AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Terrain or climate factor dominates vegetation resilience? Evidence from three national parks across different climatic zones in China

Shuang LiuaLingxin WubShiyong ZhenaQinxian LinaXisheng HuaJian Lic( )
College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Show Author Information

Abstract

Vegetation resilience (VR), providing an objective measure of ecosystem health, has received considerable attention, however, there is still limited understanding of whether the dominant factors differ across different climate zones. We took the three national parks (Hainan Tropical Rainforest National Park, HTR; Wuyishan National Park, WYS; and Northeast Tiger and Leopard National Park, NTL) of China with less human interference as cases, which are distributed in different climatic zones, including tropical, subtropical and temperate monsoon climates, respectively. Then, we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression (GWR) model as well. The results revealed that: (1) from 2000 to 2020, the Normalized Difference Vegetation Index (NDVI) of the three national parks fluctuated between 0.800 and 0.960, exhibiting an overall upward trend, with the mean NDVI of NTL (0.923) > ​HTR (0.899) > ​WYS (0.823); (2) the positive trend decay time of vegetation exceeded that of negative trend, indicating vegetation gradual recovery of the three national parks since 2012; (3) the VR of HTR was primarily influenced by elevation, aspect, average ​annual temperature change (AATC), and average annual precipitation change (AAPC); the WYS' VR was mainly affected by elevation, average ​annual precipitation (AAP), and AAPC; while the terrain factors (elevation and slope) were the main driving factors of VR in NTL; (4) among the main factors influencing the VR changes, the AAPC had the highest proportion in HTR (66.7%), and the AAP occupied the largest area proportion in WYS (80.4%). While in NTL, elevation served as the main driving factor for the VR, encompassing 64.2% of its area. Consequently, our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks, while elevation was the main factors that drove the VR in NTL. Our research has promoted a deeper understanding of the driving mechanism behind the VR.

References

 

Adams, V.M., Iacona, G.D., Possingham, H.P., 2019. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411. https://doi.org/10.1038/s41893-019-0275-5.

 

Arani, B.M., Carpenter, S.R., Lahti, L., Van Nes, E.H., Scheffer, A.M., 2021. Exit time as a measure of ecological resilience. Science 372, aay4895. https://doi.org/10.1126/science.aay4895.

 

Bisson, M., Fornacial, A., Coli, A., Mazzarini, F., Pareschi, M.T., 2008. The vegetation resilience after fire (VRAF) index: development, implementation and an illustration from central Italy. Int. J. Appl. Earth Obs. 10 (3), 312–329. https://doi.org/10.1016/j.jag.2007.12.003.

 

Brand, F.S., Jax, K., 2007. Focusing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecol. Soc. 12, 181–194. https://doi.org/10.5751/es-02029-120123.

 

Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M.D., Pütz, S., Sexton, J.O., Song, D.X., Huth, A., 2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855. https://doi.org/10.1038/ncomms14855.

 

Brunsdon, C., Fotheringham, A.S., Charlton, M.E., 2010. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x.

 

Carpenter, S.R., Walker, B., Anderies, J.M., Abel, N., 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4, 765–781. https://doi.org/10.1007/s10021-001-0045-9.

 

Carpenter, S.R., Westley, F., Turner, M.G., 2005. Surrogates for resilience of socialecological systems. Ecosystems 8 (8), 941–944. https://doi.org/10.1007/s10021-005-0170-y.

 

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113 (5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007.

 

Chazdon, R., Letcher, S., van Breugel, M., Martínez-Ramos, M., Bongers, F., Finegan, B., 2007. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 273–289. https://doi.org/10.1098/2Frstb.2006.1990.

 

Chen, S.S., Wu, S.J., Ma, M.H., 2023. Ecological restoration programs reduced forest fragmentation by stimulating forest expansion. Ecol. Indicat. 154, 110855. https://doi.org/10.1016/j.ecolind.2023.110855.

 

Coppola, R., Cuomo, V., D'Emilio, M., Lanfredi, M., Liberti, M., Macchiato, M., Simoniello, T., 2009. Terrestrial vegetation cover activity as a problem of fluctuating surfaces. Int. J. Mod. Phys. B 23, 5444–5452. https://doi.org/10.1142/S0217979209063766.

