Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tree allometry plays a crucial role in tree survival, stability, and timber quantity and quality of mixed-species plantations. However, the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood. Taking into consideration strong- and weak-space competition (SC and WC), as well as N2-fixing and non-N2-fixing tree species (FN and nFN), a mixed-species planting trial was conducted for Betula alnoides, a pioneer tree species, which was separately mixed with Acacia melanoxylon (SC + FN), Erythrophleum fordii (WC + FN), Eucalyptus cloeziana (SC + nFN) and Pinus kesiya var. langbianensis (WC + nFN) in southern China. Six years after planting, tree growth, total nitrogen (N) and carbon (C) contents, and the natural abundances of 15N and 13C in the leaves were measured for each species, and the mycorrhizal colonisation rates of B. alnoides were investigated under each treatment. Allometric variations and their relationships with space competition and nutrient-related factors were analyzed. The results showed a consistent effect of space competition on the height-diameter relationship of B. alnoides in mixtures with FN or nFN. The tree height growth of B. alnoides was significantly promoted under high space competition, and growth in diameter at breast height (DBH), tree height and crown size were all expedited in mixtures with FN. The symbiotic relationship between ectomycorrhizal fungi and B. alnoides was significantly influenced by both space competition and N2 fixation by the accompanying tree species, whereas such significant effects were absent for arbuscular mycorrhizal fungi. Furthermore, high space competition significantly decreased the water use efficiency (WUE) of B. alnoides, and its N use efficiency (NUE) was much lower in the FN mixtures. Structural equation modeling further demonstrated that the stem allometry of B. alnoides was affected by its NUE and WUE via changes in its height growth, and crown allometry was influenced by the mycorrhizal symbiotic relationship. Our findings provide new insights into the mechanisms driving tree allometric responses to above- and below-ground resource competition and complementarity in mixed-species plantations, which are instructive for the establishment of mixed-species plantations.
Alcorn, P.J., Forrester, D.I., Smith, R.G.B., Thomas, D.S., James, R.N., Nicotra, A.B., Bauhus, J., 2013. Crown structure and vertical foliage distribution in 4-year-old plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Trees (Berl.) 27, 555–566. http://doi.org/10.1007/s00468-012-0809-1.
Ares, A., Fownes, J.H., 1999. Water supply regulates structure, productivity, and water use efficiency of Acacia koa forest in Hawaii. Oecologia 121, 458–466. https://doi.org/10.1007/s004420050952.
Austin, M.T., Brewbaker, J.L., Wheeler, R., Fownes, J.H., 1997. Short-rotation biomass trial of mixed and pure stands of nitrogen-fixing trees and Eucalyptus grandis. Aust. For. 60, 161–168. https://doi.org/10.1080/00049158.1997.10676138.
Bauhus, J., Khanna, P.K., Menden, N., 2000. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can. J. For. Res. 30, 1886–1894. https://doi.org/10.1139/x03-243.
Bauhus, J., van Winden, A.P., Nicotra, A.B., 2004. Above-ground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. For. Res. 34, 686–694. https://doi.org/10.1139/x03-243.
Benomar, L., DesRochers, A., Larocque, G.R., 2013. Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce. J. For. Res. 24, 247–254. https://doi.org/10.1007/s11676-013-0348-7.
Bertness, M.D., Callaway, R.M., 1994. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4.
Binkley, D., Dunkin, K.A., DeBell, D., Ryan, M.G., 1992a. Production and nutrient cycling in mixed plantations of Eucalyptus and Albizia in Hawaii. For. Sci. 38 (2), 393–408. https://doi.org/10.1093/forestscience/38.2.393.
Binkley, D., Sollins, P., Bell, R., Sachs, D., Myrold, D., 1992b. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73, 2022–2033. https://doi.org/10.2307/1941452.
Binkley, D., Stape, J.L., Ryan, M.G., 2004. Thinking about efficiency of resource use in forests. For. Ecol. Manag. 193, 5–16. https://doi.org/10.1016/j.foreco.2004.01.019.
