AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tree structure and diversity shape the biomass of primary temperate mountain forests

Dheeraj Ralhana( )Ruffy Rodrigoa,bHeather KeithcAnnemiek Irene StegehuisdJakob PavlinaYumei JiangaMiloš RydvalaJuliana NogueiraaAlexandre FruleuxeMarek Svitoka,fMartin MikolášaDaniel KozákaMartin DušátkoaPavel JandaaOleh ChaskovskygCătălin-Constantin RoibuhMiroslav Svobodaa
Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Suchdol, 16 521 Praha 6, Czech Republic
Department of Forest Science, Biliran Province State University, Biliran, 6549, Philippines
Griffith Climate Action Beacon, Griffith University, Parklands Drive, Southport, Gold Coast, Queensland, 4222, Australia
Laboratoire de Géologie, IPSL, CNRS, UMR 8538, École Normale Supérieure, PSL University, Paris, France
Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515, LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Masaryka 24, 96001, Zvolen, Slovakia
Institute of Forest Management, Ukrainian National Forestry University, Lviv, Ukraine
Forest Biometrics Laboratory – Faculty of Forestry, Stefan Cel Mare University of Suceava, Universității Street Number.13, Suceava, 720229, Romania
Show Author Information

Abstract

Primary forests are spatially diverse terrestrial ecosystems with unique characteristics, being naturally regenerative and heterogeneous, which supports the stability of their carbon storage through the accumulation of live and dead biomass. Yet, little is known about the interactions between biomass stocks, tree genus diversity and structure across a temperate montane primary forest. Here, we investigated the relationship between tree structure (variability in basal area and tree size), genus-level diversity (abundance, tree diversity) and biomass stocks in temperate primary mountain forests across Central and Eastern Europe. We used inventory data from 726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains. We used nonlinear regression to analyse the spatial variability in forest biomass, structure, and genus-level diversity and how they interact with plot-level tree age, disturbances, temperature and altitude. We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales. Local processes in disturbance regimes and uneven tree age support forest heterogeneity and the accumulation of live and dead biomass through the natural regeneration, growth and decay of the forest ecosystem. Structural complexities in basal area index, supported by genus-level abundance, positively influence total biomass stocks, which was modulated by tree age and disturbances. Spruce forests showed higher tree density and basal area than mixed beech forests, though mixed beech still contributes significantly to biomass across landscapes. Forest heterogeneity was strongly influenced by complexities in forest composition (tree genus diversity, structure). We addressed the importance of primary forests as stable carbon stores, achieved through structure and diversity. Safeguarding such ecosystems is critical for ensuring the stability of the primary forest, carbon store and biodiversity into the future.

References

 

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5(1), 170191.

 
Akaike, H., 1987. Factor analysis and AIC. In: Parzen, E., Tanabe, K., Kitagawa, G. (Eds.), Selected Papers of Hirotugu Akaike. Springer Series in Statistics. Springer, New York, pp. 371–386.
 

Anderson, D.R., Burnham, K.P., White, G.C., 1994. AIC model selection in overdispersed capture-recapture data. Ecology 75(6), 1780-1793.

 

Ameztegui, A., Rodrigues, M., Granda, V., 2022. Uncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations. Eur. J. For. Res. 141(3), 395-407.

 

Anderegg, W.R., Trugman, A.T., Badgley, G., Anderson, C.M., Bartuska, A., Ciais, P., Cullenward, D., Field, C.B., Freeman, J., Goetz, S.J., Hicke, J.A., 2020. Climate-driven risks to the climate mitigation potential of forests. Science 368(6497), eaaz7005.

 

Aponte, C., Kasel, S., Nitschke, C.R., Tanase, M.A., Vickers, H., Parker, L., Fedrigo, M., Kohout, M., Ruiz-Benito, P., Zavala, M.A., Bennett, L.T., 2020. Structural diversity underpins carbon storage in Australian temperate forests. Global Ecol. Biogeogr. 29(5), 789-802.

 

Burnham, K.P., Anderson, D.R., Huyvaert, K.P., 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23-35.

