AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tree mycorrhizal associations determine how biodiversity, large trees, and environmental factors drive aboveground carbon stock in temperate forests

Yue Chena,b,cZikun Maoa,cJonathan A. MyersdJinghua YuaXugao Wanga,c( )
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, 110016, China
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
Show Author Information

Abstract

Biodiversity, large trees, and environmental conditions such as climate and soil have important effects on forest carbon stocks. However, recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations, whereby large-tree effects may be driven by ectomycorrhizal (EM) trees, diversity effects may be driven by arbuscular mycorrhizal (AM) trees, and environment effects may depend on differential climate and soil preferences of AM and EM trees. To test this hypothesis, we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots (30 m ​× ​30 ​m) across Northeast China to examine how biodiversity (species diversity and ecological uniqueness), large trees (top 1% of tree diameters), and environmental factors (climate and soil nutrients) differently regulate aboveground carbon stocks of AM trees, EM trees, and AM and EM trees combined (i.e. total aboveground carbon stock). We found that large trees had a positive effect on both AM and EM tree carbon stocks. However, biodiversity and environmental factors had opposite effects on AM vs. EM tree carbon stocks. Specifically, the two components of biodiversity had positive effects on AM tree carbon stocks, but negative effects on EM tree carbon stocks. Environmental heterogeneity (mean annual temperature and soil nutrients) also exhibited contrasting effects on AM and EM tree carbon stocks. Consequently, for the total carbon stock, the positive large-tree effect far surpasses the diversity and environment effect. This is mainly because when integrating AM and EM tree carbon stock into total carbon stock, the opposite diversity-effect (also environment-effect) on AM vs. EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified. In summary, this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.

References

 

Akhmetzhanova, A.A., Soudzilovskaia, N.A., Onipchenko, V.G., Cornwell, W.K., Agafonov, V.A., Selivanov, I.A., Cornelissen, J.H., 2012. A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the Former Soviet Union. Ecology 93, 689–690. https://doi.org/10.2307/23143955.

 

Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., Jiang, H.S., 2019. Big-sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Chang. Biol. 25, 2810–2824. https://doi.org/10.1111/gcb.14707.

 

Ali, A., Lohbeck, M., Yan, E.R., 2018. Forest strata-dependent functional evenness explains whole-community aboveground biomass through opposing mechanisms. For. Ecol. Manag. 424, 439–447. https://doi.org/10.1016/j.foreco.2018.05.015.

 

Andreo-Jimenez, B., Ruyter-Spira, C., Bouwmeester, H.J., Lopez-Raez, J.A., 2015. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394, 1–19. https://doi.org/10.1007/s11104-015-2544-z.

 

Antunes, P.M., Koch, A.M., Morton, J.B., Rillig, M.C., Klironomos, J.N., 2010. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol. 189, 507–514. https://doi.org/10.1111/j.1469-8137.2010.03480.x.

 

Aponte, C., Kasel, S., Nitschke, C.R., Tanase, M.A., Vickers, H., Parker, L., Fedrigo, M., Kohout, M., Ruiz-Benito, P., Zavala, M.A., Bennett, L.T., Hickler, T., 2020. Structural diversity underpins carbon storage in Australian temperate forests. Glob. Ecol. Biogeogr. 29, 789–802. https://doi.org/10.1111/geb.13038.

 

Averill, C., Bhatnagar, J.M., Dietze, M.C., Pearse, W.D., Kivlin, S.N., 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA 116, 23163–23168. https://doi.org/10.1073/pnas.1906655116.

 

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, T.W., 2019. The global tree restoration potential. Science 365, 76–79. https://doi.org/10.1126/science.aax0848.

 

Bennett, A.E., Classen, A.T., 2020. Climate change influences mycorrhizal fungal–plant interactions, but conclusions are limited by geographical study bias. Ecology 101, e02978. https://doi.org/10.1002/ecy.2978.