Bzdyk, R.M., Olchowik, J., Studnicki, M., Nowakowska, J.A., Hilszczanska, D., 2019. Ectomycorrhizal colonisation in declining oak stands on the Krotoszyn Plateau, Poland. Forests 10 (1), 30. https://doi.org/10.3390/f10010030.
Carr, S., Larocque, G.R., Luckai, N., Bell, F.W., 2020. Effect of competition on individual white spruce production in young boreal mixedwood forests. Can. J. For. Res. 50, 726–735. https://doi.org/10.1139/cjfr-2019-0395.
Chaves, J.E., Aranibar, J.N., Gatica, G., 2021. Species and functional plant diversity enhance ecosystem functions in Central Monte desert. J. Veg. Sci. 32, e12952. https://doi.org/10.1111/jvs.12952.
Choi, H.S., Rom, C.R., 2011. Estimated nitrogen use efficiency, surplus, and partitioning in young apple trees grown in varied organic production systems. Sci. Hortic. 129, 674–679. https://doi.org/10.1016/j.scienta.2010.11.019.
Commes, D.A., Allen, R.B., 2007. Effects of size, competition and altitude on tree growth. J. Ecol. 95 (5), 1084–1097. https://doi.org/10.1111/j.1365-2745.2007.01280.x.
Das Gupta, S., Pinno, B.D., 2020. Drivers of understory species richness in reconstructed boreal ecosystems: a structural equation modeling analysis. Sci. Rep. 10, 11555. https://doi.org/10.1038/s41598-020-68353-z.
Dijkstra, F.A., Carrillo, Y., Aspinwall, M.J., Maier, C., Canarini, A., Tahaei, H., Choat, B., Tissue, D.T., 2016. Water, nitrogen and phosphorus use efficiencies of four tree species in response to variable water and nutrient supply. Plant Soil 406 (1–2), 187–199. https://doi.org/10.1007/s11104-016-2873-6.
Erickson, H.E., Harrington, C.A., Marshall, D.D., 2009. Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State, USA. Can. J. For. Res. 39, 1119–1132. https://doi.org/10.1139/X09-040.
Erskine, P.D., Lamb, D., Bristow, M., 2006. Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For. Ecol. Manag. 233, 205–210. https://doi.org/10.1016/j.foreco.2006.05.013.
Feng, Y., Schmid, B., Loreau, M., Forrester, D.I., Fei, S., Zhu, J.X., Tang, Z., Zhu, J.L., Hong, P., Ji, C., Shi, Y., Su, H., Xiong, X., Xiao, J., Wang, S., Fang, J.Y., 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868. https://doi.org/10.1126/science.abm6363.
Forrester, D.I., 2015. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol. 35, 289–304. https://doi.org/10.1093/treephys/tpv011.
Forrester, D.I., Bauhus, J., 2016. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61. https://doi.org/10.1007/s40725-016-0031-2.
Forrester, D.I., Bauhus, J., Khanna, P.K., 2004. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For. Ecol. Manag. 193, 81–95. https://doi.org/10.1016/j.foreco.2004.01.024.
Forrester, D.I., Benneter, A., Bouriaud, O., Bauhus, J., 2017. Diversity and competition influence tree allometric relationships–developing functions for mixed-species forests. J. Ecol. 105, 761–774. https://doi.org/10.1111/1365-2745.12704.
Forrester, D.I., Pretzsch, H., 2015. Tamm Review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For. Ecol. Manag. 356, 41–53. https://doi.org/10.1016/j.foreco.2015.08.016.
Forrester, D.I., Schortemeyer, M., Stock, W.D., Bauhus, J., Khanna, P.K., Cowie, A.L., 2007. Assessing nitrogen fixation in mixed- and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol. 27, 1319–1328. https://doi.org/10.1093/treephys/27.9.1319.
Forrester, D.I., Smith, G.B., 2012. Faster growth of Eucalyptus grandis and Eucalyptus pilularis in mixed-species stands than monocultures. For. Ecol. Manag. 286, 81–86. https://doi.org/10.1016/j.foreco.2012.08.037.
Forrester, D.I., Theiveyanathan, S., Collopy, J.J., Marcar, N.E., 2010. Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For. Ecol. Manag. 259, 1761–1770. https://doi.org/10.1016/j.foreco.2009.07.036.
