AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Disparities in tree mortality among plant functional types (PFTs) in a temperate forest: Insights into size-dependent and PFT-specific patterns

Man Hua,bHang Shia,bRui Hea,cBingbin WendHaikun Liua,cKerong Zhanga,bXiao Shua,bHaishan Danga,b( )Quanfa Zhanga,b
Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
University of Chinese Academy of Sciences, Beijing 100049, China
Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, Melle-Gontrode, 9090, Belgium
Show Author Information

Abstract

Tree mortality significantly influences forest structure and function, yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types (PFTs) remains incomplete. This study analysed size-dependent tree mortality in a temperate forest, encompassing 46 tree species and 32,565 individuals across different PFTs (i.e., evergreen conifer vs. deciduous broadleaf species, shade-tolerant vs. shade-intolerant species). By employing all-subset regression procedures and logistic generalized linear mixed-effects models, we identified distinct mortality patterns influenced by biotic and abiotic factors. Our results showed a stable mortality pattern in evergreen conifer species, contrasted by a declining pattern in deciduous broadleaf and shade-tolerant, as well as shade-intolerant species, across size classes. The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size, while the mortality of deciduous broadleaf species was mainly influenced by biotic factors, such as initial diameter at breast height (DBH) and conspecific negative density. For shade-tolerant species, the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence, whereas the mortality of large individuals was subjected to the combined effect of biotic (competition from neighbours) and abiotic factors (i.e., convexity and pH). As for shade-intolerant species, competition from neighbours was found to be the main driver of tree mortality throughout their growth stages. Thus, these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns, which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems.

References

 

Adler, P.B., Smull, D., Beard, K.H., Choi, R.T., Furniss, T., Kulmatiski, A., Meiners, J.M., Tredennick, A.T., Veblen, K.E., 2018. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329. https://doi.org/10.1111/ele.13098.

 

Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L., Addis, C.E., Freckleton, R.P., Lewis, O.T., 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88. https://doi.org/10.1038/nature12911.

 

Barrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K.T., Ruiz-Benito, P., Zavala, M.A., Kunstler, G., 2023. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Global Change Biol. 29, 2836–2851. https://doi.org/10.1111/gcb.16630.

 

Bartlett, M.S., 1950. Tests of significance in factor analysis. Brit. J. Stat. Psy. 3, 77–85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x.

 

Bennett, A.C., McDowell, N.G., Allen, C.D., Anderson-Teixeira, K.J., 2015. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139. https://doi.org/10.1038/NPLANTS.2015.139.

 

Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M., Klironomos, J., 2017. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184. https://doi.org/10.1126/science.aai8212.

 

Bianchi, E., Bugmann, H., Hobi, M.L., Bigler, C., 2021. Spatial patterns of living and dead small trees in subalpine Norway spruce forest reserves in Switzerland. For. Ecol. Manag. 494, 119315. https://doi.org/10.1016/j.foreco.2021.119315.

 

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H., White, J.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008.

 

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000.

 
Brunner, A.M., Varkonyi-Gasic, E., Jones, R.C., 2017. Phase change and phenology in trees. In: Groover, A., Cronk, Q. (Eds.), Comparative and Evolutionary Genomics of Angiosperm Trees. Springer, Cham, pp. 227–274. https://doi.org/10.1007/7397_2016_30.
 
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. Springer, New York, pp. 49–97. https://doi.org/10.1007/b97636.
 

Chao, Y.-C.E., Zhao, Y., Kupper, L.L., Nylander-French, L.A., 2008. Quantifying the relative importance of predictors in multiple linear regression analyses for public health studies. J. Occup. Environ. Hyg. 5, 519–529. https://doi.org/10.1080/ 15459620802225481.

 

Comita, L.S., Muller-Landau, H.C., Aguilar, S., Hubbell, S.P., 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332. https://doi.org/10.1126/science.1190772.

 
Condit, R.S., 1998. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03664-8.
 

Coomes, D.A., Allen, R.B., 2007. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95, 27–40. https://doi.org/10.1111/j.1365-2745.2006.01179.x.

 

Cortini, F., Comeau, P.G., 2020. Pests, climate and competition effects on survival and growth of trembling aspen in western Canada. New For. 51, 175–190. https://doi.org/10.1007/s11056-019-09726-9.

