M.J., 2004. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees (Berl.) 18, 467-479. https://doi.org/10.1007/s00468-004-0333-z.

 

Bond, W.J., 2008. What Limits Trees in C4 Grasslands and Savannas? Annu. Rev. Ecol. Evol. Syst. 39, 641-659. https://doi.org/10.1146/annurev.ecolsys.39.110707.173411.

 

Borsoi, G.A., Müller, B.V., Brena, D.A., 2013. Determinação do percentual de casca para árvores de diferentes grupos de valor econômico em uma Floresta Ombrófila Mista. egl: Determination of the percentage of bark for trees of different groups of economic value in a Araucaria Forest. Rev. Ambiência 9, 359-368. https://doi.org/10.5777/ambiencia.2013.02.10.

 
Brazeiro, A., 2018. Recientes avances en investigación para la gestión y conservación del bosque nativo de Uruguay. https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/recientes-avances-investigacion-para-gestion-conservacion-del-bosque (accessed 10 April 2024).
 

Brazeiro, A., Achkar, M., Toranza, C., Bartesaghi, L., 2020. Agricultural expansion in Uruguayan grasslands and priority areas for vertebrate and woody plant conservation. Ecol. Soc. 25, 15. https://doi.org/10.5751/ES-11360-250115.

 

Casillo, J., Kunst, C., Semmartin, M., 2012. Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Austral Ecol. 37, 452-459. https://doi.org/10.1111/j.1442-9993.2011.02306.x.

 
Castaño, J.P., Giménez, A., Ceroni, M., Furest, J., Aunchayna, R., Bidegain, M., 2011. Caracterización Agroclimática del Uruguay 1980-2009, INIA Serie Técnica. In: Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay.
 

Castellano, G.R., Santos, L.A., Menegário, A.A., 2022. Carbon soil storage and technologies to increase soil carbon stocks in the South American savanna. Sustainability 14, 5571. https://doi.org/10.3390/su14095571.

 

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. -P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x.

 

Chen, X., Hutley, L.B., Eamus, D., 2003. Carbon balance of a tropical savanna of northern Australia. Oecologia 137, 405-416. https://doi.org/10.1007/s00442-003-1358-5.

 

Conti, G., Enrico, L., Casanoves, F., Diaz, S., 2013. Shrub biomass estimation in the semiarid Chaco Forest: a contribution to the quantification of an underrated carbon stock. Ann. For. Sci. 70, 515-524. https://doi.org/10.1007/s13595-013-0285-9.

 

Conti, G., Pérez-Harguindeguy, N., Quètier, F., Gorné, L.D., Jaureguiberry, P., Bertone, G.A., Enrico, L., Cuchietti, A., Díaz, S., 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric. Ecosyst. Environ. 197, 68-76. https://doi.org/10.1016/j.agee.2014.07.025.

 

Conti, G., Gorné, L.D., Zeballos, S.R., Lipoma, M.L., Gatica, G., Kowaljow, E., Whitworth-Hulse, J.I., Cuchietti, A., Poca, M., Pestoni, S., Fernandes, P.M., 2019. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Glob. Ecol. Biogeogr. 28, 961-975. https://doi.org/10.1111/geb.12907.

 

da Costa, M.B.T., Silva, C.A., Broadbent, E.N., Leite, R.V., Mohan, M., Liesenberg, V., Stoddart, J., do Amaral, C.H., de Almeida, D.R.A., da Silva, A.L., Ré Y. Goya, L.R., Cordeiro, V.A., Rex, F., Hirsch, A., Marcatti, G.E., Cardil, A., de Mendonca, B.A.F., Hamamura, C., Corte, A.P.D., Matricardi, E.A.T., Hudak, A.T., Zambrano, A.M.A., Valbuena, R., de Faria, B.L., Silva Junior, C.H.L., Aragao, L., Ferreira, M.E., Liang, J., e Carvalho, S. de P.C., Klauberg, C., 2021. Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. For. Ecol. Manag. 491, 119155. https://doi.org/10.1016/j.foreco.2021.119155.

 

Daba, D.E., Soromessa, T., 2019. The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance Manag. 14, 18. https://doi.org/10.1186/s13021-019-0134-8.

