Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems, especially in water-limited regions, due to the influence of climate change. However, considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts. Here, we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak (native) natural forests and poplar plantations (introduced) in the Horqin Sandy Land, Northeast China. We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index. The results showed that precipitation and self-calibrated palmer drought severity index (scPDSI) are the major factors influencing tree-ring width index (RWI) and normalized difference vegetation index (NDVI). The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations. The RWI reached the nadir during the 2000–2004 severe droughts and remained at low levels two years after the severe drought, creating a legacy effect. In contrast to the lack of significant correlation between RWI and scPDSI, NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth. Furthermore, interspecific differences in RWI and NDVI responses were observed, with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species, highlighting the species-specific trade-offs between drought resilience and growth rate. This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response. Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses, offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.
Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G., Villegas, J.A., Breshears, D.D., Zou, C.B., Troch, P.A., Huxman, T.E., 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under globalchange-type drought. Proc. Natl. Acad. Sci. USA 106, 7063–7066. https://doi.org/10.1073/pnas.0901438106.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.
Amoroso, M.M., Daniels, L.D., Larson, B.C., 2012. Temporal patterns of radial growth in declining Austrocedrus chilensis forests in Northern Patagonia: the use of tree-rings as an indicator of forest decline. For. Ecol. Manag. 265, 62–70. https://doi.org/10.1016/j.foreco.2011.10.021.
Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. USA 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113.
Anderegg, W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams, A., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532. https://doi.org/10.1126/science.aab1833.
Andrews, C.M., D'Amato, A.W., Fraver, S., Palik, B., Battaglia, M.A., Bradford, J.B., Bennett, J., 2020. Low stand density moderates growth declines during hot droughts in semi-arid forests. J. Appl. Ecol. 57, 1089–1102. https://doi.org/10.1111/1365-2664.13615.
Aragones, D., Rodriguez-Galiano, V.F., Caparros-Santiago, J.A., Navarro-Cerrillo, R.M., 2019. Could land surface phenology be used to discriminate Mediterranean pine species? Int. J. Appl. Earth Obs. 78, 281–294. https://doi.org/10.1016/j.jag.2018.11.003.
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P., Frank, D.C., 2019. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313. https://doi.org/10.1126/sciadv.aat4313.
Beck, P.S.A., Juday, G.P., Alix, C., Barber, V.A., Winslow, S.E., Sousa, E.E., Heiser, P., Herriges, J.D., Goetz, S.J., 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379. https://doi.org/10.1111/j.1461-0248.2011.01598.x.
Berry, J., Bjorkman, O., 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Physiol. 31, 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423.
Brodribb, T.J., Holbrook, N.M., 2003. Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol. 158, 295–303. https://doi.org/10.1046/j.1469-8137.2003.00736.x.
Büntgen, U., Trouet, V., Frank, D., Leuschner, H.H., Friedrichs, D., Luterbacher, J., Esper, J., 2010. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016. https://doi.org/10.1016/j.quascirev.2010.01.003.
Camarero, J., Franquesa, M., Sangüesa-Barreda, G., 2015a. Timing of drought triggers distinct growth responses in Holm Oak: implications to predict warming-induced forest defoliation and growth decline. Forests 6, 1576–1597. https://doi.org/10.3390/f6051576.
Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Oliva, J., Vicente-Serrano, S.M., Gibson, D., 2015b. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103, 44–57. https://doi.org/10.1111/1365-2745.12295.
Carbone, M.S., Czimczik, C.I., Keenan, T.F., Murakami, P.F., Pederson, N., Schaberg, P.G., Xu, X., Richardson, A.D., 2013. Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol. 200, 1145–1155. https://doi.org/10.1111/nph.12448.
Castellaneta, M., Rita, A., Camarero, J.J., Colangelo, M., Ripullone, F., 2022. Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback. Sci. Total Environ. 813, 152666. https://doi.org/10.1016/j.scitotenv.2021.152666.
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., Jacobsen, A.L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt, R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. https://doi.org/10.1038/nature11688.
Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, D.C., D’Amato, A.W., Davis, F.W., Hersh, M.H., Ibanez, I., Jackson, S.T., Matthews, S., Pederson, N., Peters, M., Schwartz, M.W., Waring, K.M., Zimmermann, N.E., 2016. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160.