 

Craine, J.M., Dybzinski, R., 2013. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27, 833–840. https://doi.org/10.1111/1365-2435.12081.

 

Dang, H., Jiang, M., Zhang, Q., Zhang, Y., 2007. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. For. Ecol. Manag. 240, 143–150. https://doi.org/10.1016/j.foreco.2006.12.021.

 

Das, A., Battles, J., Stephenson, N.L., van Mantgem, P.J., 2011. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manag. 261, 1203–1213. https://doi.org/10.1016/j.foreco.2010.12.035.

 

de Toledo, J.J., Magnusson, W.E., Castilho, C.V., Nascimento, H.E.M., 2011. How much variation in tree mortality is predicted by soil and topography in Central Amazonia? For. Ecol. Manag. 262, 331–338. https://doi.org/10.1016/j.foreco.2011.03.039.

 

Dickie, I.A., Schnitzer, S.A., Reich, P.B., Hobbie, S.E., 2005. Spatially disjunct effects of co-occurring competition and facilitation. Ecol. Lett. 8, 1191–1200. https://doi.org/10.1111/j.1461-0248.2005.00822.x.

 

Dietze, M.C., Moorcroft, P.R., 2011. Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biol. 17, 3312–3326. https://doi.org/10.1111/j.1365-2486.2011.02477.x.

 

Fang, J., Lutz, J.A., Shugart, H.H., Yan, X., 2020. A physiological model for predicting dynamics of tree stem-wood non-structural carbohydrates. J. Ecol. 108, 702–718. https://doi.org/10.1111/1365-2745.13274.

 

Fernández-de-Uña, L., Martínez-Vilalta, J., Poyatos, R., Mencuccini, M., McDowell, N.G., 2023. The role of height-driven constraints and compensations on tree vulnerability to drought. New Phytol. 239, 2083–2098. https://doi.org/10.1111/nph.19130.

 
Flora of China Editorial Committee, 2013. Flora of China. https://www.iplant.cn/foc (accessed 30 May 2024).
 

Fortunel, C., Lasky, J.R., Uriarte, M., Valencia, R., Wright, S.J., Garwood, N.C., Kraft, N.J.B., 2018. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441.

 

Franklin, J.F., Shugart, H.H., Harmon, M.E., 1987. Tree death as an ecological process. Bioscience 37, 550–556. https://doi.org/10.2307/1310665.

 

Givnish, T.J., 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 36, 535. https://doi.org/10.14214/sf.535.

 

Goldberg, D.E., 1985. Effects of soil pH, competition, and seed predation on the distributions of two tree species. Ecology 66, 503–511. https://doi.org/10.2307/1940398.

 

Gora, E.M., Esquivel-Muelbert, A., 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391. https://doi.org/10.1038/s41477-021-00879-0.

 

Güneralp, B., Gertner, G., 2007. Feedback loop dominance analysis of two tree mortality models: relationship between structure and behavior. Tree Physiol. 27, 269–280. https://doi.org/10.1093/treephys/27.2.269.

 

Guo, Y., Chen, H.Y.H., Wang, B., Xiang, W., Li, D., Li, X., Mallik, A.U., Ding, T., Huang, F., Lu, S., Wen, S., 2021. Conspecific and heterospecific crowding facilitate tree survival in a tropical karst seasonal rainforest. For. Ecol. Manag. 481, 118751. https://doi.org/10.1016/j.foreco.2020.118751.

 

He, Y., Liu, H., Yang, Q., Cao, Y., Yin, H., Zhou, Z., Yu, Q., Wang, X., 2022. Neighborhood effects on tree mortality depend on life stage of neighbors. Front. Plant Sci. 13, 838046. https://doi.org/10.3389/fpls.2022.838046.

 

Hlásny, T., Turčáni, M., 2013. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann. For. Sci. 70, 481–491. https://doi.org/10.1007/s13595-013-0279-7.

 

Holzwarth, F., Kahl, A., Bauhus, J., Wirth, C., 2013. Many ways to die–partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 101, 220–230. https://doi.org/10.1111/1365-2745.12015.