 

Cowell, M.M., 2013. Bounce back or move on: regional resilience and economic development planning. Cities 30, 212–222. https://doi.org/10.1016/j.cities.2012.04.001.

 

Craven, D., Filotas, E., Angers, V.A., Messier, C., 2016. Evaluating resilience of tree communities in fragmented landscapes: linking functional response diversity with landscape connectivity. Divers. Distrib. 22 (5), 505–518. https://doi.org/10.1111/ddi.12423.

 

Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., Webb, J., 2008. A placebased model for understanding community resilience to natural disasters. Global Environ. Change 18 (4), 598–606. https://doi.org/10.1016/j.gloenvcha.2008.07.013.

 

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J., 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1 (9), 488–494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2.

 

Feng, Y., Zhu, J.X., Zhao, X., Tang, Z.Y., 2019. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ. Res. Lett. 14, 124009. https://doi.org/10.1088/1748-9326/ab4cd8.

 

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C.S., 2004. Regime shifts, resilience, in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711.

 

Forzieri, G., Dakos, V., McDowell, N.G., Ramdane, A., Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539. https://doi.org/10.1038/s41586-022-04959-9.

 

Franklin, J.F., Macmahon, J.A., 2000. Messages from a mountain. Science 288 (5469), 1183–1185. https://doi.org/10.1126/science.288.5469.1183.

 

Frazier, T.G., Thompson, C.M., Dezzani, R.J., Butsick, D., 2013. Spatial and temporal quantification of resilience at the community scale. Appl. Geogr. 42, 95–107. https://doi.org/10.1016/j.apgeog.2013.05.004.

 

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/2Fsciadv.1500052.

 

Han, N.L., Yu, M., Jia, P.C., Zhang, Y.C., Hu, K., 2024. Influence of human activity intensity on habitat quality in Hainan tropical rainforest national park, China. Chin. Geogr. Sci. 34, 519–532. https://doi.org/10.1007/s11769-024-1423-z.

 

He, S., Gallagher, L., Su, Y., Wang, L., Cheng, H.G., 2018. Identification and assessment of ecosystem services for protected area planning: a case in rural communities of Wuyishan national park pilot. Ecosyst. Serv. 31, 169–180. https://doi.org/10.1016/j.ecoser.2018.04.001.

 

Holling, C.S., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245.

 

Huang, B.R., Wang, Y., Su, L.Y., Zhang, C.L., Cheng, D.W., Sun, J., He, S.Y., 2018. Pilot programs for national park system in China: progress, problems and recommendations. Bull. Chin. Acad. Sci. 33 (1), 76–85. https://doi.org/10.16418/j.issn.1000-3045.2018.01.009.

 

Jia, L., Liu, L.Y., Lan, Z.C., Cheng, Y., 2021. Analysis of ecological environment changes and driving forces in Wuyishan National Park. Subtrop. Resour. Environ. 16 (4), 15–25. https://doi.org/10.19687/j.cnki.1673-7105.2021.04.003 (in Chinese).

 

Jiang, W.G., Jia, K., Wu, J.J., Tang, Z.H., Wang, W.J., Liu, X.F., 2015. Evaluating the vegetation recovery in the damage area of Wenchuan earthquake using MODIS data. Rem. Sens. 7, 8757–8778. https://doi.org/10.3390/rs70708757.

 

Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., Mack, M.C., Meentemeyer, R.K., Metz, M.R., Schoennagel, T., Turner, M.G., 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14 (7), 369–378. https://doi.org/10.1002/fee.1311.

 

Karr, J.R., Thomas, T., 1996. Economics, ecology, and environmental quality. Ecol. Appl. 6, 31–32. https://doi.org/10.2307/2269549.

 

Lanfredi, M., Simoniello, T., Macchiato, M., 2004. Temporal persistence in vegetation cover changes observed from satellite: development of an estimation procedure in the test site of the Mediterranean Italy. Remote Sens. Environ. 93, 565–576. https://doi.org/10.1016/j.rse.2004.08.012.

 

Lake, P.S., 2013. Resistance, resilience and restoration. Ecol. Manag. Restor. 14, 20–24. https://doi.org/10.1111/emr.12016.

 

Li, Y., Shi, Y., Qureshi, S., Bruns, A., Zhu, X.D., 2014. Applying the concept of spatial resilience to socio-ecological systems in the urban wetland interface. Ecol. Indicat. 42, 135–146. https://doi.org/10.1016/j.ecolind.2013.09.032.

