AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phosphorus limitation on CO2 fertilization effect in tropical forests informed by a coupled biogeochemical model

Zhuonan WangaHanqin Tianb,c( )Shufen Panb,dHao ShieJia YangfNaishen LianggLatif KalinhChristopher Andersonh
Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
Department of Engineering, Boston College, Chestnut Hill, MA, USA
Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences, Beijing, China
Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, 305-8506, Japan
College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
Show Author Information

Abstract

Tropical forests store more than half of the world's terrestrial carbon (C) pool and account for one-third of global net primary productivity (NPP). Many terrestrial biosphere models (TBMs) estimate increased productivity in tropical forests throughout the 21st century due to CO2 fertilization. However, phosphorus (P) limitations on vegetation photosynthesis and productivity could significantly reduce the CO2 fertilization effect. Here, we used a carbon-nitrogen-phosphorus coupled model (Dynamic Land Ecosystem Model; DLEM-CNP) with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during 1860–2018. Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity. We further compared the simulations from DLEM-CNP, DLEM-CN, and DLEM-C and the results showed that the inclusion of P processes reduced the CO2 fertilization effect on gross primary production (GPP) by 25% and 45%, and net ecosystem production (NEP) by 28% and 41%, respectively, relative to CN-only and C-only models. From the 1860s to the 2010s, the DLEM-CNP estimated that in tropical forests GPP increased by 17%, plant respiration (Ra) increased by 18%, ecosystem respiration (Rh) increased by 13%, NEP increased by 121% per unit area, respectively. Additionally, factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO2 fertilization effect had been offset by 135% due to deforestation from the 1860s to the 2010s. Our study highlights the importance of P limitation on the C cycle and the weakened CO2 fertilization effect resulting from P limitation in tropical forests.

References

 

Alwin, D.F., Hauser, R.M., 1975. The decomposition of effects in path analysis. American sociological review 37–47.

 

Aragão, L.E.O.C., Malhi, Y., Metcalfe, D.B., Silva-Espejo, J.E., Jiménez, E., Navarrete, D., Almeida, S., Costa, A.C.L., Salinas, N., Phillips, O.L., Anderson, L.O., Alvarez, E., Baker, T.R., Goncalvez, P.H., Huamán-Ovalle, J., Mamani-Solórzano, M., Meir, P., Monteagudo, A., Patiño, S., Peñuela, M.C., Prieto, A., Quesada, C.A., Rozas-Dávila, A., Rudas, A., Silva, J.A., Vásquez, R., 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6 (12), 2759–2778. https://bg.copernicus.org/articles/6/2759/2009/.

 

Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Fiore, A.D., Erwin, T., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Monteagudo, A., Neill, D.A., Vargas, P.N., Pitman, N.C.A., Silva, J.N.M., Martínez, R.V., 2004. Increasing biomass in Amazonian forest plots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359 (1443), 353–365. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2003.1422.

 

Banin, L., Lewis, S.L., Lopez-Gonzalez, G., Baker, T.R., Quesada, C.A., Chao, K. -J., Burslem, D.F.R.P., Nilus, R., Abu Salim, K., Keeling, H.C., Tan, S., Davies, S.J., Mendoza, A.M., Vásquez, R., Lloyd, J., Neill, D.A., Pitman, N., Phillips, O.L., 2014. Tropical forest wood production: a cross-continental comparison. J. Ecol. 102 (4), 1025–1037. https://doi.org/10.1111/1365-2745.12263.

 

Barlow, J., Peres, C.A., Lagan, B.O., Haugaasen, T., 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6 (1), 6–8. https://doi.org/10.1046/j.1461-0248.2003.00394.x.

 

Bastos, A., Friedlingstein, P., Sitch, S., Chen, C., Mialon, A., Wigneron, J. -P., Arora, V.K., Briggs, P.R., Canadell, J.G., Ciais, P., Chevallier, F., Cheng, L., Delire, C., Haverd, V., Jain, A.K., Joos, F., Kato, E., Lienert, S., Lombardozzi, D., Melton, J.R., Myneni, R., Nabel, J.E.M.S., Pongratz, J., Poulter, B., Rödenbeck, C., Séférian, R., Tian, H.Q., van Eck, C., Viovy, N., Vuichard, N., Walker, A.P., Wiltshire, A., Yang, J., Zaehle, S., Zeng, N., Zhu, D., 2018. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373 (1760), 20170304. https://doi.org/10.1098/rstb.2017.0304.

 
Batjes, N.H., 2009. ISRIC-WISE-global soil Profile data (ver. 3.1). https://doi.org/10.1594/PANGAEA.858569.
 

Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H.R., Norby, R.J., Francesca Cotrufo, M., 2013. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 197 (2), 544–554. https://doi.org/10.1111/nph.12044.

 

Bonan, G.B., Oleson, K.W., Fisher, R.A., Lasslop, G., Reichstein, M., 2012. Reconciling leaf physiological traits and canopy flux data: use of the TRY and FLUXNET databases in the Community Land Model version 4. J. Geophys. Res. Biogeosci. 117 (G2). https://doi.org/10.1029/2011JG001913.

 

Boyer, J.S., 1968. Relationship of water potential to growth of leaves. Plant Physiol. 43 (7), 1056–1062. https://doi.org/10.1104/pp.43.7.1056.