 

Homeier, J., Breckle, S.-W., Günter, S., Rollenbeck, R.T., Leuschner, C., 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42, 140–148. https://doi.org/10.1111/j.1744-7429.2009.00547.x.

 

Hu, M., Minunno, F., Peltoniemi, M., Akujärvi, A., Mäkelä, A., 2023. Testing the application of process-based forest growth model PREBAS to uneven-aged forests in Finland. For. Ecol. Manag. 529, 120702. https://doi.org/10.1016/j.foreco.2022.120702.

 

Hülsmann, L., Chisholm, R.A., Hartig, F., 2021. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends Ecol. Evol. 36, 151–163. https://doi.org/10.1016/j.tree.2020.10.003.

 

Iida, Y., Poorter, L., Sterck, F., Kassim, A.R., Potts, M.D., Kubo, T., Kohyama, T.S., 2014. Linking size-dependent growth and mortality with architectural traits across 145 co- occurring tropical tree species. Ecology 95, 353–363. https://doi.org/10.1890/11-2173.1.

 

Jin, Y., Russo, S.E., Yu, M., 2018. Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. J. Ecol. 106, 1634–1645. https://doi.org/10.1111/1365-2745.12911.

 

Johnson, D.J., Beaulieu, W.T., Bever, J.D., Clay, K., 2012. Conspecific negative density dependence and forest diversity. Science 336, 904–907. https://doi.org/10.1126/ science.1220269.

 

Johnson, D.J., Bourg, N.A., Howe, R., McShea, W.J., Wolf, A., Clay, K., 2014. Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95, 2493–2503. https://doi.org/10.1890/13-2098.1.

 

Johnson, D.J., Needham, J., Xu, C., Massoud, E.C., Davies, S.J., Anderson-Teixeira, K.J., Bunyavejchewin, S., Chambers, J.Q., Chang-Yang, C.-H., Chiang, J.-M., Chuyong, G.B., Condit, R., Cordell, S., Fletcher, C., Giardina, C.P., Giambelluca, T.W., Gunatilleke, N., Gunatilleke, S., Hsieh, C.-F., Hubbell, S., Inman-Narahari, F., Kassim, A.R., Katabuchi, M., Kenfack, D., Litton, C.M., Lum, S., Mohamad, M., Nasardin, M., Ong, P.S., Ostertag, R., Sack, L., Swenson, N.G., Sun, I.F., Tan, S., Thomas, D.W., Thompson, J., Umaña, M.N., Uriarte, M., Valencia, R., Yap, S., Zimmerman, J., McDowell, N.G., McMahon, S.M., 2018. Climate sensitive size- dependent survival in tropical trees. Nat. Ecol. Evol. 2, 1436–1442. https://doi.org/10.1038/s41559-018-0626-z.

 

Kobe, R.K., Pacala, S.W., Silander Jr, J.A., Canham, C.D., 1995. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5, 517–532. https://doi.org/10.2307/1942040.

 

Lacourse, T., 2009. Environmental change controls postglacial forest dynamics through interspecific differences in life-history traits. Ecology 90, 2149–2160. https://doi.org/10.1890/08-1136.1.

 

LaManna, J.A., Belote, R.T., Burkle, L.A., Catano, C.P., Myers, J.A., 2017. Negative density dependence mediates biodiversity–productivity relationships across scales. Nat. Ecol. Evol. 1, 1107–1115. https://doi.org/10.1038/s41559-017-0225-4.

 

LaManna, J.A., Jones, F.A., Bell, D.M., Pabst, R.J., Shaw, D.C., 2022. Tree species diversity increases with conspecific negative density dependence across an elevation gradient. Ecol. Lett. 25, 1237–1249. https://doi.org/10.1111/ele.13996.

 

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.-F., He, F., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674. https://doi.org/10.1890/07-1880.1.

 

Lines, E.R., Coomes, D.A., Purves, D.W., 2010. Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS One 5, e13212. https://doi.org/10.1371/journal.pone.0013212.

 

Liu, H., Shi, H., Zhou, Q., Hu, M., Shu, X., Zhang, K., Zhang, Q., Dang, H., 2023. Habitat heterogeneity and biotic interactions mediate climate influences on seedling survival in a temperate forest. For. Ecosyst. 10, 100138. https://doi.org/10.1016/j.fecs.2023.100138.

