Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Excessive forest exploitation significantly contributes to land degradation and the creation of human-made deadwood. Stumps are sometimes ignored in studies on the biodiversity of coarse woody debris. We investigated whether the type of stump, i.e. broken stumps (naturally created) and cut stumps (formed during forestry operations) had an impact on the species composition and species diversity as well as due to this fact they can be characterized by plant indicators. The research covered 728 spruce stumps (287 broken and 441 cut stumps) that were inhabited by lichens, liverworts, mosses and vascular plants in mountain forest belt (Karkonosze Mts., Poland). The following types of microhabitats were included in the research: the upper surface and the lateral surface of a stump with both bark and wood. There are statistically significant compositional differences between the two types of stumps, which was demonstrated by ordination analyses and indicator species analysis. According to the generalized linear models, the probability of occurrence increases in cut stumps in case of liverworts and vascular plants and also along the decomposition stages. The generalized linear mixed-effects model showed that there was a higher species richness of liverworts, mosses and vascular plants on the cut stumps and less drier but the reverse situation was in lichens. The generalized additive models for their cover showed similar trends. Almost all of the taxonomic groups were affected by altitude both in terms of species composition and total cover on the stumps. We concluded that cut stumps are an important type of deadwood for biodiversity and provide a convenient habitat, especially for many lichens and bryophytes.
Andersson, J., Hjältén, J., Dynesius, M., 2015. Wood-inhabiting beetles in low stumps, high stumps and logs on boreal clear-cuts: implications for dead wood management. PLoS One 10 (3), e0118896. https://doi.org/10.1371/journal.pone.0118896.
Andersson, L.I., Hytteborn, H., 1991. Bryophytes and decaying wood– a comparison between managed and natural forest. Holarctic Ecol. 14, 121–130.
Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01.
Blasy, V., Ellis, C.J., 2014. Life on deadwood: cut stumps as a model system for the succession and management of lichen diversity. The Lichenologist 46 (3), 455–469. https://doi.org/10.1017/S0024282913000777.
Caruso, A., Rudolphi, J., Thor, G., 2008. Lichen species diversity and substrate amounts in young planted boreal forests: a comparison between slash and stumps of Picea abies. Biol. Conserv. 141 (1), 47–55. https://doi.org/10.1016/j.biocon.2007.08.021.
Chmura, D., Żarnowiec, J., Staniaszek-Kik, M., 2016. Interactions between plant traits and environmental factors within and among montane forest belts: a study of vascular species colonising decaying logs. For. Ecol. Manag. 379, 216–225. https://doi.org/10.1016/j.foreco.2016.08.024.
Chmura, D., Żarnowiec, J., Staniaszek-Kik, M., 2022. Altitude is a better predictor of the habitat requirements of epixylic bryophytes and lichens than the presence of coarse woody debris in mountain forests: a study in Poland. Ann. For. Sci. 79, 7. https://doi.org/10.1186/s13595-022-01125-z.
Christensen, O., 1977. Estimation of standing crop and turnover of dead wood in a Danish oak forest. Oikos 28, 177–186. https://doi.org/10.2307/3543969.
Czerepko, J., Gawryś, R., Szymczyk, R., Pisarek, W., Janek, M., Haidt, A., Kowalewska, A., Piegdoń, A., Stebel, A., Kukwa, M., Cacciatori, C., 2021. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest. Ecol. Indicat. 125, 107532. https://doi.org/10.1016/j.ecolind.2021.107532.
Daniels, F.J.A., 1993. Succession in lichen vegetation on Scots pine stumps. Phytocoenologia 23, 619–623. https://doi.org/10.1127/phyto/23/1993/619.
Didion, M., Abegg, M., 2022. Tree stumps – an important but undervalued dead wood pool. Ann. For. Sci. 79, 34. https://doi.org/10.1186/s13595-022-01155-7.
Dittrich, S., Hauck, M., Jacob, M., Rommerskirchen, A., Leuschner, C., 2013. Response of ground vegetation and epiphyte diversity to natural age dynamics in a Central European mountain spruce forest. J. Veg. Sci. 24 (4), 675–687. https://doi.org/10.1111/j.1654-1103.2012.01490.x.
Dittrich, S., Jacob, M., Bade, C., Leuschner, C., Hauck, M., 2014. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol. 215 (10), 1123–1137. https://doi.org/10.1007/s11258-014-0371-6.