 

Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M., Klironomos, J., 2017. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184. https://doi.org/10.1126/science.aai8212.

 

Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. https://doi.org/10.1126/science.1155121.

 

Bradford, M., Murphy, H.T., 2019. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS One 14, e0208377. https://doi.org/10.1371/journal.pone.0208377.

 

Bueno, C.G., Davison, J., Leon, D., Meng, Y., Öpik, M., Zobel, M., Moora, M., 2021. Towards a consistent benchmark for plant mycorrhizal association databases. New Phytol. 231, 913–916. https://doi.org/10.1111/nph.17417.

 

Chisholm, R.A., Muller-Landau, H.C., Abdul Rahman, K., Bebber, D.P., Bin, Y., Bohlman, S.A., Bourg, N.A., Brinks, J., Bunyavejchewin, S., Butt, N., Cao, H., Cao, M., Cárdenas, D., Chang, L.W., Chiang, J.M., Chuyong, G., Condit, R., Dattaraja, H.S., Davies, S., Duque, A., Fletcher, C., Gunatilleke, N., Gunatilleke, S., Hao, Z., Harrison, R.D., Howe, R., Hsieh, C.F., Hubbell, S.P., Itoh, A., Kenfack, D., Kiratiprayoon, S., Larson, A.J., Lian, J., Lin, D., Liu, H., Lutz, J.A., Ma, K., Malhi, Y., McMahon, S., McShea, W., Meegaskumbura, M., Mohd Razman, S., Morecroft, M.D., Nytch, C.J., Oliveira, A., Parker, G.G., Pulla, S., Punchi-Manage, R., Romero-Saltos, H., Sang, W., Schurman, J., Su, S.H., Sukumar, R., Sun, I.F., Suresh, H.S., Tan, S., Thomas, D., Thomas, S., Thompson, J., Valencia, R., Wolf, A., Yap, S., Ye, W., Yuan, Z., Zimmerman, J.K., Coomes, D., 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224. https://doi.org/10.1111/1365-2745.12132.

 

Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.-F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E., Turner, J.R.G., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x.

 

Delavaux, C.S., LaManna, J.A., Myers, J.A., Phillips, R.P., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Baker, M.E., Baltzer, J.L., Bissiengou, P., Bonfim, M., Bourg, N.A., Brockelman, W.Y., Burslem, D.F.R.P., Chang, L.-W., Chen, Y., Chiang, J.-M., Chu, C., Clay, K., Cordell, S., Cortese, M., den Ouden, J., Dick, C., Ediriweera, S., Ellis, E.C., Feistner, A., Freestone, A.L., Giambelluca, T., Giardina, C.P., Gilbert, G.S., He, F., Holík, J., Howe, R.W., Huaraca Huasca, W., Hubbell, S.P., Inman, F., Jansen, P.A., Johnson, D.J., Kral, K., Larson, A.J., Litton, C.M., Lutz, J.A., Malhi, Y., McGuire, K., McMahon, S.M., McShea, W.J., Memiaghe, H., Nathalang, A., Norden, N., Novotny, V., O'Brien, M.J., Orwig, D.A., Ostertag, R., Parker, G.G., Pérez, R., Reynolds, G., Russo, S.E., Sack, L., Šamonil, P., Sun, I.F., Swanson, M.E., Thompson, J., Uriarte, M., Vandermeer, J., Wang, X., Ware, I., Weiblen, G.D., Wolf, A., Wu, S.-H., Zimmerman, J.K., Lauber, T., Maynard, D.S., Crowther, T.W., Averill, C., 2023. Mycorrhizal feedbacks influence global forest structure and diversity. Commun. Biol. 6, 1066. https://doi.org/10.1038/s42003-023-05410-z.

 

Deng, M., Hu, S., Guo, L., Jiang, L., Huang, Y., Schmid, B., Liu, C., Chang, P., Li, S., Liu, X., Ma, K., Liu, L., 2023. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Sci. Adv. 9, eadd4468. https://doi.org/10.1126/sciadv.add4468.