 
Datta, A., Setia, R., Barman, A., Guo, Y., Basak, N., 2019. Carbon dynamics in salt-affected soils. In: Dagar, J.C., Yadav, R.K., Sharma, P.C. (Eds.), Research Developments in Saline Agriculture. Springer, Singapore, pp. 369–389. https://doi.org/10.1007/978-981-13-5832-6_12.
 

Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K., Porembski, S., Thiombiano, A., 2019. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agrofor. Syst. 93, 1119-1132. https://doi.org/10.1007/s10457-018-0213-y.

 

Dintwe, K., Okin, G.S., 2018. Soil organic carbon in savannas decreases with anthropogenic climate change. Geoderma 309, 7-16. https://doi.org/10.1016/j.geoderma.2017.08.030.

 

Djagbletey, E.D., Logah, V., Ewusi-Mensah, N., Tuffour, H.O., 2018. Carbon stocks in the Guinea savanna of Ghana: estimates from three protected areas. Biotropica 50, 225-233. https://doi.org/10.1111/btp.12529.

 
Forsythe, W., 1975. Manual de Laboratorio, Física de Suelos. Bib. Orton IICA/CATIE, San José, Costa Rica.
 

Fortier, J., Truax, B., Gagnon, D., Lambert, F., 2017. Allometric equations for estimating compartment biomass and stem volume in mature hybrid poplars: General or site-specific? Forests 8, 309. https://doi.org/10.3390/f8090309.

 

Fu, L., Zhao, Y., Xu, Z., Wu, B., 2015. Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes. J. Soils Sediments 15, 249-259. https://doi.org/10.1007/s11368-014-1050-x.

 
García-Préchac, F., Kaplán, A., 1974. Evaluación de un método para determinar densidad aparente, macroporosidad y microporosidad en el suelo. Agr. Eng. Thesis, Universidad de la Republica, Faculty of Agronomy, Uruguay.
 

Garg, V.K., 1998. Interaction of tree crops with a sodic soil environment: potential for rehabilitation of degraded environments. Land Degrad. Dev. 9, 81-93. https://doi.org/10.1002/(SICI)1099-145X(199801/02)9:1<81::AID-LDR267>3.0.CO;2-R.

 

González-Roglich, M., Swenson, J.J., Jobbágy, E.G., Jackson, R.B., 2014. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For. Ecol. Manag. 331, 71-78. https://doi.org/10.1016/j.foreco.2014.07.035.

 

Grace, J., José, J.S., Meir, P., Miranda, H.S., Montes, R.A., 2006. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387-400. https://doi.org/10.1111/j.1365-2699.2005.01448.x.

 

Han, S.H., Park, B.B., 2020. Comparison of allometric equation and destructive measurement of carbon storage of naturally regenerated understory in a Pinus rigida plantation in South Korea. Forests 11, 425. https://doi.org/10.3390/f11040425.

 

Hirigoyen, A., Resquin, F., Navarro Cerrillo, R., Franco, J., Rachid Casnati, C., 2021. Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay. Bosque Valdivia 42, 53-66. https://doi.org/10.4067/S0717-92002021000100053.

 

Hughes, R.F., Archer, S.R., Asner, G.P., Wessman, C.A., Mc Murtry, C., Nelson, J., Ansley, R.J., 2006. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Glob. Chang. Biol. 12, 1733-1747. https://doi.org/10.1111/j.1365-2486.2006.01210.x.

 
Hutley, L.B., Setterfield, S.A., 2019. Savanna. In: Fath, B. (Ed.), Encyclopedia of Ecology. Elsevier, UK, pp. 623–633. https://doi.org/10.1016/B978-0-12-409548-9.11148-0.
 

Ignamarca, A.L., Sáez, F.M., Cancino, J.C.C., Garreton, A.S., Dube, F., Muñoz, A.V., Carrillo, K.S., 2018. Biomass function for Acacia caven (Mol.) Mol. distributed in the dry land areas of south-central Chile. Rev. Fac. Cienc. Agrar. UNCuyo 50, 187-201.

 
Isaac, R.A., Kerber, J.D., 1971. Atomic absorption and flame photometry: techniques and uses in soil, plant, and water analysis. In: Walsh, L.M. (Ed.), Instrumental Methods for Analysis of Soils and Plant Tissue. Soil Science Society of America, Inc., madison, pp. 17–37. https://doi.org/10.2136/1971.instrumentalmethods.c2.
 