Ghorbani, M., Sohrabi, H., Sadati, S.E., Babaei, F., 2018. Productivity and dynamics of pure and mixed-species plantations of Populous deltoids Bartr. ex Marsh and Alnus subcordata C. A. Mey. For. Ecol. Manag. 409, 890–898. https://doi.org/10.1016/j.foreco.2017.11.016.
Gianinazzi, S., Gollott, A., Binet, M.N., van Tuinen, D., Redecker, D., Wipf, D., 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530. https://doi.org/10.1007/s00572-010-0333-3.
Hamilton, S.D., Hopmans, P., Chalk, P.M., Smith, C.J., 1993. Field estimation of N2 fixation by Acacia spp. using 15N isotope dilution and labelling with 35S. For. Ecol. Manag. 56, 297–313. https://doi.org/10.1016/0378-1127(93)90119-8.
Huang, Z.Q., Ran, S.S., Fu, Y.R., Wan, X.H., Song, X., Chen, Y.X., Yu, Z.P., 2022. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. J. Ecol. 110, 2179–2189. https://doi.org/10.1111/1365-2745.13941.
Hulvey, K.B., Hobbs, R.J., Standish, R.J., Lindenmayer, D.B., Lach, L., Perring, M.P., 2013. Benefits of tree mixes in carbon plantings. Nat. Clim. Chang. 3, 869–874. https://doi.org/10.1038/nclimate1862.
Johnson, N.C., 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647. https://doi.org/10.1111/j.1469-8137.2009.03110.x.
Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, D.I., Haeni, M., Higgins, S.I., Holdaway, R.J., Iida, Y., Lorimer, C., Marshall, P.L., Momo, S., Moncrieff, G.R., Ploton, P., Poorter, L., Rahman, K.A., Schlund, M., Sonké, B., Sterck, F.J., Trugman, A.T., Usoltsev, V.A., Vanderwel, M.C., Waldner, P., Wedeux, B.M.M., Wirth, C., Wöll, H., Woods, M., Xiang, W., Zimmermann, N.E., Coomes, D.A., 2017. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 23, 177–190. https://doi.org/10.1111/gcb.13388.
King, D.A., 1991. Tree allometry, leaf size and adult tree size in old-growth forests of western Oregon. Tree Physiol. 9, 369–381. https://doi.org/10.1093/treephys/9.3.369.
Knoke, T., Ammer, C., Stimm, B., Mosandl, R., 2008. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur. J. For. Res. 127, 89–101. https://doi.org/10.1007/s10342-007-0186-2.
Laclau, J.P., Bouillet, J.P., Gonçalves, J.L.M., Silva, E.V., Jourdan, C., Cunha, M.C.S., Moreira, M.R., Saint-André, L., Maquère, V., Nouvellon, Y., Ranger, J., 2008. Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 1. Growth dynamics and aboveground net primary production. For. Ecol. Manag. 12, 3905–3917. https://doi.org/10.1016/j.foreco.2007.10.049.
Liese, R., Lübbe, T., Albers, N.W., Meier, I.C., 2018. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 38, 83–95. https://doi.org/10.1093/treephys/tpx131.
Liu, Z., Jia, G., Yu, X., 2020. Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China. Agric. Water Manag. 234, 106138. https://doi.org/10.1016/j.agwat.2020.106138.
Livingston, N.J., Guy, R.D., Sun, Z.J., Ethier, G.J., 1999. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ. 22, 281–289. https://doi.org/10.1046/j.1365-3040.1999.00400.x.
Marron, N., Epron, D., 2019. Are mixed-tree plantations including a nitrogen-fixing species more productive than monocultures? For. Ecol. Manag. 441, 242–252. https://doi.org/10.1016/j.foreco.2019.03.052.
Mensah, S., Veldtman, R., Assogbadjo, A.E., Glèlè Kakaï, R., Seifert, T., 2016. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557. https://doi.org/10.1002/ece3.2525.
Metz, J., Seidel, D., Schall, P., Scheffer, D., Schulze, E.D., Ammer, C., 2013. Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For. Ecol. Manag. 310, 275–288. https://doi.org/10.1016/j.foreco.2013.08.014.