 
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., Wagner, H.H., 2018. adespatial: multivariate multiscale spatial analysis. R package version 3.14. https://CRAN.R-project.org/package=adespatial. (Accessed 10 December 2023).
 

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x.

 

Heinrich, V.H.A., Dalagnol, R., Cassol, H.L.G., Rosan, T.M., de Almeida, C.T., Silva Junior, C.H.L., Campanharo, W.A., House, J.I., Sitch, S., Hales, T.C., Adami, M., Anderson, L.O., Aragão, L.E.O.C., 2021. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785. https://doi.org/10.1038/s41467-021-22050-1.

 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276.

 

Hsieh, T.C., Ma, K.H., Chao, A., McInerny, G., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210x.12613.

 

Jo, I., Fei, S., Oswalt, C.M., Domke, G.M., Phillips, R.P., 2019. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358. https://doi.org/10.1126/sciadv.aav6358.

 

Johnson, D., Liu, X., Burslem, D.F.R.P., 2023. Symbiotic control of canopy dominance in subtropical and tropical forests. Trends Plant Sci. 28, 995–1003. https://doi.org/10.1016/j.tplants.2023.03.027.

 

Keller, A.B., Phillips, R.P., 2018. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytol. 222, 556–564. https://doi.org/10.1111/nph.15524.

 

Kueppers, L.M., Harte, J., 2005. Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecol. Appl. 15, 1984–1999. https://doi.org/10.1890/04-1769.

 

Lecina-Diaz, J., Alvarez, A., Regos, A., Drapeau, P., Paquette, A., Messier, C., Retana, J., 2018. The positive carbon stocks–biodiversity relationship in forests: co-occurrence and drivers across five subclimates. Ecol. Appl. 28, 1481–1493. https://doi.org/10.1002/eap.1749.

 

Legendre, P., De Cáceres, M., 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141.

 

Li, Y., Bao, W., Bongers, F., Chen, B., Chen, G., Guo, K., Jiang, M., Lai, J., Lin, D., Liu, C., Liu, X., Liu, Y., Mi, X., Tian, X., Wang, X., Xu, W., Yan, J., Yang, B., Zheng, Y., Ma, K., 2019. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ. 654, 684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024.

 

Lin, G., Craig, M.E., Jo, I., Wang, X., Zeng, D.H., Phillips, R.P., 2021. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob. Ecol. Biogeogr. 31, 168–182. https://doi.org/10.1111/geb.13418.

 

Lindenmayer, D.B., Laurance, W.F., 2016. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92, 1434–1458. https://doi.org/10.1111/brv.12290.

 

Liu, G., Yan, G., Chang, M., Huang, B., Sun, X., Han, S., Xing, Y., Wang, Q., 2021. Long-term nitrogen addition further increased carbon sequestration in a boreal forest. Eur. J. For. Res. 140, 1113–1126. https://doi.org/10.1007/s10342-021-01386-9.

 

Liu, X., Trogisch, S., He, J.-S., Niklaus, P.A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K.A., Yang, B., Kühn, P., Scholten, T., Huang, Y., Wang, C., Staab, M., Leppert, K.N., Wirth, C., Schmid, B., Ma, K., 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci. 285, 20181240. https://doi.org/10.1098/rspb.2018.1240.

 

Liu, Y., Yu, G., Wang, Q., Zhang, Y., 2013. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 23, 323–333. https://doi.org/10.1111/geb.12113.

 

Luo, W., Lan, R., Chen, D., Zhang, B., Xi, N., Li, Y., Fang, S., Valverde-Barrantes, O.J., Eissenstat, D.M., Chu, C., Wang, Y., 2020. Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest. New Phytol. 229, 1078–1090. https://doi.org/10.1111/nph.16920.