 

Čada, V., Trotsiuk, V., Janda, P., Mikoláš, M., Bače, R., Nagel, T.A., Morrissey, R.C., Tepley, A.J., Vostárek, O., Begović, K., Chaskovskyy, O., 2020. Quantifying natural disturbances using a large-scale dendrochronological reconstruction to guide forest management. Ecol. Appl. 30(8), e02189.

 

Case, M.J., Johnson, B.G., Bartowitz, K.J., Hudiburg, T.W., 2021. Forests of the future: climate change impacts and implications for carbon storage in the Pacific Northwest, USA. For. Ecol. Manag. 482, 118886.

 

Chivulescu, S., Garcia-Duro, J., Pitar, D., Leca, G., Badea, O., 2021. Past and future of temperate forests state under climate change effects in the Romanian southern Carpathians. Forests 12(7), 885.

 

Choi, D.H., LaRue, E.A., Atkins, J.W., Foster, J.R., Matthes, J.H., Fahey, R.T., Thapa, B., Fei, S., Hardiman, B.S., 2023. Short-term effects of moderate severity disturbances on forest canopy structure. J. Ecol. 111(9), 1866-1881.

 

Curtis, J.T., McIntosh, R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31(3), 434-455.

 

Dolezal, J., Fibich, P., Altman, J., Leps, J., Uemura, S., Takahashi, K., Hara, T., 2020. Determinants of ecosystem stability in a diverse temperate forest. Oikos 129 (11), 1692-1703.

 

Duduman, G., Barnoaiea, I., Avăcăriței, D., Barbu, C.O., Coșofreț, V.C., Dănilă, I.C., Duduman, M.L., Măciucă, A., Drăgoi, M., 2021. Aboveground biomass of living trees depends on topographic conditions and tree diversity in temperate montane forests from the Slatioara-Rarau area (Romania). Forests 12(11), 1507.

 

Duncan, R.P., 1989. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpus dacrydiodes). N. Z. Nat. Sci. 16, 31-37.

 

Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., Zemp, D.C., Puettmann, K., Nilus, R., Babweteera, F., Willim, K., Stiers, M., 2021. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12(1), 519.

 
FAO, 2020. Global Forest Resource Assessment 2020. Terms and Definitions. FAO, Rome.
 

Frankovič, M., Janda, P., Mikoláš, M., Čada, V., Kozák, D., Pettit, J.L., Nagel, T.A., Buechling, A., Matula, R., Trotsiuk, V., Gloor, R., 2021. Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. For. Ecol. Manag. 479, 118522.

 

Forrester, D.I., Tachauer, I.H.H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., 2017. Generalised biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160-175.

 

Fotis, A.T., Murphy, S.J., Ricart, R.D., Krishnadas, M., Whitacre, J., Wenzel, J.W., Queenborough, S. A, Comita, L.S., 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106(2), 561-570.

 
Harmon, M.E., Woodall, C.W., Fasth, B., Sexton, J., Yatkov, M., 2011. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species. US Forest Service, Washington DC, USA.
 

Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1(2), 96-99.

 

Holeksa, J., Saniga, M., Szwagrzyk, J., Czerniak, M., Staszyńska, K., Kapusta, P., 2009. A giant tree stand in the West Carpathians-an exception or a relic of formerly widespread mountain European forests? For. Ecol. Manag. 257(7), 1577-1585.

 

Houghton, R.A., Hall, F., Goetz, S.J., 2009. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosciences 114, G00E03.

 

Janda, P., Tepley, A.J., Schurman, J.S., Brabec, M., Nagel, T.A., Bače, R., Begovič, K., Chaskovskyy, O., Čada, V., Dušátko, M., Frankovič, M., 2019. Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. For. Ecol. Manag. 435, 196-204.

 

Keeling, H.C., Phillips, O.L., 2007. The global relationship between forest productivity and biomass. Global Ecol. Biogeogr. 16(5), 618-631.

 

Keith, H., Mackey, B.G., Lindenmayer, D.B., 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl. Acad. Sci. USA 106(28), 11635-11640.

