AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation

Yu BaiYong Pang( )Dan Kong
Key Laboratory of National Forestry and Grassland Administration on Forestry Remote Sensing and Information System, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
Show Author Information

Abstract

Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials. Recent studies have shown that integrating process-based models (PBMs) with remote sensing data can enhance simulations from stand to regional scales, significantly improving the ability to simulate forest growth and carbon stock dynamics. However, the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited. In this study, we applied the parameterized 3-PG (Physiological Principles Predicting Growth) model across the Mengjiagang Forest Farm (MFF) to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation. The model was used to simulate average diameter at breast height (DBH) and total biomass, which were later validated with a wide range of observation data including sample plot data, forest management inventory data, and airborne laser scanning data. The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale, with determination coefficients ranging from 0.78 to 0.88. Based on the estimation of total biomass, we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 ​m, which helps with relevant management advice. These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales. In addition, this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.

References

 

Ahamed, T., Tian, L., Zhang, Y., Ting, K.C., 2011. A review of remote sensing methods for biomass feedstock production. Biomass Bioenergy 35, 2455-2469.

 

Almeida, A.C., Siggins, A., Batista, T.R., Beadle, C., Fonseca, S., Loos, R., 2010. Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. For. Ecol. Manag. 259, 1730-1740.

 

Amichev, B.Y., Johnston, M., Van Rees, K.C.J., 2010. Hybrid poplar growth in bioenergy production systems: biomass prediction with a simple process-based model (3PG). Biomass Bioenergy 34, 687-702.

 

Bai, Y., Pang, Y., Xia, X.Y., Jia, W.W., 2022. 3-PG model parameterization using destructive sampling data of Larix olgensis. Sci. Silvae Sin. 58, 98-110. (in Chinese).

 

Cao, L., Liu, K., Shen, X., Wu, X., Liu, H., 2019. Estimation of forest structural parameters using UAV-LiDAR data and a process-based model in Ginkgo planted forests. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 12, 4175-4190.

 

Coops, N.C., Waring, R.H., Landsberg, J.J., 1998. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. For. Ecol. Manag. 104, 113-127.

 

Coops, N.C., 1999. Improvement in predicting stand growth of Pinus radiata (D. Don) across landscapes using NOAA AVHRR and Landsat MSS imagery combined with a forest growth process model (3-PGS). Photogramm. Eng. Rem. Sens. 65, 1149-1156.

 

Coops, N.C., Ferster, C.J., Waring, R.H., Nightingale, J., 2009. Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sens. Environ. 113, 680-690.

 

Coops, N.C., Morsdorf, F., Schaepman, M.E., Zimmermann, N.E., 2013. Characterization of an alpine tree line using airborne LiDAR data and physiological modeling. Global Change Biol. 19, 3808-3821.

 

Coops, N.C., Waring, R.H., 2001a. Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model, 3-PGS. Can. J. For. Res. 31, 143-154.

 

Coops, N.C., Waring, R.H., 2001b. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sens. Environ. 75, 324-334.

 

Coops, N.C., Waring, R.H., 2011. Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecol. Model. 222, 2119-2129.

 

Coops, N.C., Waring, R.H., Beier, C., Roy-Jauvin, R., Wang, T., 2011. Modeling the occurrence of 15 coniferous tree species throughout the Pacific Northwest of North America using a hybrid approach of a generic process-based growth model and decision tree analysis. Appl. Veg. Sci. 14, 402-414.

 

Coops, N.C., Waring, R.H., Hilker, T., 2012. Prediction of soil properties using a process-based forest growth model to match satellite-derived estimates of leaf area index. Remote Sens. Environ. 126, 160-173.

 

Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185-190.

 

Du, L., Pang, Y., Wang, Q., Huang, C.Q., Bai, Y., Chen, D.S., Lu, W., Kong, D., 2023. A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds. Remote Sens. Environ. 290, 113543.

 

Dye, P.J., Jacobs, S., Drew, D., 2004. Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa. For. Ecol. Manag. 193, 197-218.

 

Esprey, L.J., Sands, P.J., Smith, C.W., 2004. Understanding 3-PG using a sensitivity analysis. For. Ecol. Manag. 193, 235-250.

 

Fang, J., Chen, A., Peng, C., Zhao, S., Ci, L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320-2322.

 

Fontes, L., Landsberg, J.J., Tomé, J., Tomé, M., Pacheco, C.A., Soares, P., Araujo, C., 2006. Calibration and testing of a generalized process-based model for use in Portuguese eucalyptus plantations. Can. J. For. Res. 36, 3209-3221.

 

Forrester, D.I., Mathys, A.S., Stadelmann, G., Trotsiuk, V., 2021. Effects of climate on the growth of Swiss uneven-aged forests: combining > 100 years of observations with the 3-PG model. For. Ecol. Manag. 494, 119271.