 

Brando, P.M., Paolucci, L., Ummenhofer, C.C., Ordway, E.M., Hartmann, H., Cattau, M.E., Rattis, L., Medjibe, V., Coe, M.T., Balch, J., Jeanloz, R., Freeman, K.H., 2019. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet Sci. 47 (1), 555–581. https://doi.org/10.1146/annurev-earth-082517-010235.

 

Castanho, A.D.A., Coe, M.T., Costa, M.H., Malhi, Y., Galbraith, D., Quesada, C.A., 2013. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences 10 (4), 2255–2272. https://doi.org/10.5194/bg-10-2255-2013.

 

Cernusak, L.A., Winter, K., Dalling, J.W., Holtum, J.A.M., Jaramillo, C., Körner, C., Leakey, A.D.B., Norby, R.J., Poulter, B., Turner, B.L., Wright, S.J., 2013. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct. Plant Biol. 40 (6), 531–551. https://www.publish.csiro.au/paper/FP12309.

 

Cernusak, L.A., Winter, K., Martínez, C., Correa, E., Aranda, J., Garcia, M., Jaramillo, C., Turner, B.L., 2011. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol. 157 (1), 372–385. http://www.plantphysiol.org/content/plantphysiol/157/1/372.full.pdf.

 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of working group Ⅰ to the Fifth assessment Report of the Intergovernmental Panel on climate change. Environ. Sci. 95–123.

 

Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlinson, J.R., Ni, J., Holland, E.A., 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11 (2), 371–384.

 

Clark, D.A., Piper, S.C., Keeling, C.D., Clark, D.B., 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc. Natl. Acad. Sci. USA 100 (10), 5852. https://doi.org/10.1073/pnas.0935903100.

 

Cochrane, M.A., 2003. Fire science for rainforests. Nature 421 (6926), 913–919. https://doi.org/10.1038/nature01437.

 

Cox, P.M., Pearson, D., Booth, B.B., Friedlingstein, P., Huntingford, C., Jones, C.D., Luke, C.M., 2013. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341. https://doi.org/10.1038/nature11882.

 

Davidson, E.A., Reis de Carvalho, C.J., Vieira, I.C.G., Figueiredo, R. d. O., Moutinho, P., Yoko Ishida, F., dos Santos, M.T.P., Guerrero, J.B., Kalif, K., Sabá, R.T., 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14 (sp4), 150–163. https://doi.org/10.1890/01-6006.

 

De Sisto, M.L., MacDougall, A.H., Mengis, N., Antoniello, S., 2023. Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM. Geosci. Model Develop 16 (14), 4113–4136. https://doi.org/10.5194/gmd-16-4113-2023.

 

De Kauwe, M.G., Keenan, T.F., Medlyn, B.E., Prentice, I.C., Terrer, C., 2016. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat. Clim. Change 6 (10), 892–893. https://doi.org/10.1038/nclimate3105.

 

Eamus, D., 1991. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ. 14 (8), 843–852. https://doi.org/10.1111/j.1365-3040.1991.tb01447.x.

 

Ewers, B.E., Oren, R., Sperry, J.S., 2000. Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ. 23 (10), 1055–1066. https://doi.org/10.1046/j.1365-3040.2000.00625.x.

 
Farquhar, G.D., von Caemmerer, S., Berry, J.A.J.P., 1980. A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species, vol. 149, pp. 78–90. https://doi.org/10.1007/BF00386231.
 
Fauset, S., Gloor, M., Fyllas, N.M., Phillips, O.L., Asner, G.P., Baker, T.R., Bentley, L.P., Brienen, R.J.W., Christoffersen, B.O., del Aguila-Pasquel, J., Doughty, C.E., Feldpausch, T.R., Galbraith, D.R., Goodman, R.C., Girardin, C.A.J., Coronado, E.N.H., Monteagudo, A., Salinas, N., Shenkin, A., Silva-Espejo, J.E., van der Heijden, G., Vasquez, R., Alvarez-Davila, E., Arroyo, L., Barroso, J.G., Brown, F., Castro, W., Valverde, F.C., Cardozo, N.D., Di Fiore, A., Erwin, T., Huamantupa-Chuquimaco, I., Vargas, P.N., Neill, D., Camacho, N.P., Gutierrez, A.P., Peacock, J., Pitman, N., Prieto, A., Restrepo, Z., Rudas, A., Quesada, C.A., Silveira, M., Stropp, J., Terborgh, J., Vieira, S.A., Malhi, Y., 2019. Individual-based Modeling of Amazon Forests Suggests that Climate Controls Productivity while Traits Control Demography, vol. 7. https://doi.org/10.3389/feart.2019.00083, p. 83.
 

Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281 (5374), 237–240. https://doi.org/10.1126/science.281.5374.237.

 

Fleischer, K., Rammig, A., De Kauwe, M.G., Walker, A.P., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M.K., Haverd, V., Hofhansl, F., Holm, J.A., Kruijt, B., Leung, F., Medlyn, B.E., Mercado, L.M., Norby, R.J., Pak, B., von Randow, C., Quesada, C.A., Schaap, K.J., Valverde-Barrantes, O.J., Wang, Y.P., Yang, X.J., Zaehle, S., Zhu, Q., Lapola, D.M., 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. https://doi.org/10.1038/s41561-019-0404-9.