 

Keith, H., Mackey, B., Berry, S., Lindenmayer, D., Gibbons, P., 2010. Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: addressing sources of error. Global Change Biol. 16, 2971-2989.

 

Kublin, E., Breidenbach, J., Kändler, G., 2013. A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur. J. For. Res. 132, 983-997.

 
Larsson, L., 2015. CooRecorder and Cdendro programs of the CooRecorder/Cdendro package v. 9.6. http://www.cybis.se/forfun/dendro/. (Accessed 13 March 2024).
 

Lorimer, C.G., Frelich, L.E., 1989. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Can. J. For. Res. 19(5), 651-663.

 

Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M., Blomdahl, E.M., 2018. Global importance of large-diameter trees. Global Ecol. Biogeogr. 27(7), 849-864.

 

Mackey, B., DellaSala, D.A., Kormos, C., Lindenmayer, D., Kumpel, N., Zimmerman, B., Hugh, S., Young, V., Foley, S., Arsenis, K., Watson, J.E., 2015. Policy options for the world's primary forests in multilateral environmental agreements. Conserv. Lett. 8(2), 139-147.

 

Marchand, W., Buechling, A., Rydval, M., Čada, V., Stegehuis, A.I., Fruleux, A., Poláček, M., Hofmeister, J., Pavlin, J., Ralhan, D., Dušátko, M., 2023. Accelerated growth rates of Norway spruce and European beech saplings from Europe's temperate primary forests are related to warmer conditions. Agric. For. Meteorol. 329, 109280.

 

Mikoláš, M., Ujházy, K., Jasík, M., Wiezik, M., Gallay, I., Polák, P., Vysoký, J., Čiliak, M., Meigs, G.W., Svoboda, M., Trotsiuk, V., 2019. Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. For. Ecol. Manag. 449, 117466.

 

Mikoláš, M., Svitok, M., Bače, R., Meigs, G.W., Keeton, W.S., Keith, H., Buechling, A., Trotsiuk, V., Kozák, D., Bollmann, K., Begovič, K., 2021. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. Roy. Soc. Ser. B Biol. Sci. 288(1961), 20211631.

 

McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G.C., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368(6494), eaaz9463.

 

Michaletz, S.T., Kerkhoff, A.J., Enquist, B.J., 2018. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27(2), 166-174.

 

Mildrexler, D.J., Berner, L.T., Law, B.E., Birdsey, R.A., Moomaw, W.R., 2020. Large trees dominate carbon storage in forests east of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 3, 594274.

 
Mueller-Dombois, D., Ellenberg, H., 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.
 

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133-142.

 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: community Ecology Package. R package version 2.5-2. Crane Rev. 1, 2.

 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., 2011. A large and persistent carbon sink in the world's forests. Science 333(6045), 988-993.

 

Patacca, M., Lindner, M., Lucas-Borja, M.E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biol. 29(5), 1359-1376.

 

Pavlin, J., Nagel, T.A., Svitok, M., Di Filippo, A., Mikac, S., Keren, S., Dikku, A., Toromani, E., Panayotov, M., Zlatanov, T., Haruta, O., 2024. Pathways and drivers of canopy accession across primary temperate forests of Europe. Sci. Total Environ. 906, 167593.

 

Piponiot, C., Anderson-Teixeira, K.J., Davies, S.J., Allen, D., Bourg, N.A., Burslem, D.F., Cárdenas, D., Chang-Yang, C.H., Chuyong, G., Cordell, S., Dattaraja, H.S., 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytol. 234(5), 1664-1677.

 
R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Ralhan, D., Keith, H., Pavlin, J., Stegehuis, A.I., Marchand, W., Fruleux, A., Poláček, M., Svitok, M., Nagel, T.A., Mikoláš, M., Kozák, D., 2023. Temperate primary forest biomass accumulates over centuries-long time frames. Ecosystems 26(8), 1685-1702.

 

Reichstein, M., Carvalhais, N., 2019. Aspects of forest biomass in the earth system: its role and major unknowns. Surv. Geophys. 40, 693-707.

 
REMOTE Primary Forests, 2024. Research on Mountain Temperate Primary Forests. https://www.remoteforests.org/. (Accessed 13 March 2024).
 