 

Forrester, D.I., Tang, X., 2016. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol. Model. 319, 233-254.

 

Gonzalez-Benecke, C.A., Jokela, E.J., Cropper, W.P., Bracho, R., Leduc, D.J., 2014. Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. For. Ecol. Manag. 327, 55-75.

 

Gonzalez-Benecke, C.A., Teskey, R.O., Martin, T.A., Jokela, E.J., Fox, T.R., Kane, M.B., Noormets, A., 2016. Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands. For. Ecol. Manag. 361, 237-256.

 

He, L., Wang, H., Lei, X., 2016. Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model. J. Appl. Ecol. 27, 412-420.

 

Headlee, W.L., Zalesny, R.S., Donner, D.M., Hall, R.B., 2012. Using a Process-Based Model (3-PG) to predict and map hybrid poplar biomass productivity in Minnesota and Wisconsin, USA. Bioenerg. Res. 6, 196-210.

 

Jia, W., Pang, Y., 2023. Tree species classification in an extensive forest area using airborne hyperspectral data under varying light conditions. J. For. Res. 34(5), 1359-1377.

 

Jia, W., Pang, Y., Tortini, R., 2024. The influence of BRDF effects and representativeness of training data on tree species classification using multi-flightline airborne hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 207, 245–263.

 

Jia, W., Pang, Y., Tortini, R., Schläpfer, D., Li, Z., Roujean, J. L., 2020. A kernel-driven BRDF approach to correct airborne hyperspectral imagery over forested areas with rugged topography. Remote Sensing 12 (3), 432.

 

Landsberg, J.J., Mäkelä, A., Sievänen, R., Kukkola, M. 2005. Analysis of biomass accumulation and stem size distributions over long periods in managed stands of Pinus sylvestris in Finland using the 3-PG model. Tree Physiol. 25, 781-792.

 

Landsberg, J.J., Waring, R.H., 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 95, 209-228.

 

Lei, X., Yu, L., Hong, L. 2016. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix olgensis) plantations. For. Ecol. Manag. 376, 265-275.

 

López-Serrano, F.R., Martínez-García, E., Dadi, T., Rubio, E., García-Morote, F.A., Lucas-Borja, M.E., Andrés-Abellán, M., 2014. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model. Eur. J. For. Res. 134, 167-185.

 

Lu, Y., Coops, N.C., Bolton, D.K., Wang, T., Wang, G., 2015. Comparing stem volume predictions of coastal Douglas-fir stands in British Columbia using a simple physiological model and LiDAR remote sensing. For. Sci. 61, 586-596.

 

Mathys, A., Coops, N., Simard, S., Waring, R., Aitken, S., 2018. Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia. Ecol. Model. 384, 145-153.

 

Meng, X.Y., 2006. Forest Mensuration. China Forestry Publishing House, Beijing.

 

Nightingale, J.M., Coops, N.C., Waring, R.H., Hargrove, W.W., 2007a. Comparison of MODIS gross primary production estimates for forests across the U.S.A. with those generated by a simple process model, 3-PGS. Remote Sens. Environ. 109, 500-509.

 

Nightingale, J.M., Hill, M.J., Phinn, S.R., Davies, I.D., Held, A.A., 2008a. Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforests. For. Ecol. Manag. 254, 122-133.

 

Nightingale, J.M., Hill, M.J., Phinn, S.R., Davies, I.D., Held, A.A., Erskine, P.D., 2008b. Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforests. For. Ecol. Manag. 254, 107-121.

 

Nightingale, J.M., Hill, M.J., Phinn, S.R., Held, A.A., 2007b. Comparison of satellite-derived estimates of gross primary production for Australian old-growth tropical rainforest. Can. J. Rem. Sens. 33, 278-288.

 

Nolè, A., Law, B.E., Magnani, F., Matteucci, G., Ferrara, A., Ripullone, F., Borghetti, M., 2009. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Can. J. For. Res. 39, 1647-1661.

 

Pang, Y., Li, Z., Ju, H., Lu, H., Jia, W., Si, L., Guo, Y., Liu, Q., Li, S., Liu, L., Xie, B., 2016. LiCHy: The CAF's LiDAR, CCD and hyperspectral integrated airborne observation system. Rem. Sens. 8(5), 398.

 

Pang, Y., Li, Z.Y., 2013. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing'an Mountains, Northeastern of China. Chin. J. Plant Ecol. 36, 1095-1105. (in Chinese).

 

Pang, Y., Wang, W., Du, L., Zhang, Z., Liang, X., Li, Y., Wang, Z., 2021. Nystrom-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation. Int. J. Digit. Earth 14, 1452-1476.

 

Patenaude, G., Milne, R., Van Oijen, M., Rowland, C., Hill, R., 2008. Integrating remote sensing datasets into ecological modelling: a Bayesian approach. Int. J. Rem. Sens. 29, 1295-1315.