 

Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Goldewijk, K.K., Korsbakken, J.I., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P.C., Melton, J.R., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Neill, C., Omar, A.M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P.P., Tian, H.Q., Tilbrook, B., Tubiello, F.N., van der Werf, G.R., Wiltshire, A.J., Zaehle, S., 2019. Global carbon budget 2019. Earth Syst. Sci. Data 11 (4), 1783–1838. https://doi.org/10.5194/essd-11-1783-2019.

 

Friend, A.D., Arneth, A., Kiang, N.Y., Lomas, M., Ogée, J., Rödenbeck, C., Running, S.W., Santaren, J.D., Sitch, S., Viovy, N., Woodward, F.I., Zaehle, S., 2007. FLUXNET and modelling the global carbon cycle. Global Change Biol. 13 (3), 610–633. https://doi.org/10.1111/j.1365-2486.2006.01223.x.

 

Fu, Z., Gerken, T., Bromley, G., Araújo, A., Bonal, D., Burban, B., Ficklin, D., Fuentes, J.D., Goulden, M., Hirano, T., Kosugi, Y., Liddell, M., Nicolini, G., Niu, S.L., Roupsard, O., Stefani, P., Mi, C.R., Tofte, Z., Xiao, J.F., Valentini, R., Wolf, S., Stoy, P.C., 2018. The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology. Agric. For. Meteorol. 263, 292–307. https://doi.org/10.1016/j.agrformet.2018.09.001.

 

Fyllas, N.M., Patiño, S., Baker, T., Bielefeld Nardoto, G., Martinelli, L., Quesada, C., Paiva, R., Schwarz, M., Horna, V., Mercado, L.M., Santos, A., Arroyo, L., Jiménez, E.M., Luizao, F.J., Neill, D.A., Silva, N., Prieto, A., Rudas, A., Silviera, M., Vieira, I.C.G., Lopez-Gonzalez, G., Malhi, Y., Phillips, O.L., Lloyd, J., 2009. Basinwide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708.

 

Goll, D.S., Brovkin, V., Parida, B.R., Reick, C.H., Kattge, J., Reich, P.B., van Bodegom, P.M., Niinemets, Ü., 2012a. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9 (9), 3547–3569. https://doi.org/10.5194/bg-9-3547-2012.

 

Goll, D., Joetzjer, E., Huang, M., Ciais, P., 2018. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45 (16), 8231–8240.

 

Goll, D., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., Peng, S.S., Sun, Y., Kvakic, M., Guimberteau, M., Guenet, B., Zaehle, S., Penuelas, J., Janssens, I., Ciais, P., 2017. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Develop. Discuss. 10 (10), 3745–3770.

 

Goll, D.S., Brovkin, V., Parida, B.R., Reick, C.H., Kattge, J., Reich, P.B., van Bodegom, P.M., Niinemets, Ü., 2012b. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9 (9), 3547–3569. https://doi.org/10.5194/bg-9-3547-2012.

 

He, L., Chen, J.M., Liu, J., Zheng, T., Wang, R., Joiner, J., Chou, S.R., Cheng, B., Liu, Y., Liu, R.G., Rogers, C., 2019. Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements. Remote Sens. Environ. 232, 111344. https://doi.org/10.1016/j.rse.2019.111344.

 

Hofhansl, F., Andersen, K.M., Fleischer, K., Fuchslueger, L., Rammig, A., Schaap, K.J., Valverde-Barrantes, O.J., Lapola, D.M., 2016. Amazon forest ecosystem responses to elevated atmospheric CO2 and alterations in nutrient availability: filling the gaps with model-experiment integration. Front. Earth Sci. 4 (19). https://doi.org/10.3389/feart.2016.00019.

 

Holtum, J.A.M., Winter, K., 2010. Elevated CO2 and forest vegetation: more a water issue than a carbon issue? Funct. Plant Biol. 37 (8), 694–702. https://doi.org/10.1071/FP10001.

 

Houlton, B.Z., Wang, Y. -P., Vitousek, P.M., Field, C.B., 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454 (7202), 327–330. https://doi.org/10.1038/nature07028.

 
Hoyle, R.H. (Ed.), 1995. Structural equation modeling: Concepts, issues, and applications. Sage.
 

Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A.K., Ewango, C.E.N., Fauset, S., Mukinzi, J.M., Sheil, D., Sonké, B., Sullivan, M.J.P., Sunderland, T.C.H., Taedoumg, H., Thomas, S.C., White, L.J.T., Abernethy, K.A., Adu-Bredu, S., Amani, C.A., Baker, T.R., Banin, L.F., Baya, F., Begne, S.K., Bennett, A.C., Benedet, F., Bitariho, R., Bocko, Y.E., Boeckx, P., Boundja, P., Brienen, R.J.W., Brncic, T., Chezeaux, E., Chuyong, G.B., Clark, C.J., Collins, M., Comiskey, J.A., Coomes, D.A., Dargie, G.C., de Haulleville, T., Kamdem, M.N.D., Doucet, J.L., Esquivel-Muelbert, A., Feldpausch, T.R., Fofanah, A., Foli, E.G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J.S., Hamilton, A.C., Harris, D.J., Hart, T.B., Hockemba, M.B.N., Hladik, A., Ifo, S.A., Jeffery, K.J., Jucker, T., Yakusu, E.K., Kearsley, E., Kenfack, D., Koch, A., Leal, M.E., Levesley, A., Lindsell, J.A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J.C., Makana, J.R., Malhi, Y., Marshall, A.R., Martin, J., Martin, E.H., Mbayu, F.M., Medjibe, V.P., Mihindou, V., Mitchard, E.T.A., Moore, S., Munishi, P.K.T., Bengone, N.N., Ojo, L., Ondo, F.E., Peh, K.S.H., Pickavance, G.C., Poulsen, A.D., Poulsen, J.R., Qie, L., Reitsma, J., Rovero, F., Swaine, M.D., Talbot, J., Taplin, J., Taylor, D.M., Thomas, D.W., Toirambe, B., Mukendi, J.T., Tuagben, D., Umunay, P.M., van der Heijden, G.M.F., Verbeeck, H., Vleminckx, J., Willcock, S., Woll, H., Woods, J.T., Zemagho, L., 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579 (7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0.