Köppen, W.P., 1936. Das geographische System der Klimate. Borntraeger, Stuttgart, Germany.
 
Kumar, S., Meena, R.S., Lal, R., Singh Yadav, G., Mitran, T., Meena, B.L., Dotaniya, M.L., El-Sabagh, A., 2018. Role of legumes in soil carbon sequestration. In: Meena, R.S., Das, A., Yadav, G.S., Lal, R. (Eds.), Legumes for Soil Health and Sustainable Management. Springer, Singapore, pp. 109–138. https://doi.org/10.1007/978-981-13-0253-4_4.
 

Kumar, P., Mishra, A.K., Chaudhari, S.K., Singh, R., Pandey, C.B., Yadav, R.K., Sharma, D.K., 2021. Different Prosopis species influence sodic soil ecology by favouring carbon build-up and reclamation in North-West India. Trop. Ecol. 62, 71-81. https://doi.org/10.1007/s42965-020-00126-1.

 

Lal, R., 2010. Carbon sequestration in saline soils. J. Soil Salin. Water Qual. 1, 30-40.

 

Le Stradic, S., Roumet, C., Durigan, G., Cancian, L., Fidelis, A., 2021. Variation in biomass allocation and root functional parameters in response to fire history in Brazilian savannas. J. Ecol. 109, 4143-4157. https://doi.org/10.1111/1365-2745.13786.

 

Leßmeister, A., Bernhardt-Römermann, M., Schumann, K., Thiombiano, A., Wittig, R., Hahn, K., 2019. Vegetation changes over the past two decades in a West African savanna ecosystem. Appl. Veg. Sci. 22, 230-242. https://doi.org/10.1111/avsc.12428.

 

Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., Wang, G., 2015. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470-474. https://doi.org/10.1038/nclimate2581.

 

Lucas, C., Ceroni, M., Baeza, S., Muñoz, A.A., Brazeiro, A., 2017. Sensitivity of subtropical forest and savanna productivity to climate variability in South America, Uruguay. J. Veg. Sci. 28, 192-205. https://doi.org/10.1111/jvs.12475.

 

Moore, C.E., Beringer, J., Evans, B., Hutley, L.B., McHugh, I., Tapper, N.J., 2016. The contribution of trees and grasses to productivity of an Australian tropical savanna. Biogeosciences 13, 2387-2403. https://doi.org/10.5194/bg-13-2387-2016.

 
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis. Soil Science Society of America, Inc., American Society of Agronomy, Inc, Madison, pp. 961–1010. https://doi.org/10.2136/sssabookser5.3.c34.
 

Nyamukuru, A., Whitney, C., Tabuti, J.R.S., Esaete, J., Low, M., 2023. Allometric models for aboveground biomass estimation of small trees and shrubs in African savanna ecosystems. Trees For. People 11, 100377. https://doi.org/10.1016/j.tfp.2023.100377.

 

Parresol, B.R., 2001. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865-878. https://doi.org/10.1139/x00-202.

 

Pereira-Gómez, M., Ríos, C., Zabaleta, M., Lagurara, P., Galvalisi, U., Iccardi, P., Azziz, G., Battistoni, F., Platero, R., Fabiano, E., 2020. Native legumes of the Farrapos protected area in Uruguay establish selective associations with rhizobia in their natural habitat. Soil Biol. Biochem. 148, 107854. https://doi.org/10.1016/j.soilbio.2020.107854.

 
Picard, N., Saint-Andre, L., Henry, M., 2012. Manual for Building Tree Volume and Biomass Allometric Equations: from Field Measurement to Prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier.
 

Risio, L., Herrero, C., Bogino, S.M., Bravo, F., 2014. Aboveground and belowground biomass allocation in native Prosopis caldenia Burkart secondaries woodlands in the semi-arid Argentinean pampas. Biomass Bioenergy 66, 249-260. https://doi.org/10.1016/j.biombioe.2014.03.038.

