Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this era of biodiversity loss and climate change, quantifying the impacts of natural disturbance on forest communities is imperative to improve biodiversity conservation efforts. Epiphytic and epixylic lichens are effective forest quality bioindicators, as they are generally long-lived organisms supported by continuity of specific forest structures and their associated microclimatic features. However, how lichen communities respond to the effects of fluctuating historical disturbances remains unclear. Using a dendrochronological approach, this study investigates how natural disturbance dynamics indirectly influence various lichen community metrics in some of Europe's best-preserved primary mixed-beech forests. Mixed modelling revealed that natural historical disturbance processes have decades-long effects on forest structural attributes, which had both congruent and divergent impacts on lichen community richness and composition. Total species richness indirectly benefited from both historical and recent higher-severity disturbances via increased standing dead tree basal area and canopy openness respectively - likely through the presence of both pioneer and late-successional species associated with these conditions. Red-listed species richness showed a dependence on habitat continuity (old trees), and increased with disturbance-related structures (standing dead trees) whilst simultaneously benefiting from periods without severe disturbance events (old trees and reduced deadwood volume). However, if the disturbance occurred over a century in the past, no substantial effect on forest structure was detected. Therefore, while disturbance-mediated forest structures can promote overall richness, threatened species appear vulnerable to more severe disturbance events – a concern, as disturbances are predicted to intensify with climate change. Additionally, the high number of threatened species found reinforce the critical role of primary forest structural attributes for biodiversity maintenance. Hence, we recommend a landscape-scale conservation approach encompassing forest patches in different successional stages to support diverse lichen communities, and the consideration of long-term disturbance dynamics in forest conservation efforts, as they provide critical insights for safeguarding biodiversity in our changing world.
Bače, R., Hofmeister, J., Vítková, L., Brabec, M., Begović, K., Čada, V., Janda, P., Kozák, D., Mikoláš, M., Nagel, T. A., Pavlin, J., Rodrigo, R., Vostárek, O., Svoboda, M., 2023. Response of habitat quality to mixed severity disturbance regime in Norway spruce forests. J. Appl. Ecol. 60, 1352-1363. https://doi.org/10.1111/1365-2664.14409.
Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. https://doi.org/10.18637/jss.v067.i01.
Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 132, 39-50. https://doi.org/10.1016/S0378-1127(00)00378-9.
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127-135. https://doi.org/10.1016/j.tree.2008.10.008.
Bosela, M., Rubio-Cuadrado, Á., Marcis, P., Merganičová, K., Fleischer Jr, P., Forrester, D.I., Uhl, E., Avdagic, A., Bellan, M., Bielak, K., Bravo, F., Coll, L., Cseke, K., del Rio, M., Dinca, L., Dobor, L., Drozdowski, S., Giammarchi, F., Gömöryová, E., Ibrahimspahic, A., Kasanin-Grubin, M., Klopcic, M., Kurylyak, V., Montes, F., Pach, M., Ruiz-Peinado, R., Skrzyszewski, J., Stajić, B., Stojanovic, D., Svoboda, M., Tonon, G., Versace, S., Mitrovic, S., Zlatanov, T., Pretzsch, H., Tognetti, R., 2023. Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach. Sci. Tot. Environ. 888, 164123.
Boudreault, C., Zouaoui, S., Drapeau, P., Bergeron, Y., Stevenson, S., 2013. Canopy openings created by partial cutting increase growth rates and maintain the cover of three Cladonia species in the Canadian boreal forest. For. Ecol. Manag. 304, 473-481. https://doi.org/10.1016/j.foreco.2013.05.043.
Campbell, J., Fredeen, A.L., Prescott, C.E., 2010. Decomposition and nutrient release from four epiphytic lichen litters in sub-boreal spruce forests. Can. J. For. Res. 40, 1473-1484. https://doi.org/10.1139/X10-071.
Caruso, A., Rudolphi, J., 2009. Influence of substrate age and quality on species diversity of lichens and bryophytes on stumps. Bryologist 112, 520-531. https://doi.org/10.1639/0007-2745-112.3.520.