 

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Lomas, M., Walker, A.P., Jones, C.D., Booth, B.B.B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S.L., Phillips, O.L., Atkin, O.K., Lloyd, J., Gloor, E., Zaragoza-Castells, J., Meir, P., Betts, R., Harris, P.P., Nobre, C., Marengo, J., Cox, P.M., 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6 (4), 268–273. https://doi.org/10.1038/ngeo1741.

 

Jiang, M., Medlyn, B.E., Drake, J.E., Duursma, R.A., Anderson, I.C., Barton, C.V.M., Boer, M.M., Carrillo, Y., Castaneda-Gomez, L., Collins, L., Crous, K.Y., De Kauwe, M.G., dos Santos, B.M., Emmerson, K.M., Facey, S.L., Gherlenda, A.N., Gimeno, T.E., Hasegawa, S., Johnson, S.N., Kannaste, A., Macdonald, C.A., Mahmud, K., Moore, B.D., Nazaries, L., Neilson, E.H.J., Nielsen, U.N., Niinemets, U., Noh, N.J., Ochoa-Hueso, R., Pathare, V.S., Pendall, E., Pihlblad, J., Pineiro, J., Powell, J.R., Power, S.A., Reich, P.B., Renchon, A.A., Riegler, M., Rinnan, R., Rymer, P.D., Salomon, R.L., Singh, B.K., Smith, B., Tjoelker, M.G., Walker, J.K.M., Wujeska-Klause, A., Yang, J.Y., Zaehle, S., Ellsworth, D.S., 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580 (7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9.

 

Jin, J., Tang, C., Sale, P., 2015. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann. Bot. 116 (6), 987–999. https://doi.org/10.1093/aob/mcv088.

 

Jung, M., Henkel, K., Herold, M., Churkina, G., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 101 (4), 534–553. https://doi.org/10.1016/j.rse.2006.01.020.

 

Kattge, J., Knorr, W., Raddatz, T., Wirth, C., 2009. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol. 15 (4), 976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x.

 

Keenan, T.F., Luo, X., De Kauwe, M.G., Medlyn, B.E., Prentice, I.C., Stocker, B.D., Smith, N.G., Terrer, C., Wang, H., Zhang, Y., Zhou, S., 2021. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600 (7888), 253–258. https://doi.org/10.1038/s41586-021-04096-9.

 

Knox, R.G., Koven, C.D., Riley, W.J., Walker, A.P., Wright, S.J., Holm, J.A., Wei, X.Y., Fisher, R.A., Zhu, Q., Tang, J.Y., Ricciuto, D.M., Shuman, J.K., Yang, X.J., Kueppers, L.M., Chambers, J.Q., 2024. Nutrient dynamics in a coupled terrestrial biosphere and land model (ELM-FATES-CNP). J. Adv. Model. Earth Syst. 16 (3), e2023MS003689. https://doi.org/10.1029/2023MS003689.

 

Kolby Smith, W., Reed, S.C., Cleveland, C.C., Ballantyne, A.P., Anderegg, W.R.L., Wieder, W.R., Liu, Y.Y., Running, S.W., 2016. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6 (3), 306–310. https://doi.org/10.1038/nclimate2879.

 
Lambers, H., Chapin III, F.S., Pons, T.L., 2008. Plant Physiological Ecology. Springer Science & Business Media.
 

Leuzinger, S., Korner, C., 2007. Water savings in mature deciduous forest trees under elevated CO2. Global Change Biol. 13 (12), 2498–2508. https://doi.org/10.1111/j.1365-2486.2007.01467.x.

 

Lévesque, M., Walthert, L., Weber, P., 2016. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 104 (2), 377–387. https://doi.org/10.1111/1365-2745.12519.

 

Lewis, S.L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T.R., Ojo, L.O., Phillips, O.L., Reitsma, J.M., White, L., Comiskey, J.A., Djuikouo, M.N., Ewango, C.E.N., Feldpausch, T.R., Hamilton, A.C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J.C., Makana, J.R., Malhi, Y., Mbago, F.M., Ndangalasi, H.J., Peacock, J., Peh, K.S.H., Sheil, D., Sunderland, T., Swaine, M.D., Taplin, J., Taylor, D., Thomas, S.C., Votere, R., Wöll, H., 2009. Increasing carbon storage in intact African tropical forests. Nature 457 (7232), 1003–1006. https://doi.org/10.1038/nature07771.