 

Li, H., Fu, P.H., Yang, X., Gao, H.J., Li, K., 2021a. Exploring spatial distributions of increments in soil heavy metals and their relationships with environmental factors using GWR. Stoch. Environ. Res. Risk Assess. 35, 2173–2186. https://doi.org/10.1007/s00477-021-01986-2.

 

Li, X., Wu, P.F., Guo, F.T., Hu, X.S., 2021b. A geographically weighted regression approach to detect divergent changes in the vegetation activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119080. https://doi.org/10.1016/j.foreco.2021.119089.

 

Li, L.M., Tang, H.N., Lei, J.R., Song, X.Q., 2022. Spatial autocorrelation in land use type and ecosystem service value in Hainan tropical rain forest national park. Ecol. Indicat. 137, 108727. https://doi.org/10.1016/j.ecolind.2022.108727.

 

Liu, R., Hu, W.P., Wang, H.L., Wu, C., 2011. The road network evolution of GuangzhouFoshan metropolitan area based on kernel density estimation. Sci. Geol. Sin. 31 (1), 81–86. https://doi.org/10.1109/ICCIS.2010.83.

 

Liu, G.Y., Yang, Z.F., Chen, B., Zhang, L.X., Zhang, Y., S, M.R., 2015. An ecological network perspective in improving reserve design and connectivity: a case study of Wuyishan nature reserve in China. Ecol. Model. 306, 185–194. https://doi.org/10.1016/j.ecolmodel.2014.10.004.

 

Liu, X.F., Jiang, W.G., Li, J., Wang, W.J., 2017. Evaluation of the vegetation coverage resilience in areas damaged by the Wenchuan earthquake based on MODIS-EVI data. Sensors 17 (2), 259. https://doi.org/10.3390/s17020259.

 

Liu, X.F., Zhang, Z.M., Liu, B.Y., Wang, Y., Luo, L., Qiu, W.T., 2022. Assessment and spatial heterogeneity of ecological resilience in the Yangtze river basin. Res. Environ. Sci. 35 (12), 2758–2767. https://doi.org/10.13198/j.issn.1001-6929.2022.10.01 (in Chinese).

 

Lu, J., Yan, F.Q., 2023. The divergent resistance and resilience of forest and grassland ecosystems to extreme summer drought in carbon sequestration. Land 12 (9), 1672. https://doi.org/10.3390/land12091672.

 

Ma, Y.F., Chen, C.S., Yuan, F.X., Wu, D., Li, J.P., Hao, Y., 2023. Dynamic evaluation of ecological environment quality and climate response in Northeastern China Tiger and Leopard National Park. Acta Ecol. Sin. 43 (7), 2614–2626. https://doi.org/10.5846/stxb202204130981 (in Chinese).

 

Mumby, P.J., Chollett, I., Bozec, Y.M., Wollf, N.H., 2014. Ecological resilience, robustness and vulnerability: how do these concepts benefit ecosystem management? Curr. Opin. Environ. Sustain. 7, 22–27. https://doi.org/10.1016/j.cosust.2013.11.021.

 

Ostrom, E., 2007. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 104 (39), 15181–15187. https://doi.org/10.1073/pnas.0702288104.

 

Östh, J., Reggiani, A., Galiazzo, G., 2015. Spatial economic resilience and accessibility: a joint perspective. Comput. Environ. Urban Syst. 49, 148–159. https://doi.org/10.1016/j.compenvurbsys.2014.07.007.

 

Pan, H., Jiang, Z.L., Zhang, B.Y., 2019. Geographically weighted regression-based research on the spatial relationship of the influence of urban land use on land surface temperature. J. For. Environ. 39, 165–173. https://doi.org/10.13324/j.cnki.jfcf.2019.02.008 (in Chinese).

 

Perz, S.G., Muñoz-Carpena, R., Kiker, G., Holt, R.D., 2013. Evaluating ecological resilience with global sensitivity and uncertainty analysis. Ecol. Model. 263, 174–186. https://doi.org/10.1016/j.ecolmodel.2013.04.024.

 

Peterson, G., Allen, C.R., Holling, C.S., 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1 (1), 6–18. https://doi.org/10.1007/s100219900002.