Dufrene, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67 (3), 345–366.
Fukasawa, Y., 2018. Pine stumps act as hotspots for seedling regeneration after pine dieback in a mixed natural forest dominated by Chamaecyparis obtusa. Ecol. Res. 33, 1169–1179. https://doi.org/10.1007/s11284-018-1631-z.
Hackiewicz-Dubowska, M., 1936. Roślinność gnijących pni puszczy Białowieskiej. Sprawozdania z Posiedzeń Towarzystwa Naukowego Warszawskiego 29, 1–34.
Hämäläinen, A., Ranius, T., Strengbom, J., 2021. Increasing the amount of dead wood by creation of high stumps has limited value for lichen diversity. J. Environ. Manag. 280, 111646. https://doi.org/10.1016/j.jenvman.2020.111646.
Hodgetts, N.G., Söderström, L., Blockeel, T.L., Caspari, S., Ignatov, M.S., Konstantinova, N.A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N.E., Blom, H.H., Bruggeman-Nannenga, M.A., Brugués, M., Enroth, J., Flatberg, K.I., Garilleti, R., Hedenäs, L., Holyoak, D.T., Hugonnot, V., Kariyawasam, I., Köckinger, H., Kučera, J., Lara, F., Porley, R.D., 2020. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryolog. 42 (1), 1–116. https://doi.org/10.1080/03736687.2019.1694329.
Humphrey, J.W., Davey, S., Peace, A.J., Ferris, R., Harding, K., 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol. Conserv. 107 (2), 165–180. https://doi.org/10.1016/S0006-3207(02)00057-5.
Ipatov, V.S., Tarkhova, T.N., 1983. Interaction between moss and lichen groupings in green-moss-lichen pine forests. Ecologiya 1, 20–26.
Jaroszewicz, B., Cholewińska, O., Chećko, E., Wrzosek, M., 2021. Predictors of diversity of deadwood-dwelling macrofungi in a European natural forest. For. Ecol. Manag. 490, 119123. https://doi.org/10.1016/j.foreco.2021.119123.
Johnson, E.A., 1981. Vegetation organization and dynamics of lichen woodland communities in the Northwest Territories, Canada. Ecology 62, 200–215. https://doi.org/10.2307/1936682.
Jönsson, M., Sjögren, J., Hannrup, B., Larsolle, A., Mörtberg, U., Nordström, M., Olsson, B.A., Strömgren, M.A., 2020. Spatially explicit decision support system for assessment of tree stump harvest using biodiversity and economic criteria. Sustainability 12 (21), 8900. https://doi.org/10.3390/su12218900.
Kirchner, K., Kathke, S., Bruelheide, H., 2011. The interaction of gap age and microsite for herb layer species in a near-natural spruce forest. J. Veg. Sci. 22 (1), 85–95. https://doi.org/10.1111/j.1654-1103.2010.01234.x.
Korzybski, D., Mionskowski, M., Dmyterko, E., Bruchwald, A., 2013. Degree of damage to spruce, fir and larch stands in the Western Sudetes. Sylwan 157 (2), 104–112. https://doi.org/10.26202/sylwan.2012035 (in Polish).
Kumar, P., Chen, H.Y., Thomas, S.C., Shahi, C., 2017. Effects of coarse woody debris on plant and lichen species composition in boreal forests. J. Veg. Sci. 28 (2), 389–400. https://doi.org/10.1111/jvs.12485.
Kushnevskaya, H., Mirin, D., Shorohova, E., 2007. Patterns of epixylic vegetation on spruce logs in late-successional boreal forests. For. Ecol. Manag. 250, 25–33. https://doi.org/10.1016/j.foreco.2007.03.006.
Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest Package: tests in linear mixed effects models. J. Stat. Software 82 (13), 126. https://doi.org/10.18637/jss.v082.i13.
Lindhe, A., Åsenblad, N., Toresson, H.-G., 2004. Cut logs and high stumps of spruce, birch, aspen and oak – nine years of saproxylic fungi succession. Biol. Conserv. 119 (4), 443–454. https://doi.org/10.1016/j.biocon.2004.01.005.
Londo, G., 1976. The decimal scale for relevés of permanent quadrats. Vegetatio 33, 61–64. https://doi.org/10.1007/BF00055300.