Czerepko, J, Gawryś, R., Szymczyk, R., Pisarek, W., Janek, M., Haidt, A., Kowalewska, A., Piegdoń, A., Stebel, A., Kukwa, M., Cacciatori, C., 2021. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Bialowieza forest. Ecol. Indic. 125, 107532. https://doi.org/10.1016/j.ecolind.2021.107532.
Dittrich, S., Jacob, M., Bade, C., Leuschner, C., Hauck, M., 2014. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 215, 1123-1137. https://doi.org/10.1007/s11258-014-0371-6.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Lietão, P.J., Münkemüller, T., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
Dunn, P. K., Smyth, G. K., 1996. Randomized quantile residuals. Comput. Graph. Stat. 5 (3), 236–244.
Dymytrova, L., Nadyeina, O., Naumovych, A., Keller, C., Scheidegger, C., 2013. Primeval beech forests of ukrainian carpathians are sanctuaries for rare and endangered epiphytic lichens. Herzogia 26(1), 73-89. https://doi.org/10.13158/heia.26.1.2013.73.
Ellis, C.J., 2012. Lichen epiphyte diversity: A species, community and trait-based review. Perspect. Plant Ecol. Evol. Syst. 14(2), 131-152. https://doi.org/10.1016/j.ppees.2011.10.001.
Fraver, S., White, A. S., 2005. Identifying growth releases in dendrochronological studies of forest disturbance. Can. J. For. Res. 35(7), 1648-1656. https://doi.org/10.1139/x05-092.
Fraver, S., White, A. S., Seymour, R. S., 2009. Natural disturbance in an old-growth landscape of northern Maine, USA. J. Ecol. 97(2), 289-298. https://doi.org/10.1111/j.1365-2745.2008.01474.x.
Ferenčík, M., Svitok, M., Mikoláš, M., Hofmeister, J., Majdanová, L., Vostárek, O., Kozák, D., Bače, R., Begović, K., Běťák, J., Čada, V., Dušátko, M., Dvořák, D., Frankovič, M., Gloor, R., Janda, P., Kameniar, O., Kříž, M., Kunca, V., Markuljaková, K., Ralhan, D., Rodrigo, R., Rydval, M., Pavlin, J., Pouska, V., Synek, M., Zemlerová, V., Svoboda, M., 2022. Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. For. Ecol. Manag. 517, 120272. https://doi.org/10.1016/j.foreco.2022.120272.
Frankovič, M., Janda, P., Mikoláš, M., Čada, V., Kozák, D., Pettit, J.L., Nagel, T.A., Buechling, A., Matula, R., Trotsiuk, V., Gloor, R., Dušátko, M., Kameniar, O., Vostárek, O., Labusova, J., Ujházy, K., Synek, M., Begović, K., Ferenčík, M., Svoboda, M., 2021. Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. For. Ecol. Manag. 479, 118522. https://doi.org/10.1016/j.foreco.2020.118522.
Frelich, L. E., 2002. Forest dynamics and disturbance regimes: studies from temperate evergreen-deciduous forests. Cambridge University Press, UK.
Fritz, Ö., Niklasson, M., Marcin, C., 2008. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veg. Sci. 12, 93-106. https://doi.org/10.1111/j.1654-109X.2009.01007.x.
Fritz, Ö., Heilmann-Clausen, J., 2010. Rot holes create key microhabitat for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biol. Conserv. 143, 1008-1016. https://doi.org/10.1016/j.biocon.2010.01.016.
Gauslaa, Y., Ohlson, M., Rolstad, J., 1998. Fine-scale distribution of the epiphytic lichen Usnea longissima on two even-aged neighbouring Picea abies trees. J. Veg. Sci. 9, 95-102. https://doi.org/10.2307/3237227.
Guttová, A., Lackovičová, A., Pišút, I., 2013. Revised and updated checklist of lichens of Slovakia. Biologia 68, 845-850. https://doi.org/10.2478/s11756-013-0218-y.
Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, M., Pretzsch, H., Seidl, R., Müller, J., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55(6), 2756-2766. https://doi.org/10.1111/1365-2664.13238.