 

Lewis, S.L., Sonké, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., Heijden, G.M.F. v. d., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., Bastin, J.F., Beeckman, H., Boeckx, P., Bogaert, J., De Cannière, C., Chezeaux, E., Clark, C.J., Collins, M., Djagbletey, G., Djuikouo, M.N.K., Droissart, V., Doucet, J.L., Ewango, C.E.N., Fauset, S., Feldpausch, T.R., Foli, E.G., Gillet, J.F., Hamilton, A.C., Harris, D.J., Hart, T.B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K.J., Kearsley, E., Leal, M.E., Lloyd, J., Lovett, J.C., Makana, J.R., Malhi, Y., Marshall, A.R., Ojo, L., Peh, K.S.H., Pickavance, G., Poulsen, J.R., Reitsma, J.M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H.E., Talbot, J., Taplin, J.R.D., Taylor, D., Thomas, S.C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L.J.T., Willcock, S., Wöll, H., Zemagho, L., 2013. Aboveground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 (1625), 20120295. https://doi.org/10.1098/rstb.2012.0295.

 

Liu, J., Bowman, K.W., Schimel, D.S., Parazoo, N.C., Jiang, Z., Lee, M., Bloom, A.A., Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C.W., Gurney, K.R., Menemenlis, D., Gierach, M., Crisp, D., Eldering, A., 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358 (6360), eaam5690. https://doi.org/10.1126/science.aam569.

 

Liu, M., Tian, H., Yang, Q., Yang, J., Song, X., Lohrenz, S.E., Cai, W.J., 2013. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour. Res. 49 (4), 1988–2012.

 

Liu, Y., Piao, S., Gasser, T., Ciais, P., Yang, H., Wang, H., Keenan, T.F., Huang, M.T., Wan, S.Q., Song, J., Wang, K., Janssens, I.A., Peñuelas, J., Huntingford, C., Wang, X.H., Arain, M.A., Fang, Y.Y., Fisher, J.B., Huang, M.Y., Huntzinger, D.N., Ito, A., Jain, A.K., Mao, J.F., Michalak, A.M., Peng, C.H., Poulter, B., Schwalm, C., Shi, X.Y., Tian, H.Q., Wei, Y.X., Zeng, N., Zhu, Q.A., Wang, T., 2019. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. https://doi.org/10.1038/s41561-019-0436-1.

 

Lloyd, J., 1999. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, Ⅱ. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct. Ecol. 13 (4), 439–459. https://doi.org/10.1046/j.1365-2435.1999.00350.x.

 

Lloyd, J., Farquhar, G.D., 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. Ⅰ. general principles and forest ecosystems. Funct. Ecol. 10 (1), 4–32. https://doi.org/10.2307/2390258.

 

Lovett, G.M., Cole, J.J., Pace, M.L., 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9 (1), 152–155. https://doi.org/10.1007/s10021-005-0036-3.

 

Lu, C., Tian, H., 2013. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Global Change Biol. 19 (2), 571–588.

 

Lu, C., Tian, H., Liu, M., Ren, W., Xu, X., Chen, G., Zhang, C., 2012. Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecol. Appl. 22 (1), 53–75.

 
MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1. Statistics, Berkeley, California.
 

Malhi, Y., 2010. The carbon balance of tropical forest regions, 1990–2005. Curr. Opin. Environ. Sustain. 2 (4), 237–244. https://doi.org/10.1016/j.cosust.2010.08.002.

 

Malhi, Y., 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100 (1), 65–75. https://doi.org/10.1111/j.1365-2745.2011.01916.x.

 

Malhi, Y., Aragão, L.E.O.C., Metcalfe, D.B., Paiva, R., Quesada, C.A., Almeida, S., Anderson, L., Brando, P., Chambers, J.Q., da Costa, A.C.L., Hutyra, L.R., Oliveira, P., Patiño, S., Pyle, E.H., Robertson, A.L., Teixeira, L.M., 2009. Comprehensive ãssessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biol. 15 (5), 1255–1274. https://doi.org/10.1111/j.1365-2486.2008.01780.x.

 

Malhi, Y., Baker, T.R., Phillips, O.L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C.I., Di Fiore, A., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Montoya, L.M.M., Monteagudo, A., Neill, D.A., Vargas, P.N., Patiño, S., Pitman, N.C.A., Quesada, C.A., Salomao, R., Silva, J.N.M., Lezama, A.T., Martínez, R.V., Terborgh, J., Vinceti, B., Lloyd, J., 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol. 10 (5), 563–591. https://doi.org/10.1111/j.1529-8817.2003.00778.x.

 

Mcgill, W.B., Cole, C.V., 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic-matter. Geoderma 26 (4), 267–286. https://doi.org/10.1016/0016-7061(81)90024-0.

 

McMurtrie, R.E., Norby, R.J., Medlyn, B.E., Dewar, R.C., Pepper, D.A., Reich, P.B., Barton, C.V.M., 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct. Plant Biol. 35 (6), 521–534. https://www.publish.csiro.au/paper/FP08128.

 

Mercado, L.M., Patiño, S., Domingues, T.F., Fyllas, N.M., Weedon, G.P., Sitch, S., Quesada, C.A., Phillips, O.L., Aragáo, L.E.O.C., Malhi, Y., Dolman, A.J., Restrepo-Coupe, N., Saleska, S.R., Baker, T.R., Almeida, S., Higuchi, N., Lloyd, J., 2011. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366 (1582), 3316–3329. https://www.ncbi.nlm.nih.gov/pubmed/22006971.