 

Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze, N., Faria, D., Hadley, A., Harris, S.M., Klingbeil, B.T., Kormann, U., Lens, L., Medina-Rangel, G.F., Morante-Filho, J.C., Olivier, P., Peters, S.L., Pidgeon, A., Ribeiro, D.B., Scherber, C., Schneider-Maunoury, L., Struebig, M., UrbinaCardona, N., Watling, J.I., Willig, M.R., Wood, E.M., Ewers, R.M., 2017. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191. https://doi.org/10.1038/nature24457.

 

Piao, S., Wang, X.H., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A.P., Ciais, P., Tømmervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27. https://doi.org/10.1038/s43017-019-0001-x.

 

Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature 307, 321–326. https://doi.org/10.1038/307321a0.

 

Reggiani, A., De Graaff, T., Nijkamp, P., 2002. Resilience: an evolutionary approach to spatial economic systems. Network. Spatial Econ. 2, 211–229. https://doi.org/10.1023/A:1015377515690.

 

Robinson, D.P., Lloyd, C.D., Mckinley, J.M., 2013. Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics. Int. J. Appl. Earth Obs. Geoinf. 21, 374–383. https://doi.org/10.1016/j.jag.2011.11.001.

 

Sarmazed, N.S., Jahani, A., Goshtasb, H., 2018. Ecological impacts assessment of recreation on quality of soil and vegetation in protected areas (Case study: Qhamishloo National park and Wildlife Refuge). J. Nat. Environ. 70 (4), 881–891. https://doi.org/10.22059/jne.2017.224020.1304.

 

Seddon, A.W.R, Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232. https://doi.org/10.1038/nature16986.

 

Shi, Y., Jin, N., Ma, X., Wu, B., He, Q., Yue, C., Yu, Q., 2020. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 294, 108146. https://doi.org/10.1016/j.agrformet.2020.108146.

 

Simoniello, T., Lanfredi, M., Liberti, M., Coppola, R., Macchiato, M., 2008. Estimation of vegetation cover resilience from satellite time series. Hydrol. Earth Syst. Sci. 12, 1053–1064. https://doi.org/10.5194/hess-12-1053-2008.

 

Smith, T., Traxl, D., Boers, N., 2022. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484. https://doi.org/10.1038/s41558-022-01352-2.

 

Smith, T., Boers, N., 2023a. Reliability of vegetation resilience estimates depends on biomass density. Nat. Ecol. Evol. 7, 1799–1808. https://doi.org/10.1038/s41559-023-02194-7.

 

Smith, T., Boers, N., 2023b. Global vegetation resilience linked to water availability and variability. Nat. Commun. 14, 498. https://doi.org/10.1038/s41467-023-36207-7.

 

Song, W.Q., Feng, Y.H., Wang, Z.H., 2022. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 848, 157729. https://doi.org/10.1016/j.scitotenv.2022.157729.

 

Sterk, M., Gort, G., Klimkowska, A., van Ruijven, J., van Teeffelen, A.J.A., Wamelink, G.W.W., 2013. Assess ecosystem resilience: linking response and effect traits to environmental variability. Ecol. Indicat. 30, 21–27. https://doi.org/10.1016/j.ecolind.2013.02.001.

 

Strickland Munro, J.K., Allison, H.E., Moore, S.A., 2010. Using resilience concepts to investigate the impacts of protected area tourism on communities. Ann. Tourism Res. 37 (2), 499–519. https://doi.org/10.1016/j.annals.2009.11.001.

 

Sun, Q.Y., Liu, W.W., Gao, Y.N., Li, J.S., Yang, C.Y., 2020. Spatiotemporal variation and climate influence factors of vegetation ecological quality in the Sanjiangyuan national park. Sustainability 12 (16), 6634. https://doi.org/10.3390/su12166634.

 

Tao, J., Xu, T.Q., Dong, J.W., Yu, X.Q., Jiang, Y.B., Huang, K., Zhu, J.T., Dong, J.X., Xu, Y.M., Wang, S.S., 2017. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982-2013. Int. J. Climatol. 38 (4), 2029–2038. https://doi.org/10.1002/joc.5314.