Hofmeister, J., Hošek, J., Brabec, M., Dvořák, D., Beran, M., Deckerová, H., Burel, J., Kříž, M., Borovička, J., Běťák, J., Vašutová, M., Malíček, J., Palice, J., Syrovátková, J., Steinová, J., Černajová, I., Holá, E., Novozámská, E., Čížek, L., Iarema, V., Baltaziuk, K., Svoboda, T., 2015. Value of old forest attributes related to cryptogam species richness in temperate forests: A quantitative assessment. Ecol. Indic. 57, 497-504. https://doi.org/10.1016/j.ecolind.2015.05.015.
Hofmeister, J., Hošek, J., Malíček, J., Palice, Z., Syrovátková, L., Steinová, J., Černajová, I., 2016. Large beech (Fagus sylvatica) trees as 'lifeboats' for lichen diversity in central European forests. Biodivers. Conserv. 25(6). https://doi.org/10.1007/s10531-016-1106-x.
Holien, H., 1997. The lichen flora on Picea abies in a suboceanic spruce forest area in Central Norway with emphasis on the relationship to site and stand parameters. Nord. J. Bot. 17, 55-76. https://doi.org/10.1111/j.1756-1051.1997.tb00290.x.
Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull. 44, 69-75.
Hyvärinen, M., Halonen, P., Kauppi, M., 1992. Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. Lichenologist 24, 165. https://doi.org/10.1017/S0024282900500073.
Janda, P., Trotsiuk, V., Mikoláš, M., Bače, R., Nagel, T.A., Seidl, R., Seedre, M., Morrissey, R.C., Kucbel, S., Jaloviar, P., Jasík, M., 2017. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For. Ecol. Manag. 388, 67-78. https://doi.org/10.1016/j.foreco.2016.08.014korpel.
Jõgiste, K., Korjus, H., Stanturf, J. A., Frelich, L. E., Baders, E., Donis, J., Jansons, A., Kangur, A., Köster, K., Laarmann, D., Maaten, T., Marozas, V., Metslaid, M., Nigul, K., Polyachenko, O., Randveer, T., Vodde, F. 2017. Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management. Ecosphere 8(2), e01706.
Johansson, P., 2008. Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biol. Conserv. 141(8) 1933-1944. https://doi.org/10.1016/j.biocon.2008.05.013.
Jovan. S., McCune, B., 2004. Regional variation in epiphytic macrolichen communities in northern and central Californian forests. Bryologist 107, 328-339.
Kalwij, J.M., Wagner, H.H., Scheidegger, C., 2005. Effects of stand-level disturbances on the distribution of a lichen indicator. Ecol. Appl. 15(6), 2015-2024. https://doi.org/10.1890/04-1912.
Kameniar, O., Vostárek, O., Mikoláš, M., Svitok, M., Frankovič, M., Morrissey, R. C., Kozák, D., Nagel, T.A., Dusátko, M., Pavlin, J., Ferencík, M., Keeton, W.S., Spînu, A.P., Petritan, I.C., Majdanová, L., Markuljaková, K., Roibu, C.C., Gloor, R., Bace, R., Buechling, A., Synek, M., Rydval, M., Málek, J., Begović, K., Hofmeister, J., Rodrigo, R., Pettit, J.L., Fodor, E., Janda, P., Svoboda, M., 2023. Synchronised disturbances in spruce-and beech-dominated forests across the largest primary mountain forest landscape in temperate Europe. Forest Ecology and Management 537, 120906.
Kantelinen, A., Purhonen, J., Halme, P., Myllys, L., 2022. Growth form matters - Crustose lichens on deadwood are sensitive to forest management. For. Ecol. Manag. 524, 120529. https://doi.org/10.1016/j.foreco.2022.120529.
Knops, J.M.H., Nash, T.H., Schlesinger, W.H., 1996. The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecol. Monogr. 66, 159-179. https://doi.org/10.2307/2963473.