Comeau, V.M., Daniels, L.D., Knochenmus, G., Chavardès, R.D., Zeglen, S., 2019. Treerings reveal accelerated yellow-cedar decline with changes to winter climate after 1980. Forests 10, 1085. https://doi.org/10.3390/f10121085.
Cook, E.R., 1985. A Time Series Analysis Approach to Tree Ring Standardization. University of Arizona Press, Tucson
Decuyper, M., Chávez, R.O., Čufar, K., Estay, S.A., Clevers, J.G.P.W., Prislan, P., Gričar, J., Črepinšek, Z., Merela, M., de Luis, M., Notivoli, R.S., del Castillo, E.M., Rozendaal, D.M.A., Bongers, F., Herold, M., Sass-Klaassen, U., 2020. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia - an integrated approach using remote sensing and tree-ring data. Agric. For. Meteorol. 287, 107925. https://doi.org/10.1016/j.agrformet.2020.107925.
Deslauriers, A., Huang, J.G., Balducci, L., Beaulieu, M., Rossi, S., 2016. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol. 170, 2072–2084. https://doi.org/10.1104/pp.15.01525.
Duan, C.Y., Li, M., Fang, L., Cao, Y., Wu, D., Liu, H., Ye, Q., Hao, G., Tognetti, R., 2022. Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. Tree Physiol. 42, 727–739. https://doi.org/10.1093/treephys/tpab137.
El Omari, B., 2022. Accumulation versus storage of total non-structural carbohydrates in woody plants. Trees (Berl.) 36, 869–881. https://doi.org/10.1007/s00468-021-02240-6.
Evert, R.F., 2006. Esau’s plant anatomy: Meristems, cells, and tissues of the plant Body: their structure. Function, and Development, 3rd edn. John Wiley & Sons, Inc, Hoboken.
Fan, Z.X., Zhang, S.B., Hao, G.Y., Ferry Slik, J.W., Cao, K.F., 2012. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J. Ecol. 100, 732–741. https://doi.org/10.1111/j.1365-2745.2011.01939.x.
Fang, L.D., Ning, Q., Guo, J., Gong, X., Zhu, J., Hao, G., 2021. Hydraulic limitation underlies the dieback of Populus pseudo-simonii trees in water-limited areas of northern China. For. Ecol. Manag. 483, 118764. https://doi.org/10.1016/j.foreco.2020.118764.
Felton, A., Lindbladh, M., Brunet, J., Fritz, Ö., 2010. Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manag. 260, 939–947. https://doi.org/10.1016/j.foreco.2010.06.011.
Furze, M.E., Huggett, B.A., Aubrecht, D.M., Stolz, C.D., Carbone, M.S., Richardson, A.D., 2018. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 221, 1466–1477. https://doi.org/10.1111/nph.15462.
Gazol, A., Camarero, J.J., Anderegg, W.R.L., Vicente-Serrano, S.M., 2016. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176. https://doi.org/10.1111/geb.12526.
Gazol, A., Camarero, J.J., Vicente-Serrano, S.M., Sánchez-Salguero, R., Gutiérrez, E., de Luis, M., Sangüesa-Barreda, G., Novak, K., Rozas, V., Tíscar, P.A., Linares, J.C., Martín-Hernández, N., Martínez del Castillo, E., Ribas, M., García-González, I., Silla, F., Camisón, A., Génova, M., Olano, J.M., Longares, L.A., Hevia, A., TomásBurguera, M., Galván, J.D., 2018. Forest resilience to drought varies across biomes. Glob. Chang. Biol. 24, 2143–2158. https://doi.org/10.1111/gcb.14082.
Gebauer, R., Plichta, R., Urban, J., Volařík, D., Hájíčková, M., 2020. The resistance and resilience of European beech seedlings to drought stress during the period of leaf development. Tree Physiol. 40, 1147–1164. https://doi.org/10.1093/treephys/tpaa066.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Hao, G.Y., Lucero, M.E., Sanderson, S.C., Zacharias, E.H., Holbrook, N.M., 2012. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol. 197, 970–978. https://doi.org/10.1111/nph.12051.
Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x.
Hartmann, H., Trumbore, S., 2016. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytol. 211, 386–403. https://doi.org/10.1111/nph.13955.
Hoeber, S., Leuschner, C., Köhler, L., Arias-Aguilar, D., Schuldt, B., 2014. The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate. For. Ecol. Manag. 330, 126–136. https://doi.org/10.1016/j.foreco.2014.06.039.
Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T.F., Peng, S., Berry, J.A., Wang, K., Mao, J., Alkama, R., Cescatti, A., Cuntz, M., De Deurwaerder, H., Gao, M., He, Y., Liu, Y., Luo, Y., Myneni, R.B., Niu, S., Shi, X., Yuan, W., Verbeeck, H., Wang, T., Wu, J., Janssens, I.A., 2019. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779. https://doi.org/10.1038/s41559-019-0838-x.
Kerhoulas, L.P., Kane, J.M., 2011. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Tree Physiol. 32, 14–23. https://doi.org/10.1093/treephys/tpr112.
Li, M., Fang, L., Duan, C., Cao, Y., Yin, H., Ning, Q., Hao, G., 2020. Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. For. Ecol. Manag. 461, 117980. https://doi.org/10.1016/j.foreco.2020.117980.
Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.J., Lu, H., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., GourletFleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, 196–210. https://doi.org/10.1126/science.aaf8957.
Linares, J., Delgado-Huertas, A., Julio Camarero, J., Merino, J., Carreira, J.A., 2009. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161, 611–624. https://doi.org/10.1007/s00442-009-1409-7.
Lindbladh, M., Bradshaw, R., Holmqvist, B.H., 2000. Pattern and process in south Swedish forests during the last 3000 years, sensed at stand and regional scales. J. Ecol. 88, 113–128. https://doi.org/10.1046/j.1365-2745.2000.00429.x.
Lloret, F., Lobo, A., Estevan, H., Maisongrande, P., Vayreda, J., Terradas, J., 2007. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. Ecology 88, 2270–2279. https://doi.org/10.1046/j.1365-2745.2000.00429.x.
Martin-Benito, D., Beeckman, H., Cañellas, I., 2012. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest Eur. J. For. Res. 132, 33–45. https://doi.org/10.1007/s10342-012-0652-3.
Martínez-Vilalta, J., López, B.C., Loepfe, L., Lloret, F., 2011. Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168, 877–888. https://doi.org/10.1007/s00442-011-2132-8.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x.
Moreno-Fernández, D., Camarero, J.J., García, M., Lines, E.R., Sánchez-Dávila, J., Tijerín, J., Valeriano, C., Viana-Soto, A., Zavala, M.Á., Ruiz-Benito, P., 2022. The interplay of the tree and stand-level processes mediate drought-induced forest dieback: evidence from complementary remote sensing and tree-ring approaches. Ecosystems 25, 1738–1753. https://doi.org/10.1007/s10021-022-00793-2.
Moreno-Fernández, D., Viana-Soto, A., Camarero, J.J., Zavala, M.A., Tijerín, J., García, M., 2021. Using spectral indices as early warning signals of forest dieback: the case of drought-prone Pinus pinaster forests. Sci. Total Environ. 793, 148578. https://doi.org/10.1016/j.scitotenv.2021.148578.
Muhr, J., Angert, A., Negron-Juarez, R.I., Munoz, W.A., Kraemer, G., Chambers, J.Q., Trumbore, S.E., 2013. Carbon dioxide emitted from live stems of tropical trees is several years old. Tree Physiol. 33, 743–752. https://doi.org/10.1093/treephys/tpt049.
Nagol, J.R., Sexton, J.O., Kim, D.-H., Anand, A., Morton, D., Vermote, E., Townshend, J.R., 2015. Bidirectional effects in Landsat reflectance estimates: is there a problem to solve? ISPRS J. Photogramm. Remote Sens. 103, 129–135. https://doi.org/10.1016/j.isprsjprs.2014.09.006.
Nardini, A., Battistuzzo, M., Savi, T., 2013. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200, 322–329. https://doi.org/10.1111/nph.12288.