 

Rodrigues, A.A., Macedo, M.N., Silvério, D.V., Maracahipes, L., Coe, M.T., Brando, P.M., Shimbo, J.Z., Rajão, R., Soares-Filho, B., Bustamante, M.M.C., 2022. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Chang. Biol. 28, 6807-6822. https://doi.org/10.1111/gcb.16386.

 

Roitman, I., Bustamante, M.M.C., Haidar, R.F., Shimbo, J.Z., Abdala, G.C., Eiten, G., Fagg, C.W., Felfili, M.C., Felfili, J.M., Jacobson, T.K.B., Lindoso, G.S., Keller, M., Lenza, E., Miranda, S.C., Pinto, J.R.R., Rodrigues, A.A., Delitti, W.B.C., Roitman, P., Sampaio, J.M., 2018. Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences. PLoS One 13, e0196742. https://doi.org/10.1371/journal.pone.0196742.

 

Rosenfield, M.F., Souza, A.F., 2013. Biomassa e carbono em florestas subtropicais: determinantes, metodos de quantificacao e estimativas. Neotropical Biol. Conserv. 8, 103-110. https://doi.org/10.4013/nbc.2013.82.06.

 

Ryu, Y., Baldocchi, D.D., Kobayashi, H., van Ingen, C., Li, J., Black, T.A., Beringer, J., van Gorsel, E., Knohl, A., Law, B.E., Roupsard, O., 2011. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 25, GB4017. https://doi.org/10.1029/2011GB004053.

 

Salazar Zarzosa, P., Navarro-Cerrillo, R.M., Palacios Mc Cubbin, E., Cruz, G., Lopez, M., 2023. Biomass estimation models for four priority Prosopis species: Tools required for forestry management in overexploited arid ecosystems. J. Arid Environ. 209, 104904. https://doi.org/10.1016/j.jaridenv.2022.104904.

 

Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., Gignoux, J., Higgins, S.I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., Bronn, A., Bucini, G., Caylor, K.K., Coughenour, M.B., Diouf, A., Ekaya, W., Feral, C.J., February, E.C., Frost, P.G.H., Hiernaux, P., Hrabar, H., Metzger, K.L., Prins, H.H.T., Ringrose, S., Sea, W., Tews, J., Worden, J., Zambatis, N., 2005. Determinants of woody cover in African savannas. Nature 438, 846-849. https://doi.org/10.1038/nature04070.

 

Sanquetta, C.R., Minatti, M., Junior, S.C., Trautenmüller, J.W., Corte, A.P.D., 2019. Independent and simultaneous modeling of biomass and carbon of Guinean elaeis. Floresta 49, 421. https://doi.org/10.5380/rf.v49i3.58897.

 

Sato, T., Saito, M., Ramírez, D., Pérez De Molas, L.F., Toriyama, J., Monda, Y., Kiyono, Y., Herebia, E., Dubie, N., Duré Vera, E., Ramirez Ortega, J.D., Vera De Ortiz, M., 2015. Development of allometric equations for tree biomass in forest ecosystems in Paraguay. Jpn. Agric. Res. Q. 49, 281-291. https://doi.org/10.6090/jarq.49.281.

 

Shiferaw, W., Demissew, S., Bekele, T., Aynekulu, E., Pitroff, W., 2021. Invasion of Prosopis juliflora and its effects on soil physicochemical properties in Afar region, Northeast Ethiopia. Int. Soil Water Conserv. Res. 9, 631-638. https://doi.org/10.1016/j.iswcr.2021.04.003.

 

Sileshi, G.W., 2014. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237-254. https://doi.org/10.1016/j.foreco.2014.06.026.

 
Singh, G., 2022. Role of Prosopis in reclamation of salt-affected soils and soil fertility improvement. In: Puppo, M.C., Felker, P. (Eds.), Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume. Academic Press, UK, pp. 27–54. https://doi.org/10.1016/B978-0-12-823320-7.00008-0.
 

Sione, S.M.J., Andrade-Castaneda, H.J., Ledesma, S.G., Rosenberger, L.J., Oszust, J.D., Wilson, M.G., 2019. Aerial biomass allometric models for Prosopis affinis Spreng. in native Espinal forests of Argentina. Rev. Bras. Eng. Agric. Ambient. 23, 467-473. https://doi.org/10.1590/1807-1929/agriambi.v23n6p467-473.