Kropik, M., Zechmeister, H.G., Moser, D., Bernhardt, K.G., Dullinger, S., 2021. Deadwood volumes matter in epixylic bryophyte conservation, but precipitation limits the establishment of substrate-specific communities. For. Ecol. Manag. 493, 119285. https://doi.org/10.1016/j.foreco.2021.119285.
Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: Tests in linear mixed effects models. J. Statist. Softw. 82: 1-26. https://doi.org/10.18637/jss.v082.i13.
Langbehn, T.J., Hofmeister, J., Svitok, M., Mikoláš, M., Matula, R., Halda, J.P., Svobodová, K., Pouska, V., Kameniar, O., Kozák, D., Janda, P., Čada, V., Bače, R., Frankovič, M., Vostárek, O., Gloor, R., Svoboda, M., 2021. The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. J. Veg. Sci. 32, e13087. https://doi.org/10.1111/jvs.13087.
Legendre, P., Anderson, M. J., 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological monographs 69 (1), 1–24.
Lie, M.H., Arup, U., Grytnes, J.A., Ohlson, M., 2009. The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers. Conserv. 18, 3579. https://doi.org/10.1007/s10531-009-9661-z.
Lõhmus, P., Lõhmus, A., 2001. Snags, and their lichen flora in old Estonian peatland forests. Ann. Bot. Fenn. 38, 265-280.
Lorimer, C.G., Frelich, L.E., 1989. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Can. J. For. Res. 19 (5), 651-663. https://doi.org/10.1139/x89-102.
Łubek, A., Kukwa, M., Jaroszewicz, B., Czortek, P., 2020. Identifying mechanisms shaping lichen functional diversity in a primeval forest. For. Ecol. Manag. 475, 118434. https://doi.org/10.1016/j.foreco.2020.118434.
Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature. 455, 213-215. https://doi.org/10.1038/nature07276.
Majdanová, L., Hofmeister, J., Pouska, V., Mikoláš, M., Zíbarová, L., Vítková, L., Svoboda, M., Čada, V., 2023. Old-growth forests with long continuity are essential for preserving rare wood-inhabiting fungi. For. Ecol. Manag. 541, 121055. https://doi.org/10.1016/j.foreco.2023.121055.
Malíček, J., Palice, Z., Vondrak, J., Kostovcik, M., Lenzová, V., Hofmeister, J., 2019. Lichens in old-growth and managed mountain spruce forests in the Czech Republic: assessment of biodiversity, functional traits and bioindicators. Biodivers. Conserv. 28, 1-32. https://doi.org/10.1007/s10531-019-01834-4.
Marmor, L., Torra, T., Randlane, T., 2011. Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecol. Indic. 11, 1270-1276. https://doi.org/10.1016/j.ecolind.2011.01.009.
Martínez del Castillo, E., Zang, C.S., Buras, A., Hacket-Pain, A.J., Esper, J., Serrano-Notivoli, R., Hartl, C., Weigel, R., Klesse, S., Resco de Dios, V., Scharnweber, T., Dorado-Liñán, I., van der Maaten-Theunissen, M., van der Maaten, E., Jump, A.S., Mikac, S., Banzragch, B., Beck, W., Cavin, L., Claessens, H., Čada, V., Čufar, K., Dulamsuren, C., Gričar, J., Gil-Pelegrín, E., Janda, P., Kazimirovic, M., Kreyling, J., Latte, N., Leuschner, C., Longares, L.A., Menzel, A., Merela, M., Motta, R., Muffler, L., Nola, P., Petritan, A.M., Petrițan, I.C., Prislan, P., Rubio-Cuadrado, Á., Rydval, M., Stajić, B., Svoboda, M., Toromani, E., Trotsiuk, V., Wilmking, M., Zlatanov, T., de Luis, M., 2022. Climate-change-driven growth decline of European beech forests. Commun. Biol. 5, 163. https://doi.org/10.1038/s42003-022-03107-3.
McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A. Hurtt, G.C., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368(6494), p. eaaz9463. https://doi.org/10.1126/science.aaz9463.