 

Luo, Y.H., Ma, L.L., Seibold, S., Cadotte, M.W., Burgess, K.S., Tan, S.L., Ye, L.J., Zheng, W., Zou, J.Y., Chen, Z.F., Liu, D.T., Zhu, G.F., Shi, X.C., Zhao, W., Li, D.Z., Liu, J., Gao, L.M., 2023. The diversity of mycorrhiza-associated fungi and trees shapes subtropical mountain forest ecosystem functioning. J. Biogeogr. 50, 715–729. https://doi.org/10.1111/jbi.14563.

 

Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M.L., Blomdahl, E.M., Bourg, N.A., Bunyavejchewin, S., Burslem, D.F.R.P., Cansler, C.A., Cao, K., Cao, M., Cárdenas, D., Chang, L.W., Chao, K.J., Chao, W.C., Chiang, J.M., Chu, C., Chuyong, G.B., Clay, K., Condit, R., Cordell, S., Dattaraja, H.S., Duque, A., Ewango, C.E.N., Fischer, G.A., Fletcher, C., Freund, J.A., Giardina, C., Germain, S.J., Gilbert, G.S., Hao, Z., Hart, T., Hau, B.C.H., He, F., Hector, A., Howe, R.W., Hsieh, C.F., Hu, Y.H., Hubbell, S.P., Inman-Narahari, F.M., Itoh, A., Janík, D., Kassim, A.R., Kenfack, D., Korte, L., Král, K., Larson, A.J., Li, Y., Lin, Y., Liu, S., Lum, S., Ma, K., Makana, J.R., Malhi, Y., McMahon, S.M., McShea, W.J., Memiaghe, H.R., Mi, X., Morecroft, M., Musili, P.M., Myers, J.A., Novotny, V., de Oliveira, A., Ong, P., Orwig, D.A., Ostertag, R., Parker, G.G., Patankar, R., Phillips, R.P., Reynolds, G., Sack, L., Song, G.Z.M., Su, S.H., Sukumar, R., Sun, I.F., Suresh, H.S., Swanson, M.E., Tan, S., Thomas, D.W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Vrška, T., Wang, X., Weiblen, G.D., Wolf, A., Wu, S.H., Xu, H., Yamakura, T., Yap, S., Zimmerman, J.K., 2018. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864. https://doi.org/10.1111/geb.12747.

 

Lutz, J.A., Larson, A.J., Freund, J.A., Swanson, M.E., Bible, K.J., 2013. The importance of large-diameter trees to forest structural heterogeneity. PLoS One 8, e82784. https://doi.org/10.1371/journal.pone.0082784.

 

Lutz, J.A., Larson, A.J., Swanson, M.E., Freund, J.A., 2012. Ecological importance of large-diameter trees in a temperate mixed-conifer forest. PLoS One 7, e36131. https://doi.org/10.1371/journal.pone.0036131.

 

Ma, J., Chen, L., Mi, X., Ren, H., Liu, X., Wang, Y., Wang, F., Yao, Y., Zhang, Y., Ma, K., 2023. The interactive effects of soil fertility and tree mycorrhizal association explain spatial variation of diversity–biomass relationships in a subtropical forest. J. Ecol. 111, 1037–1049. https://doi.org/10.1111/1365-2745.14076.

 

Mao, Z., Corrales, A., Zhu, K., Yuan, Z., Lin, F., Ye, J., Hao, Z., Wang, X., 2019. Tree mycorrhizal associations mediate soil fertility effects on forest community structure in a temperate forest. New Phytol. 223, 475–486. https://doi.org/10.1111/nph.15742.

 

Mao, Z., van der Plas, F., Corrales, A., Anderson-Teixeira, K.J., Bourg, N.A., Chu, C., Hao, Z., Jin, G., Lian, J., Lin, F., Li, B., Luo, W., McShea, W.J., Myers, J.A., Shen, G., Wang, X., Yan, E.R., Ye, J., Ye, W., Yuan, Z., Wang, X., 2023. Scale-dependent diversity–biomass relationships can be driven by tree mycorrhizal association and soil fertility. Ecol. Monogr. 93, e1568. https://doi.org/10.1002/ecm.1568.