Nehls, U., Plassard, C., 2018. Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol. 220, 1047–1058. https://doi.org/10.1111/nph.15257.
Nichols, J.D., Bristow, M., Vanclay, J.K., 2006. Mixed-species plantations: prospects and challenges. For. Ecol. Manag. 233, 383–390. https://doi.org/10.1016/j.foreco.2006.07.018.
Osada, N., 2011. Height-dependent changes in shoot structure and tree allometry in relation to maximum height in four deciduous tree species. Funct. Ecol. 25, 777–786. https://doi.org/10.1111/j.1365-2435.2011.01833.x.
Osunkoya, O.O., Omar-Ali, K., Amit, N., Dayan, J., Daud, D.S., Sheng, T.K., 2007. Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am. J. Bot. 94, 1951–1962. https://doi.org/10.3732/ajb.94.12.1951.
Parrotta, J.A., 1999. Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For. Ecol. Manag. 124, 45–77. https://doi.org/10.1016/S0378-1127(99)00049-3.
Paula, R.R., Bouillet, J.P., de, M., Gonçalves, J.L., Trivelin, P.C.O., de, C., Balieiro, F., Nouvellon, Y., de, C., Oliveira, J., de Deus Júnior, J.C., Bordron, B., Laclau, J.P., 2018. Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Ann. For. Sci 75, 14. https://doi.org/10.1007/s13595-018-0695-9.
Piotto, D., 2008. A meta-analysis comparing tree growth in monocultures and mixed plantations. For. Ecol. Manag. 255, 781–786. https://doi.org/10.1016/j.foreco.2007.09.065.
Pretzsch, H., 2019. The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation. Forests 10 (9), 810. https://doi.org/10.3390/f10090810.
Pretzsch, H., 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 327, 251–264. https://doi.org/10.1016/j.foreco.2014.04.027.
Pretzsch, H., Schütze, G., Uhl, E., 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–495. https://doi.org/10.1111/j.1438-8677.2012.00670.x.
Pretzsch, H., del Río, M., Ammer, C.H., Avdagic, A., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., Dirnberger, G., Drössler, L., Fabrika, M., Forrester, D.I., Godvod, K., Heym, M., Hurt, V., Kurylyak, V., Löf, M., Lombardi, F., Matović, B., Mohren, F., Motta, R., den Ouden, J., Pach, M., Ponette, Q., Schütze, G., Schweig, J., Skrzyszewski, J., Sramek, V., Sterba, H., Stojanović, D., Svoboda, M., Vanhellemont, M., Verheyen, K., Wellhausen, K., Zlatanov, T., Bravo-Oviedo, A., 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 134, 927–947. https://doi.org/10.1007/s10342-015-0900-4.
Pretzsch, H., Rais, A., 2016. Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci. Technol. 50, 845–880. https://doi.org/10.1007/s00226-016-0827-z.
Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734. https://doi.org/10.1073/pnas.94.25.13730.
Rodrigues, D.R., Bovolenta, Y.R., Pimenta, J.A., Bianchini, E., 2019. Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests. J. For. Res. 30, 1633–1639. https://doi.org/10.1007/s11676-018-0705-7.
Rotter, P., Loreau, M., de Mazancourt, C., 2020. Why do forests respond differently to nitrogen deposition? A modelling approach. Ecol. Model. 425, 109034. https://doi.org/10.1016/j.ecolmodel.2020.109034.
Santos, F.M., de Carvalho Balieiro, F., dos Santos Ataíde, D.H., Diniz, A.R., Chaer, G.M., 2016. Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. For. Ecol. Manag. 363, 86–97. https://doi.org/10.1016/j.foreco.2015.12.028.
Sheng, W., Ren, S., Yu, G., Fang, H., Jiang, C., Zhang, M., 2011. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. J. Geogr. Sci. 21 (4), 651–665. https://doi.org/10.1007/s11442-011-0870-5.
Su, B.G., Shangguan, Z.P., 2020. Patterns and driving factors of water and nitrogen use efficiency in Robinia pseudoacacia L. on the Loess Plateau in China. Catena 195, 104790. https://doi.org/10.1016/j.catena.2020.104790.