Mikoláš, M., Tejkal, M., Kuemmerle, T., Griffiths, P., Svoboda, M., Hlásny, T., Lietão, P. J., Morrissey, R.C., 2017. Forest management impacts on Capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc. Ecol. 32, 163-179. https://doi.org/10.1007/s10980-016-0433-3.
Mikoláš, M., Ujházy, K., Jasík, M., Wiezik, M., Gallay, I., Polák, P., Vysoky, J., Čiliak, M., Meigs G.W., Svoboda, M., Trotsiuk, V., 2019. Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. For. Ecol. Manag. 449, 117466. https://doi.org/10.1016/j.foreco.2019.117466.
Mikoláš, M., Piovesan, G., Ahlstrom, A., Donato, D.C., Gloor, R., Hofmeister, J., Keeton, W.S., Muzs, B., Sabatini, F.M., Svoboda, M., Kuemmerle, T., 2023. Protect old-growth forests in Europe now. Science 380(6644), 466. https://doi.org/10.1126/science.adh230.
Mo, L., Zohner, C.M., Reich, P.B., Liang, J., de Miguel, S., Nabuurds, G.J., Renner, S.S., van de Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O.L., Gamarra, J.G.P., Hordijk, I., Routh, D., Abegg, M., Yao, Y.C.A., Alberti, G., Zambrano, A.M.A., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Amaral, I., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Balazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brearley, F.Q., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Gatti, R.C., César, R.G., Cesljar, G., Chazdon, R.L., Chen, H.Y.H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Valverde, F.C., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Obiang, N.L.E., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Hillers, A., Coronado, E.N.H., Hui, C., Ibanez, T., Imai, N., Jagodzinski, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lu, H.C., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon Jr., B.H., Marshall, A.R., Martin, E.H., Meave, J.A., Melo-Cruz, O., Mendoza, C., Mendoza-Polo, I., Miscicki, S., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V.J., Nevenic, R.V., Ngugi, M.R., Niklaus, P.A., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y.D., Paquette, A., Parada-Gutierrez, A., Parfenova, E.I., Park, M., Parren, M., Parthasarathy, N., Peri, P.L., Pfautsch, S., Picard, N., Piedade, M.T.F., Piotto, D., Pitman, N.C.A., Poulsen, A.D., Poulsen, J.R., Pretzsch, H., Arevalo, F.R., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S.G., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.J., Schepaschenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E.B., Seben, V., Serra-Diaz, J.M., Sheil, D., Shvidenko, A.Z., Silva-Espejo, J.E., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A.F., Sterenczak, K.J., Svenning, J.C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P.M., Usoltsev, V.A., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M.E., Vasquez, R.M., Verbeeck, H., Viana, H., Vibrans, A.C., Vieira, S., von Gadow, K., . Wang, F., Watson, J.V., Werner, G.D.A., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawila-Niedzwiecki, T., Zhang, C.Y., Zhao, X.H., Zhou, M., Zhu, Z.X., Zo-Bi, I.C., Gann, G.D., Crowther, T.W., 2023. Integrated global assessment of the natural forest carbon potential. Nature 624(7990). https://doi.org/10.1038/s41586-023-06723-z.
Nakagawa, S., Johnson, P.C., Schielzeth, H., 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213.
Nascimbene, J., Marini, L., 2015. Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222-1232. https://doi.org/10.1111/jbi.12493.
Nascimbene, J., Brunialti, G., Ravera, S., Frati, L., Caniglia, G., 2010. Testing Lobaria pulmonaria (L.) Hoffm. as an indicator of lichen conservation importance of Italian forests. Ecol. Indic. 10(2), 353-360. https://doi.org/10.1016/j.ecolind.2009.06.013.
Neumann, M., Spörk, C., Hasenauer, H., 2023. Changes in live and deadwood pools in spruce-fir-beech forests after six decades of converting age class management to single-tree selection. Trees Forests People 12, 100382. https://doi.org/10.1016/j.tfp.2023.100382.
Öckinger, E., Niklasson, M., Nilsson, S., 2005. Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodivers Conserv. 14, 759-773. https://doi.org/10.1007/s10531-004-4535-x.