 

Mitchard, E.T.A., 2018. The tropical forest carbon cycle and climate change. Nature 559 (7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2.

 

Norby, R.J., DeLucia, E.H., Gielen, B., Calfapietra, C., Giardina, C.P., King, J.S., Ledford, J., McCarthy, H.R., Moore, D.J.P., Ceulemans, R., De Angelis, P., Finzi, A.C., Karnosky, D.F., Kubiske, M.E., Lukac, M., Pregitzer, K.S., Scarascia-Mugnozza, G.E., Schlesinger, W.H., Oren, R., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 102 (50), 18052–18056. https://doi.org/10.1073/pnas.0509478102.

 

Norby, R.J., Warren, J.M., Iversen, C.M., Medlyn, B.E., McMurtrie, R.E., 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 107 (45), 19368–19373. https://doi.org/10.1073/pnas.100646310.

 

Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., Ceulemans, R., 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ. 22 (6), 683–714. https://doi.org/10.1046/j.1365-3040.1999.00391.x.

 

Norby, R.J., Zak, D.R., 2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42 (1), 181–203. https://doi.org/10.1146/annurev-ecolsys-102209-144647.

 

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H. -D.V., Jaya, A., Limin, S., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420 (6911), 61–65. https://doi.org/10.1038/nature01131.

 

Pan, S., Tian, H., Dangal, S.R., Ouyang, Z., Lu, C., Yang, J., Tao, B., Ren, W., Banger, K., Yang, Q.C., Zhang, B.W., 2015. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25 (9), 1027–1044.

 

Pan, S., Tian, H., Dangal, S.R., Ouyang, Z., Tao, B., Ren, W., Lu, C.Q., Running, S., 2014. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv. Meteorol. 2014. https://doi.org/10.1155/2014/965936.

 

Pan, S., Yang, J., Tian, H., Shi, H., Chang, J., Ciais, P., Francois, L., Frieler, K., Fu, B.J., Hickler, T., Ito, A., Nishina, K., Ostberg, S., Reyer, C.P.O., Schaphoff, S., Steinkamp, J., Zhao, F., 2020. Climate extreme versus carbon extreme: responses of terrestrial carbon fluxes to temperature and precipitation. J. Geophys. Res. Biogeosci. 125 (4), e2019JG005252. https://doi.org/10.1029/2019JG005252.

 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333 (6045), 988. http://doi.org/10.1126/science.1201609.

 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. -W., Poindexter, C., Chen, J.Q., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Ribeca, A., van Ingen, C., Zhang, L.M., Amiro, B., Ammann, C., Arain, M.A., Ardö, J., Arkebauer, T., Arndt, S.K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L.B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T.A., Blanken, P.D., Bohrer, G., Boike, J., Bolstad, P.V., Bonal, D., Bonnefond, J.M., Bowling, D.R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S.P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S.P., Chini, I., Christensen, T.R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B.D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P.S., D'Andrea, E., da Rocha, H., Dai, X.Q., Davis, K.J., De Cinti, B., de Grandcourt, A., De Ligne, A., De Oliveira, R.C., Delpierre, N., Desai, A.R., Di Bella, C.M., di Tommasi, P., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dusek, J., Eamus, D., Eichelmann, U., ElKhidir, H.A.M., Eugster, W., Ewenz, C.M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A.H., Gough, C.M., Goulden, M.L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S.J., Han, X.G., Hansen, B.U., Hanson, C., Hatakka, J., He, Y.T., Hehn, M., Heinesch, B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janous, D., Jans, W., Jassal, R., Jiang, S.C., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W.L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y.N., Liddell, M., Limousin, J.M., Lion, M., Liska, A.J., Lohila, A., López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Luers, J., Ma, S.Y., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H.A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J.H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A.M.S., Merbold, L., Meyer, W., Meyers, T., Miller, S.D., Minerbi, S., Moderow, U., Monson, R.K., Montagnani, L., Moore, C.E., Moors, E., Moreaux, V., Moureaux, C., Munger, J.W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J.E., Ourcival, J.M., Papuga, S.A., Parmentier, F.J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R.P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S.M., Rambal, S., Rannik, Ü., Raz-Yaseef, N., Reed, D., de Dios, V.R., Restrepo-Coupe, N., Reverter, B.R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S.R., Sánchez-Cañete, E.P., Sanchez-Mejia, Z.M., Schmid, H.P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R.L., Sedlák, P., Serrano-Ortíz, P., Shao, C.L., Shi, P.L., Shironya, I., Siebicke, L., Sigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R.M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y.H., Tapper, N., Thom, J., Tiedemann, F., Tomassucci, M., Tuovinen, J.P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J.P., Walter-Shea, E., Wang, H.M., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y.L., Zampedri, R., Zhang, J.H., Zhou, G.Y., Zona, D., Agarwal, D., Biraud, S., Torn, M., Papale, D., 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7 (1), 225. https://doi.org/10.1038/s41597-020-0534-3.

 

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., Janssens, I.A., 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4 (1), 2934. https://doi.org/10.1038/ncomms3934.

 

Quesada, C.A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizao, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Moraes, J.O., Carvalho, F.P., Araujo, R.N., Chaves, J.E., Cruz, O.F., Pimentel, T.P., Paiva, R., 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7 (5), 1515–1541. https://doi.org/10.5194/bg-7-1515-2010.