Suz, L.M., Kallow, S., Reed, K., Bidartondo, M.I., Barsoum, N., 2017. Pine mycorrhizal communities in pure and mixed pine-oak forests: abiotic environment trumps neighboring oak host effects. For. Ecol. Manag. 406, 370–380. https://doi.org/10.1016/j.foreco.2017.09.030.
Teste, F.P., Jones, M.D., Dickie, I.A., 2020. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851. https://doi.org/10.1111/nph.16190.
Thomas, A., Marron, N., Bonal, D., Piutti, S., Dallé, E., Priault, P., 2022. Leaf and tree water-use efficiencies of Populus deltoides × P. nigra in mixed forest and agroforestry plantations. Tree Physiol. 42, 2432–2445. https://doi.org/10.1093/treephys/tpac094.
Thorpe, H.C., Astrup, R., Trowbridge, A., Coates, K.D., 2010. Competition and tree crowns: a neighborhood analysis of three boreal tree species. For. Ecol. Manag. 259, 1586–1596. https://doi.org/10.1016/j.foreco.2010.01.035.
Unwin, G.L., Jennings, S.M., Hunt, M.A., 2006. Light environment and tree development of young Acacia melanoxylon in mixed-species regrowth forest, Tasmania, Australia. For. Ecol. Manag. 233, 240–249. https://doi.org/10.1016/j.foreco.2006.05.015.
Valiente-Banuet, A., Verdú, M., 2008. Temporal shifts from facilitation to competition occur between closely related taxa. J. Ecol. 96, 489–494. https://doi.org/10.1111/j.1365-2745.2008.01357.x.
Van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., Muys, B., 2017. Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. For. Ecol. Manag. 385, 1–9. https://doi.org/10.1016/j.foreco.2016.11.015.
Van Kessel, C., Farrell, R.E., Roskoski, J.P., Keane, K.M., 1994. Recycling of the naturally-occurring 15N in an established stand of Leucaena leucocephala. Soil Biol. Biochem. 26, 757–762. https://doi.org/10.1016/0038-0717(94)90269-0.
Weemstra, M., Peay, K.G., Davies, S.J., Mohamad, M., Itoh, A., Tan, S., Russo, S.E., 2020. Lithological constraints on resource economies shape the mycorrhizal composition of a Bornean rain forest. New Phytol. 228, 253–268. https://doi.org/10.1111/nph.16672.
Yu, Y., Wu, Y., Song, Y., Li, Y., 2022. Carbon and nitrogen stable isotope abundance and soil stoichiometry of Zanthoxylum planispinum var. dintanensis plantations of different ages. Agronomy 12, 1248. https://doi.org/10.3390/agronomy12061248.
Yoshimura, K., 2010. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. Plant Cell Environ. 33, 750–758. https://doi.org/10.1111/j.1365-3040.2009.02100.x.
Zeng, J., Zheng, H.H., Weng, Q.J., 1999. Betula alnoides—a valuable tree species for tropical and warm-subtropical areas. For. Farm Community Tree Res. Rep 4, 60–63.
Zeugin, F., Potvin, C., Jansa, J., Scherer-Lorenzen, M., 2010. Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation? For. Ecol. Manag. 260, 1424–1433. https://doi.org/10.1016/j.foreco.2010.07.020.
Zhao, Z.G., Shen, W., Wang, C.S., Jia, H.Y., Zeng, J., 2021. Heartwood variations in mid-aged plantations of Erythrophleum fordii. J. For. Res. 32, 2375–2383. https://doi.org/10.1007/s11676-020-01187-7.
Zhang, X., Wang, H., Chhin, S., Zhang, J., 2020. Effects of competition, age and climate on tree slenderness of Chinese fir plantations in southern China. For. Ecol. Manag. 458, 117815. https://doi.org/10.1016/j.foreco.2019.117815.
Zou, H., Zeng, J., 2018. Effects of native mycorrhizal fungi infection on the seedling growth and leaf nutrition of Betula alnoides clones. Mol. Plant Breed. 16, 6493–6503. https://doi.org/10.13271/j.mpb.016.006494.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).