Natalini, F., Alejano, R., Vázquez-Piqué, J., Pardos, M., Calama, R., Büntgen, U., 2016. Spatiotemporal variability of stone pine (Pinus pinea L.) growth response to climate across the Iberian Peninsula. Dendrochronologia 40, 72–84. https://doi.org/10.1016/j.dendro.2016.07.001.
Ning, Q., Gong, X., Li, M., Hao, G., 2022. Differences in growth pattern and response to climate warming between Larix olgensis and Pinus koraiensis in Northeast China are related to their distinctions in xylem hydraulics. Agric. For. Meteorol. 312, 108724. https://doi.org/10.1016/j.agrformet.2021.108724.
Norman, S.P., Koch, F.H., Hargrove, W.W., 2016. Review of broad-scale drought monitoring of forests: toward an integrated data mining approach. For. Ecol. Manag. 380, 346–358. https://doi.org/10.1016/j.foreco.2016.06.027.
Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A., Wieser, G., 2017. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118. https://doi.org/10.1016/j.envexpbot.2017.03.004.
Oswald, E.M., Pontius, J., Rayback, S.A., Schaberg, P.G., Wilmot, S.H., Dupigny-Giroux, L.A., 2018. The complex relationship between climate and sugar maple health: climate change implications in Vermont for a key northern hardwood species. For. Ecol. Manag. 422, 303–312. https://doi.org/10.1016/j.foreco.2018.04.014.
Pan, M., Yuan, X., Wood, E.F., 2013. A probabilistic framework for assessing drought recovery. Geophys. Res. Lett. 40, 3637–3642. https://doi.org/10.1002/grl.50728.
Pantin, F., Fanciullino, A.L., Massonnet, C., Dauzat, M., Simonneau, T., Muller, B., 2013. Buffering growth variations against water deficits through timely carbon usage. Front. Plant Sci. 4, 483. https://doi.org/10.3389/fpls.2013.00483.
Peng, W., Kuang, T., Tao, S., 2019. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean. Prod. 233, 353–367. https://doi.org/10.1016/j.jclepro.2019.05.355.
Piao, S., Wang, J., Li, X., Xu, H., Zhang, Y., 2022. Spatio-temporal changes in the speed of canopy development and senescence in temperate China. Glob. Chang. Biol. 28, 7366–7375. https://doi.org/10.1111/gcb.16408.
Pockman, W.T., Sperry, J.S., 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am. J. Bot. 87, 1287–1299. https://doi.org/10.2307/2656722.
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.C., Peña-Claros, M., Sterck, F., Villegas, Z., Sass-Klaassen, U., 2009. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x.
Rogers, B.M., Solvik, K., Hogg, E.H., Ju, J., Masek, J.G., Michaelian, M., Berner, L.T., Goetz, S.J., 2018. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Chang. Biol. 24, 2284–2304. https://doi.org/10.1111/gcb.14107.
Rossi, S., Anfodillo, T., Čufar, K., Cuny, H.E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J.G., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E.Y., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, B.K.C., Saracino, A., Swidrak, I., Treml, V., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 22, 3804–3813. https://doi.org/10.1111/gcb.13317.
Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., Borghetti, M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170, 301–310. https://doi.org/10.1111/j.1469-8137.2006.01660.x.
Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S., Egorov, A., 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024.
Roy, D.P., Qin, Y., Kovalskyy, V., Vermote, E.F., Ju, J., Egorov, A., Hansen, M.C., Kommareddy, I., Yan, L., 2014. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 140, 433–449. https://doi.org/10.1016/j.rse.2013.09.012.
Salmon, Y., Torres-Ruiz, J.M., Poyatos, R., Martinez-Vilalta, J., Meir, P., Cochard, H., Mencuccini, M., 2015. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant Cell Environ. 38, 2575–2588. https://doi.org/10.1111/pce.12572.
Schuldt, B., Knutzen, F., Delzon, S., Jansen, S., Müller-Haubold, H., Burlett, R., Clough, Y., Leuschner, C., 2015. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol. 210, 443–458. https://doi.org/10.1111/nph.13798.
Seftigen, K., Frank, D.C., Björklund, J., Babst, F., Poulter, B., 2018. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365. https://doi.org/10.1111/geb.12802.