Oksanen, I., 2006. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol. 73, 723-734. https://doi.org/10.1007/s00253-006-0611-3.
Paillet, Y., Bergès, L., Hjältén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24, 101-112. https://doi.org/10.1111/j.1523-1739.2009.01399.x.
Patacca, M., Lindner, M., Lucas-Borja, M.E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biol, 29(5), 1359-1376. https://doi.org/10.1111/gcb.16531.
Pavlin, J., Nagel, T.A., Svitok, M., Pettit, J.L., Begović, K., Mikac, S., Dikku, A., Totomani, E., Panayotov, M., Zlatanov, T., Haruta, O., Dorog, S., Chaskovskyy, O., Mikoláš, M., Janda, P., Frankovič, M., Rodrigo, R., Vostárek, O., Synek, M., Dušátko, M., Knir, T., Kozák, D., Kameniar, O., Bače, R., Čada, V., Trotsiuk, V., Schurman, J.S., Saulnier, M., Buechling, A., Svoboda, M., 2021. Disturbance history is a key driver of tree life span in temperate primary forests. J. Veg. Sci. 32(5), e13069. https://doi.org/10.1111/jvs.13069.
Peres-Neto, P.R., Legendre, P., Dray, S., Borcard, D., 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614-2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.
Pišút, I., Guttová, A., Lackovičová, A., Lisická, E., 2001. Red list of lichens of Slovakia (December 2001). Červený zoznam lišajníkov Slovenska (december 2001). Ochrana Prirody 20, 23-30.
Rainus, T., Johansson, P., Berg, N., Niklasson, M., 2008. The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J. Veg. Sci., 19, 653-662. https://doi.org/10.3170/2008-8-18433.
Rogers, R.W., 1990. Ecological strategies of lichens. Lichenologist 22, 149-162. https://doi.org/10.1017/S002428299000010X.
Rodrigo, R., Pettit, J.L., Matula, M., Kozák, D., Bače, R., Pavlin, J., Janda, P., Mikoláš, M., Nagel, T.A., Schurman, J., Trotsiuk, V., Vostárek, O., Frankovič, M., Pettit, J.K., Buechling, A., Čada, V., Begović, K., Chasovskyy, O., Teodosiu, M., Saulnier, M., Dušátko, M., Knir, T., Kameniar, O., Malek, J., Gloor, R., Svoboda, M., 2022. Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. For. Ecol. Manag. 503, 119772. https://doi.org/10.1016/j.foreco.2021.119772.
Runnel, K., Rosenvald, R., Lõhmus, A., 2013. The dying legacy of green-tree retention: Different habitat values for polypores and wood-inhabiting lichens. Biol. Conserv. 159, 187-196. https://doi.org/10.1016/j.biocon.2012.11.029.
Sabatini, F.M., Burrascano, S., Keeton, W.S., Levers, C., Lindner, M., Pötzschner, F., Verkerk, P.J., Bauhus, J., Buchwald, E., Chaskovsky, O., Debaive, N., Horváth, F., Garbarino, M., Grigoriadis, N., Lombardi, F., Marques Duarte, I., Meyer, P., Midteng, R., Mikac, S., Mikoláš, M., Motta, R., Mozgeris, G., Nunes, L., Panayotov, M., Ódor, P., Ruete, A., Simovski, B., Stillhard, J., Svoboda, M., Szwagrzyk, J., Tikkanen, O., Volosyanchuk, R., Vrška, T., Zlatanov, T., Kuemmerle, T., 2018. Where are Europe's last primary forests? Divers. Distrib. 24, 1426-1439. https://doi.org/10.1111/ddi.12778.
Sabatini, F.M., Keeton, W. S., Lindner, M., Svoboda, M., Verkerk, P. J., Bauhus, J., Bruelheide, H., Burrascano, S., Debaive, N., Duarte, I., Garbarino, M., Grigoriadis, N., Lombardi, F., Mikolás, M., Meyer, P., Motta, R., Mozgeris, G., Nunes, L., Ódor, P., Panayotov, M., Ruete, A., Simovski, B., Stillhard, J., Svensson, J., Szwagrzyk, J., Tikkanen, O.P., Vandekerkhove, K., Volosyanchuk, R., Vrška, T., Zlatanov, T., Kuemmerle, T., 2020. Protection gaps and restoration opportunities for primary forests in Europe. Divers. Distrib. 26(12), 1646-1662. https://doi.org/10.1111/ddi.13158.