 

Qu, L.H., Zhao, X.H., Zhang, C.Y., 2022. Application of 3-PG Model in the prediction of growth factors in natural Larix gmelinii Forest. For. Res. 35, 158-165. (in Chinese).

 
Sands, P.J., 2004. Adaptation of 3-PG to Novel Species: Guidelines for Data Collection and Parameter Assignment. CRC Sustainable Production Forestry, Hobart.
 
Sands, P.J., 2010. 3PGPJS vsn 2.7 [software]. September 2010. https://3pg.forestry.ubc.ca/software (Accessed 1 June 2019).
 

Shuman, J.K., Shugart, H.H., O'halloran, T.L., 2011. Sensitivity of Siberian larch forests to climate change. Global Change Biol. 17, 2370-2384.

 
State Forestry Administration of China, 2016. LY/T2654-2016 Tree Biomass Models and Related Parameters to Carbon Accounting for Larix. China Forestry Publishing House, Beijing.
 

Subedi, S., Fox, T.R., Wynne, R.H., 2015. Determination of fertility rating (FR) in the 3-PG model for loblolly pine plantations in the southeastern United States based on site index. Forests 6, 3002-3027.

 

Swenson, J.J., Waring, R.H., Fan, W., Coops, N.C., 2005. Predicting site index with a physiologically based growth model across Oregon, USA. Can. J. For. Res. 35, 1697-1707.

 
Taguchi, H., Endo, T., Yasuoka, Y., 2007. Biomass estimation by coupling LiDAR data with forest growth model in conifer plantation. Proceedings of the 28th Asian Association of Remote Sensing Conference. Kuala Lampur, Malaysia, pp. 12–16.
 

Vashum, K.T., Jayakumar, S., 2012. Methods to estimate above-ground biomass and carbon stock in natural forests - A review. J. Ecosyst. Ecography 2, 4.

 

Wang, T., Wang, G., Innes, J.L., Seely, B., Chen, B., 2017. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. Eng. 4, 448-458.

 

Waring, R.H., 2000. A process model analysis of environmental limitations on the growth of Sitka spruce plantations in Great Britain. Forestry 73, 65-79.

 

Waring, R.H., Coops, N.C., Landsberg, J.J., 2010. Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing. For. Ecol. Manag. 259, 1722-1729.

 

Wei, L., Zhou, H., Link, T.E., Kavanagh, K.L., Hubbart, J.A., Du, E., Hudak, A.T., Marshall, J.D., 2018. Forest productivity varies with soil moisture more than temperature in a small montane watershed. Agr. For. Meteorol. 259, 211-221.

 

White, J.D., Coops, N.C., Scott, N.A., 2000. Estimates of New Zealand forest and scrub biomass from the 3-PG model. Ecol. Model. 131, 175-190.

 

Xie, X., Wang, Q., Dai, L., Su, D., Wang, X., Qi, G., Ye, Y., 2011. Application of China's national forest continuous inventory database. Environ. Manag. 48, 1095-1106.

 

Xie, Y., Wang, H., Lei, X., 2017. Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China. For. Ecol. Manag. 406, 208-218.

 

Xie, Y., Wang, H., Lei, X., 2020. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in Northeast China using 3-PGmix model. J. Environ. Manag. 261, 110249.

 

Xiong, H., Pang, Y., Jia, W., Bai, Y., 2024. Forest stand delineation using airborne LiDAR and hyperspectral data. Silva Fenn. 58(2), 23014.

 

Xu, B., Guo, Z., Piao, S., Fang, J., 2010. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Sci. China Life Sci. 53, 776-783.

 

Yu, G.R., He, H.L., Liu, X.A., 2004. Atlas of Spatial Information Research of Terrestrial Ecosystems in China. China Meteorological Press, Beijing.

 

Zeng, W.S., 2014. Development of monitoring and assessment of forest biomass and carbon storage in China. For. Ecosyst. 1, 20.

 

Zhang, Y., Lu, D., Jiang, X., Li, Y., Li, D., 2022. Forest structure simulation of Eucalyptus plantation using remote-sensing-based forest age data and 3-PG model. Rem. Sens. 15, 183.

 

Zhao, D., Pang, Y., Liu, L., Li, Z., 2020. Individual tree classification using airborne LiDAR and hyperspectral data in a natural mixed forest of northeast China. Forests 11, 303.

 

Zhao, M., Xiang, W., Peng, C., Tian, D., 2009. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. For. Ecol. Manag. 257, 1520-1531.

Forest Ecosystems
Article number: 100213
Cite this article:
Bai Y, Pang Y, Kong D. Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation. Forest Ecosystems, 2024, 11(4): 100213. https://doi.org/10.1016/j.fecs.2024.100213

124

Views

6

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 09 March 2024
Revised: 01 June 2024
Accepted: 01 June 2024
Published: 12 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return