Nascimbene, J., Marini, L., Caniglia, G., Cester, D., Nimis, P.L., 2008. Lichen diversity on stumps in relation to wood decay in subalpine forests of Northern Italy. Biodivers. Conserv. 17, 2661–2670. https://doi.org/10.1007/s10531-008-9344-1.
Nordén, B., Götmark, F., Tönnberg, M., Ryberg, M., 2004. Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. For. Ecol. Manag. 194, 235–248. https://doi.org/10.1016/j.foreco.2004.02.043.
Orczewska, A., Depa, Ł., 2014. Rola rozkładającego się drewna i zasiedlających go mrówek w migracji roślin runa leśnego. Studia i Materiały CEPL w Rogowie 16 (4), 364–370.
Ódor, P., Heilmann-Clausen, J., Christensen, M., Aude, E., van Dort, K.W., Piltaver, A., Grebenc, T., 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol. Conserv. 131 (1), 58–71.
Palviainen, M., Finer, L., Laiho, R., Shorohova, E., Kapitsa, E., Vanha-Majamaa, I., 2010. Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. For. Ecol. Manag. 259 (3), 390–398. https://doi.org/10.1016/j.foreco.2009.10.034.
Persson, T., Lenoir, L., Vegerfors, B., 2013. Which macroarthropods prefer tree stumps over soil and litter substrates? For. Ecol. Manag. 290, 30–39. https://doi.org/10.1016/j.foreco.2012.09.009.
Preikša, Z., Brazaitis, G., Marozas, V., Jaroszewicz, B., 2015. Dead wood quality influences species diversity of rare cryptogams in temperate broadleaved forests. iForest 9 (2), 276–285. https://doi.org/10.3832/ifor1483-008.
Proctor, M.C.F., Oliver, M.J., Wood, A.J., Alpert, P., Stark, L.R., Cleavitt, N.L., Mishler, B.D., 2007. Desiccation-tolerance in bryophytes: a review. The Bryologist 110, 595–621. https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2.
Renvall, P., 1995. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35, 1–51. https://doi.org/10.29203/ka.1995.309.
Rigby, R.A., Stasinopoulos, D.M., 2005. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Statist. 54 (3), 507–554.
Rudolphi, J., Gustafsson, L., 2011. Forests regenerating after clear-cutting function as habitat for bryophyte and lichen species of conservation concern. PLoS One 6 (4), e18639. https://doi.org/10.1371/journal.pone.0018639.
Santaniello, F., Djupström, L.B., Ranius, T., Weslien, J., Rudolphi, J., Thor, G., 2017. Large proportion of wood dependent lichens in boreal pine forest are confined to old hard wood. Biodivers. Conserv. 26 (6), 1295–1310. https://doi.org/10.1016/j.foreco.2011.02.014.
Siitonen, J., Martikainen, P., Punttila, P., Rauh, J., 2000. Coarse woody debris and stand characteristics in mature managed and oldgrowth boreal mesic forests in southern Finland. For. Ecol. Manag. 128, 211–225. https://doi.org/10.1016/S0378-1127(99)00148-6.
Skrzecz, I., Bulka, M., Ukalska, J., 2019. Effects of location of Norway spruce (Picea abies) stumps on their colonisation by insects in the mountains. Folia Forestalia Polonica, Series A – Forestr. 61 (1), 64–77. https://doi.org/10.2478/ffp-2019-000.
Staniaszek-Kik, M., Żarnowiec, J., 2018. Diversity of mosses on stumps and logs in the Karkonosze Mts (Sudetes Mts, Central Europe). Herzogia 31 (1), 70–87. https://doi.org/10.13158/099.031.0104.
Staniaszek-Kik, M., Żarnowiec, J., Chmura, D., 2016. The vascular plant colonization on decaying logs of Picea abies in mountain forest belts: the effects of forest community type, cryptogam cover, log decomposition and forest management. Eur. J. For. Res. 135 (6), 1145–1157. https://doi.org/10.1007/s10342-016-1001-8.
Staniaszek-Kik, M., Chmura, D., Żarnowiec, J., 2019. What factors influence colonization of lichens, liverworts, mosses and vascular plants on snags? Biologia 74, 375–384. https://doi.org/10.2478/s11756-019-00191-5.