 

Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patiño, S., Fyllas, N.M., Hodnett, M.G., Herrera, R., Almeida, S., Dávila, E.A., Arneth, A., Arroyo, L., Chao, K.J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Coronado, E.H., Jimenez, E.M., Killeen, T., Lezama, A.T., Lloyd, G., López-González, G., Luizao, F.J., Malhi, Y., Monteagudo, A., Neill, D.A., Vargas, P.N., Paiva, R., Peacock, J., Peñuela, M.C., Cruz, A.P., Pitman, N., Priante, N., Prieto, A., Ramírez, H., Rudas, A., Salomao, R., Santos, A.J.B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., Lloyd, J., 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9 (6), 2203–2246. https://doi.org/10.5194/bg-9-2203-2012.

 

Ren, W., Tian, H., Liu, M., Zhang, C., Chen, G., Pan, S., Felzer, B., Xu, X.F., 2007. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J. Geophys. Res. Atmos. 112 (D22).

 

Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Veneklaas, E.J., Lambers, H., Oberson, A., Culvenor, R.A., Simpson, R.J., 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349 (1), 121–156. https://doi.org/10.1007/s11104-011-0950-4.

 

Schimel, D., Stephens, B.B., Fisher, J.B., 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 112 (2), 436–441. https://doi.org/10.1073/pnas.1407302112.

 

Schimel, J., Balser, T.C., Wallenstein, M., 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88 (6), 1386–1394. https://doi.org/10.1890/06-0219.

 

Shi, H., Tian, H., Pan, N., Reyer, C.P., Ciais, P., Chang, J., Forrest, M., Frieler, K., Fu, B, Gädeke, A, Hickler, T., Ito, A., Ostberg, S., Pan, S., Stevanović, M., Yang, J., 2021. Saturation of global terrestrial carbon sink under a high warming scenario. Global Biogeochem. Cycles 35 (10), e2020GB006800. https://doi.org/10.1029/2020GB006800.

 

Silva, C.V.J., Aragão, L.E.O.C., Barlow, J., Espirito-Santo, F., Young, P.J., Anderson, L.O., Berenguer, E., Brasil, I., Brown, I.F., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P.M.L.A., Kirsten, L., Lopes, A.P., Salimon, C., Scaranello, M.A., Seixas, M., Souza, F.C., Xaud, H.A.M., 2018. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373 (1760), 20180043. https://doi.org/10.1098/rstb.2018.0043.

 

Tanner, E.V.J., Vitousek, P.M., Cuevas, E., 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79 (1), 10–22. https://doi.org/10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2.

 

Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S., Fisher, J.B., Reich, P.B., Stocker, B.D., Hungate, B.A., Peñuelas, J., McCallum, I., Soudzilovskaia, N.A., Cernusak, L.A., Talhelm, A.F., Van Sundert, K., Piao, S.L., Newton, P.C.D., Hovenden, M.J., Blumenthal, D.M., Liu, Y.Y., Müller, C., Winter, K., Field, C.B., Viechtbauer, W., Van Lissa, C.J., Hoosbeek, M.R., Watanabe, M., Koike, T., Leshyk, V.O., Polley, H.W., Franklin, O., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9 (9), 684–689. https://doi.org/10.1038/s41558-019-0545-2.

 

Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu, L., Zaehle, S., 2019. A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996). Geosci. Model Dev. (GMD) 12 (11), 4781–4802. https://doi.org/10.5194/gmd-12-4781-2019.

 

Thornton, P.E., Lamarque, J. -F., Rosenbloom, N.A., Mahowald, N.M., 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles 21 (4). https://doi.org/10.1029/2006GB002868.

 

Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S., Chappelka, A., 2010. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 259 (7), 1311–1327.

 

Tian, H., Melillo, J.M., Kicklighter, D.W., McGuire, A.D., Helfrich, J.V.K., Moore, B., Vörösmarty, C.J., 1998. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396 (6712), 664–667. https://doi.org/10.1038/25328.

 

Tian, H., Xu, X., Lu, C., Liu, M., Ren, W., Chen, G., Melillo, J., Liu, J., 2011. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Biogeosc. 116 (G2). https://doi.org/10.1029/2010JG001393.

 

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J.G., Jackson, R.B., Arneth, A., Chang, J.F., Chen, G.S., Ciais, P., Gerber, S., Ito, A., Huang, Y.Y., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S.F., Peng, C.H., Saikawa, E., Thompson, R.L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B.W., Zhang, K.R., Zhu, Q.A., 2018. The global N2O model Intercomparison Project. Bull. Am. Meteorol. Soc. 99 (6), 1231–1251. https://doi.org/10.1175/BAMS-D-17-0212.1.

 

Tian, H., Yao, Y., Li, Y., Shi, H., Pan, S., Najjar, R.G., Pan, N., Bian, Z., Ciais, P., Cai, W., Dai, M., Friedrichs, M.A.M., Li, H., Lohrenz, S., Leung, L.R., 2023. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era. Global Biogeochem. Cycles 37 (10), e2023GB007776. https://doi.org/10.1029/2023GB007776.

 

Trumbore, S., Brando, P., Hartmann, H., 2015. Forest health and global change. Science 349 (6250), 814–818. https://doi.org/10.1126/science.aac6759.