Sevanto, S., McDowell, N.G., Dickman, L.T., Pangle, R., Pockman, W.T., 2013. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161. https://doi.org/10.1111/pce.12141.
Smith, W.K., Dannenberg, M.P., Yan, D., Herrmann, S., Barnes, M.L., Barron-Gafford, G.A., Biederman, J.A., Ferrenberg, S., Fox, A.M., Hudson, A., Knowles, J.F., MacBean, N., Moore, D.J.P., Nagler, P.L., Reed, S.C., Rutherford, W.A., Scott, R.L., Wang, X., Yang, J., 2019. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401. https://doi.org/10.1016/j.rse.2019.111401.
Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343. https://doi.org/10.1046/j.1365-3040.1998.00287.x.
Tognetti, R., Cherubini, P., Innes, J., 2000. Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol. 146, 59–74. https://doi.org/10.1046/j.1469-8137.2000.00620.x.
Trueba, S., Pouteau, R., Lens, F., Feild, T.S., Isnard, S., Olson, M.E., Delzon, S., 2016. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant Cell Environ. 40, 277–289. https://doi.org/10.1111/pce.12859.
Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0.
Vicca, S., Balzarolo, M., Filella, I., Granier, A., Herbst, M., Knohl, A., Longdoz, B., Mund, M., Nagy, Z., Pintér, K., Rambal, S., Verbesselt, J., Verger, A., Zeileis, A., Zhang, C., Peñuelas, J., 2016. Remotely-sensed detection of effects of extreme droughts on gross primary production. Sci. Rep. 6, 28269. https://doi.org/10.1038/srep28269.
Wang, A.Y., Cui, H.X., Gong, X.W., Guo, J.J., Wu, N., Hao, G.Y., 2022. Contrast in vulnerability to freezing-induced xylem embolism contributes to divergence in spring phenology between diffuse- and ring-porous temperate trees. For. Ecosyst. 9, 100070. https://doi.org/10.1016/j.fecs.2022.100070.
Wells, N., Goddard, S., Hayes, M.J., 2004. A self-calibrating palmer drought severity index. J. Clim. 17, 2335–2351. https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.
Wheeler, J.K., Sperry, J.S., Hacke, U.G., Hoang, N., 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 28, 800–812. https://doi.org/10.1111/j.1365-3040.2005.01330.x.
Wigley, T.M., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Clim. 23, 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.
Williams, A., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2012. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297. https://doi.org/10.1038/nclimate1693.
Wong, C.Y.S., Young, D.J.N., Latimer, A.M., Buckley, T.N., Magney, T.S., 2021. Importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing products in the Sierra Nevada. Remote Sens. Environ. 265, 112635. https://doi.org/10.1016/j.rse.2021.112635.
Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., Zhang, C., Magliulo, V., Pavelka, M., Liu, S., Huang, Y., Wang, P., Shi, C., Ma, Y., 2017. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516. https://doi.org/10.1111/gcb.13920.
Wunder, J., Fowler, A.M., Cook, E.R., Pirie, M., McCloskey, S.P., 2013. On the influence of tree size on the climate–growth relationship of New Zealand kauri (Agathis australis): insights from annual, monthly and daily growth patterns. Trees (Berl.) 27, 937–948. https://doi.org/10.1007/s00468-013-0846-4.
Yan, Y., Zhu, J., Yan, Q., Zheng, X., Song, L., 2015. Demarcation of the Horqin Sandy Land boundary based on remote sensing and GIS technique. Sci. Geol. Sin. 34, 122–127. https://doi.org/10.13249/j.cnki.sgs.2014.01.122 (in Chinese).
Zang, C., Hartl-Meier, C., Dittmar, C., Rothe, A., Menzel, A., 2014. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob. Chang. Biol. 20, 3767–3779. https://doi.org/10.1111/gcb.12637.
Zhu, J., Song, L., 2020. A review of ecological mechanisms for management practices of protective forests. J. For. Res. 32, 435–448. https://doi.org/10.1007/s11676-020-01233-4.
132
Views
7
Downloads
10
Crossref
7
Web of Science
8
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).