 

Liu, H., Xie, F., Shi, H., Shu, X., Zhang, K., Zhang, Q., Dang, H., 2022. Disentangling the effects of biotic neighbors and habitat heterogeneity on seedling survival in a deciduous broad-leaved forest. For. Ecol. Manag. 519, 120339. https://doi.org/10.1016/j.foreco.2022.120339.

 

Loehle, C., 1988. Tree life history strategies: the role of defenses. Can. J. For. Res. 18, 209–222. https://doi.org/10.1139/x88-032.

 

Lorimer, C.G., Dahir, S.E., Nordheim, E.V., 2001. Tree mortality rates and longevity in mature and old-growth hemlock-hardwood forests. J. Ecol. 89, 960–971. https://doi.org/10.1111/j.1365-2745.2001.00619.x.

 

Lu, R., Qiao, Y., Wang, J., Zhu, C., Cui, E., Xu, X., He, Y., Zhao, Z., Du, Y., Yan, L., Shen, G., Yang, Q., Wang, X., Xia, J., 2021. The U-shaped pattern of size-dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. J. Ecol. 109, 2421–2433. https://doi.org/10.1111/1365-2745.13652.

 

Luo, Y., Chen, H.Y.H., 2011. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 99, 1470–1480. https://doi.org/10.1111/j.1365-2745.2011.01882.x.

 

Luyssaert, S., Schulze, E.D., Borner, A., Knohl, A., Hessenmoller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455, 213–215. https://doi.org/10.1038/nature07276.

 
Meinzer, F.C., Lachenbruch, B., Dawson, T.E., 2011. Size-and Age-Related Changes in Tree Structure and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1242-3.
 
Miller, A.J., 2002. Subset Selection in Regression, second ed. Chapman and Hall/CRC, London. https://doi.org/10.1201/9781420035933.
 

Modry, M., Hubeny, D., Rejsek, K., 2004. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. For. Ecol. Manag. 188, 185–195. https://doi.org/10.1016/j.foreco.2003.07.029.

 

Muller-Landau, H.C., Condit, R.S., Chave, J., Thomas, S.C., Bohlman, S.A., Bunyavejchewin, S., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke, N., Harms, K.E., Hart, T., Hubbell, S.P., Itoh, A., Kassim, A.R., LaFrankie, J.V., Lee, H.S., Losos, E., Makana, J.-R., Ohkubo, T., Sukumar, R., Sun, I.-F., Nur Supardi, M.N., Tan, S., Thompson, J., Valencia, R., Muñoz, G.V., Wills, C., Yamakura, T., Chuyong, G., Dattaraja, H.S., Esufali, S., Hall, P., Hernandez, C., Kenfack, D., Kiratiprayoon, S., Suresh, H.S., Thomas, D., Vallejo, M.I., Ashton, P., 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588. https://doi.org/10.1111/j.1461-0248.2006.00904.x.

 

Niinemets, Ü., Copolovici, L., Hüve, K., 2010. High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. J. Geophys. Res. Biogeo. 115. https://doi.org/10.1029/2010JG001436.

 

Niinemets, Ü., Valladares, F., 2006. Tolerance to shade, drought, and waterlogging of temperate northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2.

 

Peters, H.A., 2003. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765. https://doi.org/10.1046/j.1461-0248.2003.00492.x.

 
Phillips, S.J., Dudík, M., Schapire, R.E., 2004. A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning. Association for Computing Machinery, Banff, Alberta, p. 83. https://doi.org/10.1145/1015330.1015412.
 