 

Mensah, S., Salako, V.K., Seifert, T., Ostertag, R., 2020. Structural complexity and large-sized trees explain shifting species richness and carbon relationship across vegetation types. Funct. Ecol. 34, 1731–1745. https://doi.org/10.1111/1365-2435.13585.

44
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2020. vegan: community ecology package. R package version 2, 5–7. https://CRAN.R-project.org/package=vegan (accessed 10 December 2023).
 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.

 

Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51. https://doi.org/10.1111/nph.12221.

 
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Reu, J.C., Catano, C.P., Spasojevic, M.J., Myers, J.A., 2022. Beta diversity as a driver of forest biomass across spatial scales. Ecology 103, e3774. https://doi.org/10.1002/ecy.3774.

 

Rosseel, Y., 2012. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48 (2), 1–36. https://doi.org/10.18637/jss.v048.i02.

 

Seyfried, G.S., Dalling, J.W., Yang, W.H., 2021. Mycorrhizal type effects on leaf litter decomposition depend on litter quality and environmental context. Biogeochemistry 155, 21–38. https://doi.org/10.1007/s10533-021-00810-x.

 

Sor, R., Legendre, P., Lek, S., 2018. Uniqueness of sampling site contributions to the total variance of macroinvertebrate communities in the Lower Mekong Basin. Ecol. Indicat. 84, 425–432. https://doi.org/10.1016/j.ecolind.2017.08.038.

 

Soudzilovskaia, N.A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M.C., Gomes, S.I.F., Merckx, V., Tedersoo, L., 2020. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 227, 955–966. https://doi.org/10.1111/nph.16569.

 

Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A., Lines, E.R., Morris, W.K., Rüger, N., Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S.J., Duque, Á., Ewango, C.N., Flores, O., Franklin, J.F., Grau, H.R., Hao, Z., Harmon, M.E., Hubbell, S.P., Kenfack, D., Lin, Y., Makana, J.R., Malizia, A., Malizia, L.R., Pabst, R.J., Pongpattananurak, N., Su, S.H., Sun, I.F., Tan, S., Thomas, D., van Mantgem, P.J., Wang, X., Wiser, S.K., Zavala, M.A., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93. https://doi.org/10.1038/nature12914.

 

Storch, D., Bohdalkova, E., Okie, J., 2018. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship. Ecol. Lett. 21, 920–937. https://doi.org/10.1111/ele.12941.

 

van der Plas, F., 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245. https://doi.org/10.1111/brv.12499.

 

van der Plas, F., Hennecke, J., Chase, J.M., van Ruijven, J., Barry, K.E., 2023. Universal beta-diversity–functioning relationships are neither observed nor expected. Trends Ecol. Evol. 38, 532–544. https://doi.org/10.1016/j.tree.2023.01.008.

 

Vétrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B.D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z.R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., Švec, K., Tláskal, V., Urbanová, M., Wan, J., Žifčáková, L., Howe, A., Ladau, J., Peay, K.G., Storch, D., Wild, J., Baldrian, P., 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142. https://doi.org/10.1038/s41467-019-13164-8.

 

Wang, S., Jiménez-Alfaro, B., Pan, S., Yu, J., Sanaei, A., Sayer, E.J., Ye, J., Hao, Z., Fang, S., Lin, F., Yuan, Z., Wang, X., 2021. Differential responses of forest strata species richness to paleoclimate and forest structure. For. Ecol. Manag. 499, 119605. https://doi.org/10.1016/j.foreco.2021.119605.

 

Wurzburger, N., Brookshire, E.N.J., McCormack, M.L., Lankau, R.A., 2017. Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes. New Phytol. 213, 996–999. https://doi.org/10.1111/nph.14409.