 

Sione, S.M.J., Ledesma, S.G., Rosenberger, L.J., Oszust, J.D., Andrade, H.J., Maciel, G.O., Wilson, M.G., 2020a. Modelos alométricos de biomasa aérea para Vachellia caven Mol. Molina en bosques nativos del Espinal (Argentina). Quebracho - Rev. Cienc. For. 28, 20-33.

 

Sione, S.M.J., Ledesma, S.G., Rosenberger, L.J., Oszust, J.D., Andrade-Castañeda, H., Maciel, G.O., Wilson, M.G., Sasal, M.C., 2020b. Ecuaciones alometricas de biomasa aerea para Prosopis nigra (Griseb.) Hieron. en bosques de Entre Rios (Argentina). Agron. Ambiente 40, 63-76.

 

Sione, S.M.J., Andrade, H.J., Wilson, M.G., Rosenberger, L.J., Sasal, M.C., Ledesma, S.G., Gabioud, E.A., 2021. Reducción de emisiones de carbono por deforestación evitada en bosques del Espinal (Entre Ríos, Argentina). Colomb. For. 24, 39-51. https://doi.org/10.14483/2256201x.16166.

 

Siqing, B., Meng, S., Liu, L., Zhou, G., Yu, J., Xu, Z., Liu, Q., 2022. Additive allometric equations to improve aboveground biomass estimation for Mongolian pine plantations in Mu Us Sandy Land, Inner Mongolia, China. Forests 13, 1672. https://doi.org/10.3390/f13101672.

 
Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12ed. Department of Agriculture: Natural Resources Conservation Service, Washington DC.
 

Tiscornia, G., Achkar, M., Drazeiro, A., 2014. Efectos de la intensificación agrícola sobre la estructura y diversidad del paisaje en la región sojera de Uruguay. Ecol. Austral 24, 212-219.

 

Trautenmüller, J.W., Péllico Netto, S., Balbinot, R., Watzlawick, L.F., Dalla Corte, A.P., Sanquetta, C.R., Behling, A., 2021. Regression estimators for aboveground biomass and its constituent parts of trees in native southern Brazilian forests. Ecol. Indicat. 130, 108025. https://doi.org/10.1016/j.ecolind.2021.108025.

 

Villarino, S.H., Studdert, G.A., Baldassini, P., Cendoya, M.G., Ciuffoli, L., Mastrángelo, M., Piñeiro, G., 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Sci. Total Environ. 575, 1056-1065. https://doi.org/10.1016/j.scitotenv.2016.09.175.

 

Walkley, A., Black, I., 1934. An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29.

 

Williamson, G.B., Wiemann, M.C., 2010. Measuring wood specific gravity…Correctly. Am. J. Bot. 97, 519-524. https://doi.org/10.3732/ajb.0900243.

 

Wong, V.N.L., Greene, R.S.B., Dalal, R.C., Murphy, B.W., 2010. Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manag. 26, 2-11. https://doi.org/10.1111/j.1475-2743.2009.00251.x.

 

Yuen, J.Q., Fung, T., Ziegler, A.D., 2016. Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above- and below-ground carbon estimates. For. Ecol. Manag. 360, 323-340. https://doi.org/10.1016/j.foreco.2015.09.016.

 

Zhao, D., Kane, M., Markewitz, D., Teskey, R., Clutter, M., 2015. Additive tree biomass equations for Midrotation Loblolly pine plantations. For. Sci. 61, 613-623. https://doi.org/10.5849/forsci.14-193.

 

Zimbres, B., Shimbo, J., Bustamante, M., Levick, S., Miranda, S., Roitman, I., Silvério, D., Gomes, L., Fagg, C., Alencar, A., 2020. Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning. For. Ecol. Manag. 458, 117798. https://doi.org/10.1016/j.foreco.2019.117798.

Forest Ecosystems
Article number: 100216
Cite this article:
Baietto A, Hirigoyen A, Toranza C, et al. Carbon stock estimation in halophytic wooded savannas of Uruguay: An ecosystem approach. Forest Ecosystems, 2024, 11(4): 100216. https://doi.org/10.1016/j.fecs.2024.100216

165

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 December 2023
Revised: 14 June 2024
Accepted: 14 June 2024
Published: 18 June 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return