Piponiot, C., Anderson-Teixeira, K.J., Davies, S.J., Allen, D., Bourg, N.A., Burslem, D.F.R.P., Cárdenas, D., Chang-Yang, C.-H., Chuyong, G., Cordell, S., Dattaraja, H.S., Duque, Á., Ediriweera, S., Ewango, C., Ezedin, Z., Filip, J., Giardina, C.P., Howe, R., Hsieh, C.-F., Hubbell, S.P., Inman-Narahari, F.M., Itoh, A., Janík, D., Kenfack, D., Král, K., Lutz, J.A., Makana, J.-R., McMahon, S.M., McShea, W., Mi, X., Mohamad, M. Bt, Novotný, V., O'Brien, M.J., Ostertag, R., Parker, G., Pérez, R., Ren, H., Reynolds, G., Md Sabri, M.D., Sack, L., Shringi, A., Su, S.-H., Sukumar, R., Sun, I.-F., Suresh, H.S., Thomas, D.W., Thompson, J., Uriarte, M., Vandermeer, J., Wang, Y., Ware, I.M., Weiblen, G.D., Whitfeld, T.J.S., Wolf, A., Yao, T.L., Yu, M., Yuan, Z., Zimmerman, J.K., Zuleta, D., Muller- Landau, H.C., 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytol. 234, 1664–1677. https://doi.org/10.1111/nph.17995.

 

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., Villar, R., 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x.

 

Qin, J., Fan, C., Geng, Y., Zhang, C., Zhao, X., Gao, L., 2022. Drivers of tree demographic trade-offs in a temperate forest. For. Ecosyst. 9, 100044. https://doi.org/10.1016/j.fecs.2022.100044.

 
R Core Team, 2022. R: a language and environment for statistical computing. https://www.R-project.org/ (accessed 30 May 30 2024).
 
Russo, S.E., Kitajima, K., 2016. The ecophysiology of leaf lifespan in tropical forests: adaptive and plastic responses to environmental heterogeneity. In: Goldstein, G., Santiago, L.S. (Eds.), Tropical Tree Physiology: Adaptations and Responses in a Changing Environment. Springer, Cham, pp. 357–383. https://doi.org/10.1007/978-3-319-27422-5_17.
 

Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27, 213–262. https://doi.org/10.1016/S0065-2504(08)60009-4.

 

Ryan, M.G., Yoder, B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242. https://doi.org/10.2307/1313077.

 

Shi, H., Xie, F., Zhou, Q., Shu, X., Zhang, K., Dang, C., Feng, S., Zhang, Q., Dang, H., 2019a. Effects of topography on tree community structure in a deciduous broad- leaved forest in north-central China. Forests 10, 53. https://doi.org/10.3390/f10010053.

 

Shi, H., Zhou, Q., Liu, X., Xie, F., Li, T., Zhang, Q., Dang, H., 2019b. Variations in carbon source–sink relationships in subalpine fir across elevational gradients. Plant Biol. 21, 64–70. https://doi.org/10.1111/plb.12912.

 

Song, H., Zhou, D., Chen, S., Li, J., Wang, C., Ren, Y., Yang, X., 2023. Disparity in the relative roles of biotic and abiotic drivers on tree mortality between warm-temperate and temperate forests in China. For. Ecol. Manag. 537, 120938. https://doi.org/10.1016/j.foreco.2023.120938.

 

Soong, J.L., Janssens, I.A., Grau, O., Margalef, O., Stahl, C., Van Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon, V., Herault, B., Sardans, J., Peñuelas, J., Verbruggen, E., 2020. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302. https://doi.org/10.1038/s41598-020-58913-8.

 

Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A., Lines, E.R., Morris, W.K., Rüger, N., Á lvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S.J., Duque, Á., Ewango, C.N., Flores, O., Franklin, J.F., Grau, H.R., Hao, Z., Harmon, M.E., Hubbell, S.P., Kenfack, D., Lin, Y., Makana, J.-R., Malizia, A., Malizia, L.R., Pabst, R.J., Pongpattananurak, N., Su, S.-H., Sun, I.-F., Tan, S., Thomas, D., van Mantgem, P.J., Wang, X., Wiser, S.K., Zavala, M.A., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93. https://doi.org/10.1038/nature12914.

 

Szumilas, M., 2010. Explaining odds ratios. J. Can. Acad. Child. Adolesc. Psychiatry 19, 3.

 

Thomas, C.D., Anderson, B.J., Moilanen, A., Eigenbrod, F., Heinemeyer, A., Quaife, T., Roy, D.B., Gillings, S., Armsworth, P.R., Gaston, K.J., 2013. Reconciling biodiversity and carbon conservation. Ecol. Lett. 16, 39–47. https://doi.org/10.1111/ele.12054.