 

Tan, X., Guo, P.T., Wu, W., Li, M.F., Liu, H.B., 2017. Prediction of soil properties by using geographically weighted regression at a regional scale. Soil Res. 55, 318–331. https://doi.org/10.1071/SR16177.

 

Tilman, G.D., 1984. Plant dominance along an experimental nutrient gradient. Ecology 65 (5), 1445–1453. https://doi.org/10.2307/1939125.

 

van Longkhuyzen, A.R., Lagory, K.E., Kuiper, J.A., 2004. Modeling the suitability of potential wetland mitigation sites with a geographic information system. Environ. Manag. 33 (3), 368–375. https://doi.org/10.1007/s00267-003-3017-3.

 

van Nes, E.H., Scheffer, M., 2007. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169 (6), 738–747. https://doi.org/10.1086/516845.

 

Wohlgemuth, T., Moretti, M., Conedera, M., Moser, B., 2006. Ecological resilience after fire in mountain forests of the Central Alps. For. Ecol. Manag. 234, S200. https://doi.org/10.1016/j.foreco.2006.08.319.

 

Wu, R.D., Hua, C.L., Yu, G.Z., Ma, J.Z., Yang, F.L., Wang, J.J., Jin, T., Long, Y.C., Guo, Y., Zhao, H.W., 2020a. Assessing protected area overlaps and performance to attain China's new national park system. Biol. Conserv. 241, 108382. https://doi.org/10.1016/j.biocon.2019.108382.

 

Wu, Y.Y., Liu, S.J., Wang, X., Zhang, Y.H., Gu, Y., Li, L., 2020b. Impact of climate zone migration on geographical distribution of indigenous vegetation in Northeast China. IOP Conf. Ser. Earth Environ. Sci. 526, 012037. https://doi.org/10.1088/1755-1315/526/1/012037.

 

Yu, T., Yang, Y.M., Feng, J.Z., Bai, L.Y., Zhang, P., Luo, Y.X., 2019. Study on coupling between vegetation index and geomorphic staus in Yarkant River basin. Sci. Surv. Map 44 (09), 61–72. https://doi.org/10.16251/j.cnki.1009-2307.2019.09.010 (in Chinese).

 

Yuan, Y., Li, X.Y., Xiong, D.H., Wu, H., Zhang, S., Liu, L., Li, W.X., 2019. Effects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined-out areas. Environ. Earth Sci. 78, 653. https://doi.org/10.1007/s12665-019-8671-8.

 

Zhang, C., 2022. Research on forest health evaluation and management optimization of tropical rainforest national park. Trop. For. 50 (1), 68–72. https://doi.org/10.3969/j.issn.1672-0938.2022.01.014 (in Chinese).

 

Zhang, Y., Liu, X.H., Jiao, W.Z., Wu, X.C., Zeng, X.M., Zhao, L.J., Wang, L.X., Guo, J.Q., Xing, X.Y., Hong, Y.X., 2023. Spatial heterogeneity of vegetation resilience changes to different drought types. Earth's Future 11, e2022EF003108. https://doi.org/10.1029/2022EF003108.

 

Zhang, Z., Liu, X., Qiu, W., Luo, L., Liu, B., Wang, Y., 2022. Evaluation of ecological resilience of Hanjiang River Basin based on vegetation index. J. Environ. Eng. 12 (2), 436–442. https://doi.org/10.12153/j.issn.1674-991X.20210686 (in Chinese).

 

Zhu, Z., Piao, S.L., Myneni, R.B., Huang, M.T., Zeng, Z.Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C.X., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y.W., Liu, R.G., Mao, J.F., Pan, Y.Z., Peng, S.S., Peñuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., Viovy, N., Wang, X.H., Wang, Y.P., Xiao, Z.Q., Yang, H., Zaehle, S., Zeng, N., 2016. Greening of the earth and its drivers. Nat. Clim. Change 6, 791–795. https://doi.org/10.1038/nclimate3004.

Forest Ecosystems
Article number: 100212
Cite this article:
Liu S, Wu L, Zhen S, et al. Terrain or climate factor dominates vegetation resilience? Evidence from three national parks across different climatic zones in China. Forest Ecosystems, 2024, 11(4): 100212. https://doi.org/10.1016/j.fecs.2024.100212

112

Views

4

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 01 March 2024
Revised: 31 May 2024
Accepted: 31 May 2024
Published: 07 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return