Schei, F.H., Blom, H.H., Gjerde, I., Grytnes, J.A., Heegaard, E., Saetersdal, M., 2013. Conservation of epiphytes: Single large or several small host trees? Biol. Conserv. 168, 144-151. https://doi.org/10.1016/j.biocon.2013.10.001.
Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103-113. https://doi.org/10.1111/j.2041-210X.2010.00012.x.
Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P., Kulakowski, D., Labusova, J., Mikoláš, M., Nagel, T.A., Seidl, R., 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Change Biol. 24(5), 2169-2181. https://doi.org/10.1111/gcb.14041.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395-402. https://doi.org/10.1038/nclimate3303.
Seidl, R., Schelhaas, M.J., Rammer, W., Verkerk, P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4(9), pp. 806-810. https://doi.org/10.1038/nclimate2318.
Seidl, R. Turner, M.G., 2022. Post-disturbance reorganization of forest ecosystems in a changing world. PNAS 119(28), p. e2202190119. https://doi.org/10.1073/pnas.2202190119.
Shipley, B., 2000. A new inferential test for path models based on directed acyclic graphs. Struct. Equat. Model. 7, 206-218. https://doi.org/10.1207/S15328007SEM0702_4.
Shipley, B., 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363-368. https://doi.org/10.1890/08-1034.1.
Shorrocks, B., Marsters, J., Ward, I., Evennett, P.J., 1991. The fractal dimension of lichens and the distribution of arthropod body lengths. Funct. Ecol. 5, 457-460. https://doi.org/10.1139/cjfr-29-8-1204.
Sillett, S.C., Goslin, M.N., 1999. Distribution of epiphytic macrolichens in relation to remnant trees in a multiple age Douglas-fir forest. Can. J. For. Res. 29, 1204-1215. https://doi.org/10.1139/x99-081.
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. Ruchty, A., 2000. Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol. Appl. 10, 789-799. https://doi.org/10.1890/1051-0761(2000)010[0789:DLOELR]2.0.CO;2.
Singh, G., Dal Grande, F., Werth, S., Scheidegger, C., 2015. Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse. FEMS Microbiol. Ecol. 91(1). https://doi.org/10.1093/femsec/fiu009.
Šmilauer, P., Lepš, J., 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, UK.
Snäll, T., Ehrlén, J. Rydin, H., 2005. Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86, 106-115. https://doi.org/10.1890/04-0531.
Spies, T.A., Franklin, J.F., 1988. Old growth and forest dynamics in the Douglas-fir region of western Oregon and Washington. Nat. Areas J. 8(3), 190-201.
Splechtna, B.E., Gratzer, G., Black, B.A., 2005. Disturbance history of a European old-growth mixed-species forest -A spatial dendro-ecological analysis. J. Veg. Sci. 16(5), 511-522. https://doi.org/10.1111/j.1654-1103.2005.tb02391.x.
Stokland, J.N., Siitonen, J., Jonsson, B.G., 2012. Biodiversity in Deadwood. Cambridge University Press, Cambridge, p. 524.
Stoffel, M.A., Nakagawa, S., Schielzeth, H., 2021. partR2: partitioning R2 in generalized linear mixed models. PeerJ 9, e11414.
Stritih, A., Seidl, R., Senf, C., 2023. Alternative states in the structure of mountain forests across the Alps and the role of disturbance and recovery. Landsc. Ecol. 38(4), 933-947. https://doi.org/10.1007/s10980-023-01597-y.
Stubbs, C.S., 1989. Patterns of distribution and abundance of corticolous lichens and their invertebrate associates on Quercus rubra in Maine. Bryologist 92, 453-460. https://doi.org/10.2307/3243665.