 

Yan, G., Bongers, F.J., Trogisch, S., Li, Y., Chen, G., Yan, H., Deng, X., Ma, K., Liu, X., 2022. Climate and mycorrhizae mediate the relationship of tree species diversity and carbon stocks in subtropical forests. J. Ecol. 110, 2462–2474. https://doi.org/10.1111/1365-2745.13962.

 

Yao, J., Huang, J., Ding, Y., Xu, Y., Xu, H., Zang, R., Barnes, A., 2020. Ecological uniqueness of species assemblages and their determinants in forest communities. Divers. Distrib. 27, 454–462. https://doi.org/10.1111/ddi.13205.

 

Yuan, Z., Ali, A., Loreau, M., Ding, F., Liu, S., Sanaei, A., Zhou, W., Ye, J., Lin, F., Fang, S., Hao, Z., Wang, X., Le Bagousse-Pinguet, Y., 2021. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Glob. Chang. Biol. 27, 2883–2894. https://doi.org/10.1111/gcb.15606.

 

Yuan, Z., Ali, A., Wang, S., Gazol, A., Freckleton, R., Wang, X., Lin, F., Ye, J., Zhou, L., Hao, Z., Loreau, M., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Sci. Total Environ. 630, 422–431. https://doi.org/10.1016/j.scitotenv.2018.02.125.

 

Yuan, Z., Wang, S., Gazol, A., Mellard, J., Lin, F., Ye, J., Hao, Z., Wang, X., Loreau, M., 2016. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182, 1175–1185. https://doi.org/10.1007/s00442-016-3737-8.

 

Zhong, Y., Chu, C., Myers, J.A., Gilbert, G.S., Lutz, J.A., Stillhard, J., Zhu, K., Thompson, J., Baltzer, J.L., He, F., LaManna, J.A., Davies, S.J., Aderson-Teixeira, K.J., Burslem, D.F.R.P., Alonso, A., Chao, K.-J., Wang, X., Gao, L., Orwig, D.A., Yin, X., Sui, X., Su, Z., Abiem, I., Bissiengou, P., Bourg, N., Butt, N., Cao, M., Chang-Yang, C.-H., Chao, W.-C., Chapman, H., Chen, Y.-Y., Coomes, D.A., Cordell, S., de Oliveira, A.A., Du, H., Fang, S., Giardina, C.P., Hao, Z., Hector, A., Hubbell, S.P., Janik, D., Jansen, P.A., Jiang, M., Jin, G., Kenfack, D., Kral, K., Larson, A.J., Li, B., Li, X., Li, Y., Lian, J., Lin, L., Liu, F., Liu, Y., Liu, Y., Luan, F., Luo, Y., Ma, K., Malhi, Y., McMahon, S.M., McShea, W., Memiaghe, H., Mi, X., Morecroft, M., Novotny, V., O'Brien, M.J., den Ouden, J., Parker, G.G., Qiao, X., Ren, H., Reynolds, G., Samonil, P., Sang, W., Shen, G., Shen, Z., Song, G.-Z.M., Sun, I.F., Tang, H., Tian, S., Uowolo, A.L., Uriarte, M., Wang, B., Wang, X., Wang, Y., Weiblen, G.D., Wu, Z., Xi, N., Xiang, W., Xu, H., Xu, K., Ye, W., Yu, M., Zeng, F., Zhang, M., Zhang, Y., Zhu, L., Zimmerman, J.K., 2021. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137. https://doi.org/10.1038/s41467-021-23236-3.

Forest Ecosystems
Article number: 100205
Cite this article:
Chen Y, Mao Z, Myers JA, et al. Tree mycorrhizal associations determine how biodiversity, large trees, and environmental factors drive aboveground carbon stock in temperate forests. Forest Ecosystems, 2024, 11(4): 100205. https://doi.org/10.1016/j.fecs.2024.100205

156

Views

6

Downloads

4

Crossref

3

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 24 December 2023
Revised: 13 May 2024
Accepted: 13 May 2024
Published: 16 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return