 

Turner, B.L., Brenes-Arguedas, T., Condit, R., 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367. https://doi.org/10.1038/nature25789.

 

Vitousek, P.M., 2004. Nutrient Cycling and Limitation: Hawaii as a Model System. Princeton University Press.

 

Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20 (1), 5–15.

 

Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F., Scales, J.C., Wohlfahrt, G., Wullschleger, S.D., Woodward, F.I., 2014. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4 (16), 3218–3235. https://doi.org/10.1002/ece3.1173.

 

Walker, T., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma 15 (1), 1–19.

 

Wang, S., Zhang, Y., Ju, W., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I.A., Wu, M.S., Berry, J.A., Campbell, E., Fernández-Martínez, M., Alkama, R., Sftch, S., Friedlingstein, P., Smith, W.K., Yuan, W.P., He, W., Lombardozzi, D., Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T.G.M., Krüger, I., Wang, R., Zeng, N., Tian, H.Q., Vuichard, N., Jain, A.K., Wiltshire, A., Haverd, V., Goll, D.S., Penuelas, J., 2020a. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370 (6522), 1295–1300. https://doi.org/10.1126/science.abb7772.

 

Wang, Y.P., Houlton, B.Z., Field, C.B., 2007. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem. Cycles 21 (1). https://doi.org/10.1029/2006GB002797.

 

Wang, Y.P., Law, R., Pak, B., 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7 (7), 2261–2282.

 

Wang, Z., Tian, H., Yang, J., Shi, H., Pan, S., Yao, Y., Banger, K., Yang, Q., 2020b. Coupling of phosphorus processes with carbon and nitrogen cycles in the dynamic land ecosystem model: model structure, parameterization and evaluation in tropical forests. J. Adv. Model. Earth Syst. n/a (n/a), e2020MS002123. https://doi.org/10.1029/2020MS002123.

 
Wieder, W., 2014. Regridded Harmonized World Soil Database v1.2. ORNL Distributed Active Archive Center.
 

Wieder, W.R., Cleveland, C.C., Smith, W.K., Todd-Brown, K., 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441. https://doi.org/10.1038/ngeo2413.

 

Winter, K., Aranda, J., Garcia, M., Virgo, A., Paton, S.R., 2001. Effect of elevated CO2 and soil fertilization on whole-plant growth and water use in seedlings of a tropical pioneer tree, Ficus insipida Willd. Flora 196 (6), 458–464. https://doi.org/10.1016/S0367-2530(17)30087-7.

 

Winter, K., Garcia, M., Lovelock, C.E., Gottsberger, R., Popp, M., 2000. Responses of model communities of two tropical tree species to elevated atmospheric CO2 : growth on unfertilized soil. Flora 195 (4), 289–302. https://doi.org/10.1016/S0367-2530(17)30988-X.

 

Yang, J., Tian, H., Pan, S., Chen, G., Zhang, B., Dangal, S., 2018. Amazon drought and forest response: largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biol. 24 (5), 1919–1934.

 
Yang, X., Post, W.M., Thornton, P.E., Jain, A.K., 2014a. Global Gridded Soil Phosphorus Distribution Maps at 0.5-degree Resolution. ORNL Distributed Active Archive Center.
 

Yang, X., Ricciuto, D.M., Thornton, P.E., Shi, X., Xu, M., Hoffman, F., Norby, R.J., 2019. The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: a modeling study using ELM v1. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2019JG005082.

 

Yang, X., Thornton, P., Ricciuto, D., Post, W., 2014b. The role of phosphorus dynamics in tropical forests–a modeling study using CLM-CNP. Biogeosciences 11 (6), 1667–1681.

 

Yang, X., Thornton, P.E., Ricciuto, D.M., Hoffman, F.M., 2016. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43 (13), 7205–7214. https://doi.org/10.1002/2016GL069241.

 

You, Y., Pan, S., 2020. Urban vegetation slows down the spread of coronavirus disease (COVID-19) in the United States. Geophysical Research Letters 47 e2020GL089286. https://doi.org/10.1029/2020GL089286.

 

Zhang, Q., Wang, Y.P., Pitman, A.J., Dai, Y.J., 2011. Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century. Geophys. Res. Lett. 38 (22). https://doi.org/10.1029/2011GL049244.

 

Zhong, Y., Tian, J., Li, X., Liao, H., 2023. Cooperative interactions between nitrogen fixation and phosphorus nutrition in legumes. New Phytol. 237 (3), 734–745. https://doi.org/10.1111/nph.18593.

 

Zhu, Q., Riley, W.J., Tang, J., Collier, N., Hoffman, F.M., Yang, X., Bisht, G., 2019. Representing Nitrogen, Phosphorus, and Carbon interactions in the E3SM land model: development and global benchmarking. J. Adv. Model. Earth Syst. 11 (7), 2238–2258. https://doi.org/10.1029/2018MS001571.

Forest Ecosystems
Article number: 100210
Cite this article:
Wang Z, Tian H, Pan S, et al. Phosphorus limitation on CO2 fertilization effect in tropical forests informed by a coupled biogeochemical model. Forest Ecosystems, 2024, 11(4): 100210. https://doi.org/10.1016/j.fecs.2024.100210

147

Views

4

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 March 2024
Revised: 28 May 2024
Accepted: 28 May 2024
Published: 01 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return