Staniaszek-Kik, M., Żarnowiec, J., Chmura, D., 2019. The effect of forest management practices on the deadwood resources and structure in protected and managed montane forests during tree-stand reconstruction after a dieback of Norway spruce. Balt. For. 25 (2), 249–256. https://doi.org/10.46490/vol25iss2pp249.
Staniaszek-Kik, M., Żarnowiec, J., Chmura, D., 2014. Colonization patterns of vascular plant species on decaying logs of Fagus sylvatica L. in a lower mountain forest belt: a case study of the Sudeten Mountains, (Southern Poland). Appl. Ecol. Environ. Res. 12 (3), 601–613. https://doi.org/10.15666/aeer/1203_601613.
Stapper, N.J., John, V., 2015. Monitoring climate change with lichens as bioindicators. Pollut. Atmosphérique 226, 1–12. https://doi.org/10.4267/pollution-atmospherique.4936.
Stephenson, S.L., Payal, N., Kaur, G., Rojas, C., 2021. Assemblages of myxomycetes associated with three different substrates affected by forest wildfires. Plant Ecol. Evol. 154 (1), 15–27. https://doi.org/10.5091/plecevo.2021.1762.
Svensson, M., Johansson, P., Thor, G., 2005. Lichens of wooden barns and Pinus sylvestris snags in Dalarna, Sweden. Ann. Bot. Fenn. 42, 351–363.
Svensson, M., Johansson, V., Dahlberg, A., Frisch, A., Thor, G., Ranius, T., 2016. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20, 166–174. https://doi.org/10.1016/j.funeco.2015.12.010.
Szweykowski, J., 1953. Mszaki Gór Stołowych. Cz. I. Wątrobowce (Hepaticae). Poznańskie Towarzystwo Przyjaciół Nauk. Prace Komisji Biologicznej 14 (5), 1–134.
Taylor, A.R., Victorsson, J., 2016. Short-term effects of stump harvesting on millipedes and centipedes on coniferous tree stumps. For. Ecol. Manag. 371, 67–74. https://doi.org/10.1016/j.foreco.2016.03.039.
Tilk, M., Ots, K., Tullus, T., 2018. Effect of environmental factors on the composition of terrestrial bryophyte and lichen species in Scots pine forests on fixed sand dunes. For. Syst. 27 (3), e015. https://doi.org/10.5424/fs/2018273-13488.
Uhl, B., Krah, F.-S., Baldrian, P., Brandl, R., Hagge, J., Müller, J., Thorn, S., Vojtech, T., Bässler, C., 2022. Snags, logs, stumps, and microclimate as tools optimizing deadwood enrichment for forest biodiversity. Biol. Conserv. 270, 109569. https://doi.org/10.1016/j.biocon.2022.109569.
Unar, P., Janík, D., Adam, D., Vymazalová, M., 2017. The colonization of decaying logs by vascular plants and the consequences of fallen logs for herb layer diversity in a lowland alluvial forest. Eur. J. For. Res. 136 (4), 665–676. https://doi.org/10.1007/s10342-017-1063-2.
Walmsley, J.D., Godbold, D.L., 2010. Stump harvesting for bioenergy–a review of the environmental impacts. Forestry 83 (1), 17–38. https://doi.org/10.1093/forestry/cpp028.
Wang, Q., Srivastava, V., Super, L., Wang, T., El-Kassaby, Y.A., 2022. Tree regeneration on stumps in second-growth temperate rainforests of British Columbia, Canada. Glob. Ecol. Conserv. 37, e02159. https://doi.org/10.1016/j.gecco.2022.e02159.
Wasserstein, R.L., Lazar, N.A., 2016. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133. https://doi.org/10.1080/00031305.2016.1154108.
Żarnowiec, J., Staniaszek-Kik, M., Chmura, D., 2021. Trait-based responses of bryophytes to the decaying logs in Central European mountain forests. Ecol. Indicat. 126, 107671. https://doi.org/10.1016/j.ecolind.2021.107671.
Zielonka, T., Piątek, G., 2004. The herb and dwarf shrubs colonization of decaying logs in subalpine forest in the Polish Tatra Mountains. Plant Ecol. 172 (1), 63–72. https://doi.org/10.1023/B:VEGE.0000026037.03716.fc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).