Svoboda, M., Janda, P., Fraver, S., Nagel, T.A., Rejzek, J., Mikoláš, M., Douda, J., Boubl, K., Šamonil, P., Trotsiuk, V., Uzel, P., Teodosiu, M., Bouriaud, O., Biris, A.I., 2014. Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians. Romania J. Veg. Sci. 25, 386-401. https://doi.org/10.1111/jvs.12109.
Tanona, M., Czarnota, P., 2023. The response of lichens inhabiting exposed wood of spruce logs to post-hurricane disturbances in Western Carpathian forests. Fungal Ecol. 63, 101228. https://doi.org/10.1016/j.funeco.2023.101228.
Tarasov, M.E., Birdsey, R.A., 2001. Decay rate and potential storage of coarse woody debris in the Leningrad region. Ecol. Bull. 49, 137-147. https://doi.org/10.2307/20113271.
Thorn, S., Bässler, C., Svoboda, M., Müller, J., 2017. Effects of natural disturbances and salvage logging on biodiversity - Lessons from the Bohemian Forest. For. Ecol. Manag. 388, 113-119. https://doi.org/10.1016/j.foreco.2016.06.006.
Tripp, E.A., Lendemer, J.C., McCain, C.M., 2019. Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot. Oecologia 190, 445-457. https://doi.org/10.1007/s00442-019-04413-0.
Trotsiuk, V., Pederson, N., Druckenbrod, D.L., Orwig, D.A., Bishop, D.A., Barker-Plotkin, A., Fraver, S., Martin-Benito, D., 2018. Testing the efficacy of tree-ring methods for detecting past disturbances. For. Ecol. Manag. 425, 59-67. https://doi.org/10.1016/j.foreco.2018.05.045.
Viljur, M., Abella, S.R., Adamek, M., Alencar, J.B., Barber, N.A., Beudert, B., Burkle, L.A., Cagnolo, L., Campos, B.R., Chao, A., Chergui, B., Choi, C., Cleary, D.F., Davis, T.S., Dechnik-Vázquez, Y.A., Downing, W.M., Fuentes-Ramirez, A., Gandhi, K.J., Gehring, C.A., Georgiev, K.B., Gimbutas, M., Gongalsky, K.B., Gorbunova, A.Y., Greenberg, C.H., Hylander, K., Jules, E.S., Korobushkin, D.I., Köster, K., Kurth, V.J., Lanham, J.D., Lazarina, M., Leverkus, A.B., Lindenmayer, D.B., Marra, D.M., Martín-Pinto, P., Meave, J.A., Moretti, M., Nam, H., Obrist, M.K., Petanidou, T., Pons, P., Potts, S.G., Rapoport, I.B., Rhoades, P.R., Richter, C., Saifutdinov, R.A., Sanders, N.J., Santos, X., Steel, Z.L., Tavella, J., Wendenburg, C., Wermelinger, B., Zaitsev, A.S., Thorn, S., 2022. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol. Rev. 97(5), 1930-1947. https://doi.org/10.1111/brv.12876.
Węgrzyn, W.H., Kołodziejczyk, J., Fałowska, P., Wężyk, P., Zięba-Kulawik, K., Szostak, M., Turowska, A., Grzesiak, B., Wietrzyk-Pełka, P., 2020. Influence of the environmental factors on the species composition of lichen Scots pine forests as a guide to maintain the community (Bory Tucholskie National Park, Poland). Global Ecol. Conserv. 22, e01017, https://doi.org/10.1016/j.gecco.2020.e01017.
Will-Wolf, S., Geiser, L.H., Neitlich, P., Reis, A.H., 2006. Forest lichen communities and environment - How consistent are relationships across scales? J. Veg. Sci. 17(2), 177-184. https://doi.org/10.1111/j.1654-1103.2006.tb02436.x.
Zemanová, L., Trotsiuk, V., Morrissey, R.C., Bače, R., Mikoláš, M., Svoboda, M., 2017. Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodivers Conserv. 26, 1943-1958. https://doi.org/10.1007/s10531-017-1338-4.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).