 

Tian, X., Minunno, F., Cao, T., Peltoniemi, M., Kalliokoski, T., Mäkelä, A., 2020. Extending the range of applicability of the semi-empirical ecosystem flux model PRELES for varying forest types and climate. Global Change Biol. 26, 2923–2943. https://doi.org/10.1111/gcb.14992.

 

Tomlinson, K.W., Poorter, L., Bongers, F., Borghetti, F., Jacobs, L., van Langevelde, F., 2014. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Ann. Bot. 114, 315–324. https://doi.org/10.1093/aob/mcu107.

 

Tomlinson, K.W., van Langevelde, F., Ward, D., Bongers, F., da Silva, D.A., Prins, H.H.T., de Bie, S., Sterck, F.J., 2013. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage. Ann. Bot. 112, 575–587. https://doi.org/10.1093/aob/mct132.

 

Umaña, M.N., Salgado-Negret, B., Norden, N., Salinas, V., Garzón, F., Medina, S.P., Rodríguez-M, G.M., López-Camacho, R., Castaño-Naranjo, A., Cuadros, H., Franke- Ante, R., Avella, A., Idárraga-Piedrahita, Á., Jurado, R., Nieto, J., Pizano, C., Torres, A.M., García, H., González-M, R., 2023. Upscaling the effect of traits in response to drought: the relative importance of safety–efficiency and acquisitive–conservation functional axes. Ecol. Lett. 26, 2098–2109. https://doi.org/10.1111/ele.14328.

 

Valkonen, S., Aulus Giacosa, L., Heikkinen, J., 2020. Tree mortality in the dynamics and management of uneven-aged Norway spruce stands in southern Finland. Eur. J. For. Res. 139, 989–998. https://doi.org/10.1007/s10342-020-01301-8.

 

Valladares, F., Laanisto, L., Niinemets, Ü., Zavala, M.A., 2016. Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecol. Divers. 9, 237–251. https://doi.org/10.1080/17550874.2016.1210262.

 

Valladares, F., Niinemets, Ü., 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506.

 

Wang, Q.-W., Robson, T.M., Pieristè, M., Oguro, M., Oguchi, R., Murai, Y., Kurokawa, H., 2020. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. J. Ecol. 108, 1923–1940. https://doi.org/10.1111/1365-2745.13384.

 

Wang, X., Comita, L.S., Hao, Z., Davies, S.J., Ye, J., Lin, F., Yuan, Z., 2012. Local-scale drivers of tree survival in a temperate forest. PLoS One 7, e29469. https://doi.org/10.1371/journal.pone.0029469.

 

Wendling, I., Trueman, S.J., Xavier, A., 2014. Maturation and related aspects in clonal forestry—Part Ⅰ: concepts, regulation and consequences of phase change. New For. 45, 449–471. https://doi.org/10.1007/s11056-014-9421-0.

 

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender- Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403.

 

Xia, S.-W., Chen, J., Schaefer, D., Goodale, U.M., 2016. Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest. Plant Soil 404, 385–398. https://doi.org/10.1007/s11104-016-2854-9.

 

Xu, H., Chen, P., Tao, Y., 2021. Understanding the shade tolerance responses through hints from phytochrome A-mediated negative feedback regulation in shade avoiding plants. Front. Plant Sci. 12, 813092. https://doi.org/10.3389/fpls.2021.813092.

 

Yi, C., Hendrey, G., Niu, S., McDowell, N., Allen, C.D., 2022. Tree mortality in a warming world: causes, patterns, and implications. Environ. Res. Lett. 17, 030201. https://doi.org/10.1088/1748-9326/ac507b.

 

Zhang, X., Wang, Z., Chhin, S., Wang, H., Duan, A., Zhang, J., 2020. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103.

Forest Ecosystems
Article number: 100208
Cite this article:
Hu M, Shi H, He R, et al. Disparities in tree mortality among plant functional types (PFTs) in a temperate forest: Insights into size-dependent and PFT-specific patterns. Forest Ecosystems, 2024, 11(4): 100208. https://doi.org/10.1016/j.fecs.2024.100208

119

Views

4

Downloads

4

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 February 2024
Revised: 19 May 2024
Accepted: 20 May 2024
Published: 29 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return