Rinntech. 1991. Technology for tree and wood analysis - Time series analysis software (TSAP-WinTM). Heidelberg, Germany. http://www.rinntech.de/. (Accessed June 21, 2024).
 

Sabatini, F.M., Keeton, W.S., Lindner, M., Svoboda, M., Verkerk, P.J., Bauhus, J., Bruelheide, H., Burrascano, S., Debaive, N., Duarte, I., Garbarino, M., 2020. Protection gaps and restoration opportunities for primary forests in Europe. Divers. Distrib. 26(12), 1646-1662.

 

Seedre, M., Janda, P., Trotsiuk, V., Hedwall, P.O., Morrissey, R.C., Mikoláš, M., Bače, R., Čada, V., Svoboda, M., 2020. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. For. Ecol. Manag. 455, 117676.

 

Schurman, J.S., Babst, F., Björklund, J., Rydval, M., Bače, R., Čada, V., Janda, P., Mikoláš, M., Saulnier, M., Trotsiuk, V., Svoboda, M., 2019. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biol. 25(9), 3136-3150.

 

Silva Pedro, M., Rammer, W., Seidl, R., 2015. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 177, 619-630.

 

Staudhammer, C. L, LeMay, V.M., 2001. Introduction and evaluation of possible indices of stand structural diversity. Can. J. For. Res. 31(7), 1105-1115.

 

Svoboda, M., Janda, P., Bače, R., Fraver, S., Nagel, T.A., Rejzek, J., Mikoláš, M., Douda, J., Boublík, K., Šamonil, P., Čada, V., 2014. Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J. Veg. Sci. 25(2), 386-401.

 

Swetnam, T.L., Brooks, P.D., Barnard, H.R., Harpold, A.A., Gallo, E.L., 2017. Topographically driven differences in energy and water constrain climatic control on forest carbon sequestration. Ecosphere, 8(4), e01797.

 

Synek, M., Janda, P., Mikoláš, M., Nagel, T.A., Schurman, J.S., Pettit, J.L., Trotsiuk, V., Morrissey, R.C., Bače, R., Čada, V., Brang, P., 2020. Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. For. Ecol. Manag. 457, 117734.

 

Szwagrzyk, J., Gazda, A., 2007. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J. Veg. Sci. 18(4), 555-562.

 

Ullah, F., Gilani, H., Sanaei, A., Hussain, K., Ali, A., 2021. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manag. 486, 118984.

 

Van Wagner, C.E., 1968. The line intersect method in forest fuel sampling. For. Sci. 14(1), 20-26.

 

Wang, L.Q., Ali, A., 2022. Functional identity regulates aboveground biomass better than trait diversity along abiotic conditions in global forest metacommunities. Ecography 2022(1), e05854.

 

Whittaker, R. H., Woodwell, G. M., 1968. Dimension and production relations of trees and shrubs in the. Brookhaven Forest, New York, pp. 1–25.

 

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalised linear models. J. R. Stat. Soc. B Stat. Methodol. 73(1), 3-36.

 

Yamaguchi, D.K., 1991. A simple method for cross-dating increment cores from living trees. Can. J. For. Res. 21(3), 414-416.

 

Yuan, Z., Ali, A., Jucker, T., Ruiz-Benito, P., Wang, S., Jiang, L., Wang, X., Lin, F., Ye, J., Hao, Z., Loreau, M., 2019. Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests. Ecology 100(5), e02650.

 

Zeller, L., Pretzsch, H., 2019. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. For. Ecol. Manag. 434, 193-204.

 
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. In: Gail, M.H., Sament, J.M. (eds) Statistics for Biology and Health. Springer, New York.
Forest Ecosystems
Article number: 100215
Cite this article:
Ralhan D, Rodrigo R, Keith H, et al. Tree structure and diversity shape the biomass of primary temperate mountain forests. Forest Ecosystems, 2024, 11(4): 100215. https://doi.org/10.1016/j.fecs.2024.100215

112

Views

2

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 March 2024
Revised: 02 June 2024
Accepted: 02 June 2024
Published: 15 June 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return